©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE

QUESTION-PAPERS-2016

Physics

1. What should be the velocity of earth due to rotation about its own axis so that the weight
at equator become $3 / 5$ of initial value. Radius of earth on equator is 6400 km
A. $8.7 \times 10^{-1} \mathrm{rad} / \mathrm{s}$
B. $7.8 \times 10^{-4} \mathrm{rad} / \mathrm{s}$
C. $6.7 \times 10^{-4} \mathrm{rad} / \mathrm{s}$
D. $7.4 \times 10^{-3} \mathrm{rad} / \mathrm{s}$

Answer: B

D Watch Video Solution

2. Block A of mass m and block B of mass $2 m$
are placed on a fixed triangular wedge by
means of a light and inextensible string and a
frictionless pulley as shown in fig. The wedge
is inclined at 45° to the horizontal on both
sides . The coefficient of friction between the
block A and the wedge is $2 / 3$ and that between the block B and the wedge is $1 / 3$.If the system of A and B is released from rest then find.
a. the acceleration of A
b. tension in the string
c.the magnitude and direction of the frictional
force acting on A

A. $-1 m s^{-2}$
B. $1.2 m s^{-2}$
C. $0.2 m s^{-2}$
D. zero

- Watch Video Solution

3. The surface charge density of a thin charged disc of radius R is σ. The value of the electric field at the centre of the disc is $\frac{\sigma}{2 \epsilon_{o}}$. With respect to the field at the centre, the electric field along the axis at a distance R from the centre of the disc reduces by
A. reduces by 70.7%
B. reduces by 29.3%
C. reduces by 9.7%

D. reduces by 14.6%

Answer: A

D Watch Video Solution

4. The molecules of a given mass of a gas have
rms velocity

pressure. When the temperature and pressure of the gas are respectively
$127^{\circ} \mathrm{C}$ and $0.05 \times 10^{5} \mathrm{Nm}^{-2}$, the
velocity of its molecules in $m s^{-1}$ is
A. $100 \sqrt{2}$
B. $\frac{400}{\sqrt{3}}$
C. $\frac{100 \sqrt{2}}{3}$
D. $\frac{100}{3}$

Answer: B
(Watch Video Solution
5. An inductor of inductance $L=400 \mathrm{mH}$ and
resistors of resistance $R_{1}=2 \Omega$ and $R_{2}=2 \Omega$
are connected to a battery of emf 12 V as
shown in the figure. The internal resistance of
the battery is negligible. The switch S is closed
at $t=0$. The potential drop across L as a
function of time is

A. $\frac{12}{t} e^{-3 t} V$
B. $6\left(1-e^{-t / 0.2}\right) V$
C. $12 e^{-5 t} V$
D. $6 e^{-5 t} V$

Answer: C

D Watch Video Solution

6. Two wires are made of the same material
and have the same volume. However wire 1 has
cross-sectional area A and wire 2 has crosssectional area $3 A$. If the length of wire 1 increases by Δx on applying force F , how much force is needed to stretch wire 2 by the same amount?
A. 4 F
B. 6 F
C. 9 F
D. F

Answer: C

D Watch Video Solution

7. Two spheres of different materials one with double the radius and one-fourth wall
thickness of the other are filled with ice. If the
time taken for complete melting of ice in the larger sphere is 25 minutes and for smaller one is 16 minutes, the ratio of thermal conductivities of the materials of larger sphere to that of smaller sphere is:
A. $4: 5$
B. 5: 4
C. $25: 8$
D. $8: 25$

Answer: D
8. A biconvex lens has a radius of curvature of magnitude 20 cm . Which one of the following options describes best the image formed of an object of height 2 cm place 30 cm from the lens ?
A. Virtual, upright, height $=1 \mathrm{~cm}$
B. Virtual, upright, height $=0.5 \mathrm{~cm}$
C. Real, inverted, height $=4 \mathrm{~cm}$
D. Real, inverted, height $=1 \mathrm{~cm}$

Answer: C

- Watch Video Solution

9. In the figure below, what is the potential difference between the point A and B and between B and C respectively in steady state

A. $V_{A B}=V_{B C}=100 \mathrm{~V}$
B. $V_{A B}=75 \mathrm{~V}, V_{B C}=25 \mathrm{~V}$
C. $V_{A B}=-25 V, V_{B C}=-75 \mathrm{~V}$
D. $V_{A B}=V_{B C}=50 \mathrm{~V}$

Answer: C

D Watch Video Solution

10. A radioactive element X converts into another stable element Y. Half-life of X is $2 h$. Initially, only X is present. After time t, the
ratio of atoms of X and Y is found to be $1: 4$

Then t in hours is .
A. 2
B. 4
C. between 4 and 6
D. 6

Answer: C
(Watch Video Solution
11. The approximate depth of an ocean is 2700
m . The compressibility of water is
$45.4 \times 10^{-11} \mathrm{~Pa}^{-1}$ and density of water is $10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. What fractional compression of water will be obtained at the bottom of the ocean ?
A. 1.0×10^{-2}
B. 1.2×10^{-2}
C. 1.4×10^{-2}
D. 0.8×10^{-2}

Answer: B

D Watch Video Solution

12. A friction wire $A B$ is fixed on a sphere of
radius R. A very small spherical ball slips on
this wire. The time taken by the ball to slip
from A to B.

A. $\frac{\sqrt{2} g R}{g \cos \theta}$
B. $2 \sqrt{g R} . \frac{\cos \theta}{g}$
C. $2 \sqrt{\frac{R}{g}}$
D. $\frac{g R}{\sqrt{g \cos \theta}}$

Answer: C

- Watch Video Solution

13. A string of length I is fixed at both ends. It
is vibrating in its $3^{r d}$ overtone with maximum
amplitude 'a'. The amplitude at a distance I/3
from one end is
A. a
B. 0
C. $\frac{\sqrt{3 a}}{2}$

D. $\frac{a}{2}$

Answer: C

- Watch Video Solution

14. A deutron of kinetic energy 50 keV is describing a circular orbit of radius 0.5 meter in a plane perpendicular to magnetic field \vec{B}.

The kinetic energy of the proton that describes a circular orbit of radius 0.5 meter in the same plane with the same \vec{B} is
A. 25 keV
B. 50 keV
C. 200 keV
D. 100 keV

Answer: D

D Watch Video Solution
15. In the circuit shown in the figure, find the
current in 45Ω

A. 4 A
B. 2.5 A
C. 2A
D. None of these

Answer: C

16. Kepler's third law states that square of period revolution (T) of a planet around the
sun is proportional to third power of average distance i between sun and planet i.e.
$T^{2}=K r^{3}$
here K is constant
if the mass of sun and planet are M and m respectively then as per Newton's law of gravitational the force of alteaction between them is $F=\frac{G M m}{r^{2}}$, here G is gravitational constant. The relation between G and K is described as
A. $G M K=4 \pi^{2}$
B. $K=G$
C. $K=\frac{1}{G}$
D. $G K=4 \pi^{2}$

Answer: A

D Watch Video Solution

17. Find the number of photons emitted per second by a 25 W source of monochromatic light of wavelength $6600 \AA$. What is the
photoelectric current assuming 3\% efficiency
for photoelectric effect.

Given
$h=6.6 \times 10^{-34} J s$.
A. $\frac{25}{3} \times 10^{19} \mathrm{~J}, 0.4 \mathrm{amp}$
B. $\frac{25}{4} \times 10^{19} \mathrm{~J}, 6.2 \mathrm{amp}$
C. $\frac{25}{2} \times 10^{19} \mathrm{~J}, 0.8 \mathrm{amp}$
D. None of these

Answer: A

D Watch Video Solution
18. A ray of light intensity I is incident on a parallel glass-slab at a point A as shown in figure. It undergoes partial reflection and refraction. At each reflection 25% of incident energy is reflected. The rays $A B$ and $A^{\prime} B^{\prime}$ undergo interference. The ratio $I_{\max } / I_{\min }$ is

A. $49: 1$
B. $7: 1$
C. $4: 1$
D. $8: 1$

Answer: A

D Watch Video Solution

19. A capillary tube of radius r is immersed vertically in a liquid such that liquid rises in it to height h (less than the length of the tube).

Mass of liquid in the capillary tube is m . If
radius of the capillary tube is increased by
50%, then mass of liquid that will rise in the tube, is
A. $\frac{2}{3} m$
B. m
C. $\frac{3}{2} m$
D. $\frac{9}{4} m$

Answer: C

D Watch Video Solution
20. The drift velocity of electrons in silver wire with cross-sectional area $3.14 \times 10^{-6} \mathrm{~m}^{2}$
carrying a current of 20 A is. Given atomic weight of $\mathrm{Ag}=108$, density of silver $=$ $10.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
A. $2.798 \times 10^{-4} \mathrm{~m} / \mathrm{sec}$
B. $67.98 \times 10^{-4} \mathrm{~m} / \mathrm{sec}$
C. $0.67 \times 10^{-4} \mathrm{~m} / \mathrm{sec}$
D. $6.798 \times 10^{-9} \mathrm{~m} / \mathrm{sec}$

Watch Video Solution

21. A parallel plate capacitor of area ' A ' plate separation 'd' is filled with two dielectrics as shown. What is the capacitance of the arrangement ?

A. $\frac{3 K \varepsilon_{0} A}{4 d}$
B. $\frac{4 K \varepsilon_{0} A}{3 d}$
C. $\frac{(K+1) \varepsilon_{0} A}{2 d}$
D. $\frac{K(K+3) \varepsilon_{0} A}{2(K+1) d}$

Answer: D

D Watch Video Solution

22. In the Young's double-slit experiment,the intensity of light at a point on the screen where the path difference is λ is K (λ being the wave length of light used).The intensity at a point where the path difference is $\frac{\lambda}{4}$, will be
A. K
B. $K / 4$
C. $\mathrm{K} / 2$
D. Zero

Answer: C

D Watch Video Solution

23. The mass of ${ }_{7} N^{15}$ is 15.00011 amu, mass of
${ }_{8} O^{16}$ is 15.99492 amu and $m_{P}=1.00783 \mathrm{amu}$.

Determine binding energy of last proton of
A. 2.13 MeV
B. 0.13 MeV
C. 10 MeV
D. 12.13 MeV

Answer: D

D Watch Video Solution

24. A wire carrying current I has the shape as
shown in the adjoining figure. Linear parts of
the wire are very long and parallel to X-axis
while semicicular portion of radius R is lying in $Y-Z$ plane. Magnetic field at point O is

A. $\vec{B}=-\frac{\mu_{0}}{4 \pi} \frac{I}{R}(\mu \hat{i} \times 2 \hat{k})$
B. $\vec{B}=-\frac{\mu_{0}}{4 \pi} \frac{I}{R}(\mu \hat{i}+2 \hat{k})$
C. $\vec{B}=-\frac{\mu_{0}}{4 \pi} \frac{I}{R}(\pi \hat{i}-2 \hat{k})$

$$
\text { D. } \vec{B}=-\frac{\mu_{0}}{4 \pi} \frac{I}{R}(\pi \hat{i}+2 \hat{k})
$$

Answer: B

D Watch Video Solution

25. A stone projected with a velocity u at an angle (theta)with the horizontal reaches maximum heights H_{1}. When it is projected with velocity u at an angle $\left(\frac{\pi}{2}-\theta\right)$ with the horizontal, it reaches maximum height H_{2}. The
relations between the horizontal range R of the projectile, H_{1} and H_{2}, is

$$
\begin{aligned}
& \text { A. } R=4 \sqrt{H_{1} H_{2}} \\
& \text { B. } R=4\left(H_{1}-H_{2}\right) \\
& \text { C. } R=4\left(H_{1}+H_{2}\right) \\
& \text { D. } R=\frac{H_{1}^{2}}{H_{2}^{2}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

26. If the series limit wavelength of the Lyman series for hydrogen atom is $912 \AA$, then the
series limit wavelength for the Balmer series
for the hydrogen atom is
A. $912 \AA$
B. $912 \times 2 \mathrm{~A}$
C. $912 \times 4 \AA$

$$
\text { D. } \frac{912}{2} A
$$

Answer: C

27. In the shown arrangement of the experiment of the meter bridge if AC corroesponding to null deflection of galvanometer is x, what would be its value if the radius of the wire $A B$ is doubled?

A. x
B. $\frac{x}{4}$
C. $4 x$
D. $2 x$

Answer: A

D Watch Video Solution
28. A 1 kg mass is attached to a spring of force
constant $600 \mathrm{~N} / \mathrm{m}$ and rests on a smooth
horizontal surface with other end of the
spring tied to wall as shown in figure. A second mass of 0.5 kg slides along the surface towards the first at $3 \mathrm{~m} / \mathrm{s}$. If the masses make a perfectly inelastic collision, then find amplitude and time period of oscillation of combined mass.

A. $5 c m, \frac{\pi}{10} s$
B. $5 \mathrm{~cm}, \frac{\pi}{5} s$
C. $4 \mathrm{~cm}, \frac{2 \pi}{5} s$

$$
\text { D. } 4 c m, \frac{\pi}{3} s
$$

Answer: A

D Watch Video Solution

29. The frequency of vibration of string is given by $v=\frac{p}{2 l}\left[\frac{F}{m}\right]^{1 / 2}$. Here p is number of segments in the string and l is the length. The dimensional formula for m will be
A. $\left[M^{0} L T^{-1}\right]$
B. $\left[M L^{0} T^{-1}\right]$
C. $\left[M L^{-1} T^{0}\right]$
D. $\left[M^{0} L^{0} T^{0}\right]$

Answer: C

D Watch Video Solution

30. For the angle of minimum deviation of a prism to be equal to its refracting angle, the prism must be made of a material whose refractive index
A. lies between $\sqrt{2}$ and 1
B. lie between 2 and $\sqrt{2}$
C. is less than 1
D. is greater than 2

Answer: B

D Watch Video Solution

31. Consider elastic collision of a particle of mass moving with a velocity u with another particle of the same mass at rest. After the
collision the projectile and the struck particle move in direction making angles θ_{1} and θ_{2} respectively with the initial direction of motion. The sum of the angles. $\theta_{1}+\theta_{2}$, is
A. 45°
B. 90°
C. 135°
D. 180°

Answer: B

32. A conducting circular loop is placed in a uniform magnetic field $0.04 T$ with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at $2 \mathrm{~mm} / \mathrm{sec}$. The induced emf in the loop when the radius is 2 cm is
A. $4.8 \pi \mu V$
B. $0.8 \mu \pi V$
C. $1.6 \pi \mu V$
D. $32 . \pi \mu V$

Answer: D

D Watch Video Solution

33. Figure below shows two paths that may be taken by a gas to go from a state A to a state
C. In process $A B, 400 \mathrm{~J}$ of heat is added to the system and in process $B C, 100 \mathrm{~J}$ of heat is added to the system. The heat absorbed by
the system in the process $A C$ will be

A. 500 J
B. 460 J
C. 300 J
D. 380 J

Answer: B
34. Two equal resistance at $0^{\circ} \mathrm{C}$ with temperature coefficient of resistance α_{1} and α_{2} joined in series act as a single resistance in a circuit the temperature coefficient of their single resistance will be
A. $\alpha_{1}+\alpha_{2}$
B. $\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}$
C. $\frac{\alpha_{1}-\alpha_{2}}{2}$
D. $\frac{\alpha_{1}+\alpha_{2}}{2}$

Answer: D

D Watch Video Solution

35. Two identical charged spheres suspended
from a common point by two mass-less strings
of length l are initially at a distance d (
$d \ll l$) apart because of their mutual
repulsion. The charge begins to leak from
both the spheres at a constant rate. As a result the charge approach each other with a
velocity v. Then as a function of distance x between them .
A. $v \propto x^{\frac{1}{2}}$
B. $v \propto x$
C. $v \propto x^{\frac{1}{2}}$
D. $v \propto x^{-1}$

Answer: C

- Watch Video Solution

36. A point particle of mass 0.1 kg is executing

SHM of amplitude 0.1 m . When the particle passes through the mean position, its kinetic energy is $8 \times 10^{-3} \mathrm{~J}$. Obtain the equation of motion of this particle if the initial phase of oscillation is 45°.

$$
\begin{aligned}
& \text { A. } Y=0.1 \sin \left(\pm 4 t+\frac{\pi}{4}\right) \\
& \text { B. } Y=0.2 \sin \left(\pm 4 t+\frac{\pi}{4}\right) \\
& \text { C. } Y=0.1 \sin \left(\pm 2 t+\frac{\pi}{4}\right) \\
& \text { D. } Y=0.2 \sin \left(\pm 2 t+\frac{\pi}{4}\right)
\end{aligned}
$$

Answer: A

- Watch Video Solution

37.

A source of sound S emitting waves of
frequency 100 Hz and an observer O are located at some distance from each other. The source is moving with a speed of $19.4 \mathrm{~ms}^{-1}$ at
an angle of 60° with the source observer line as shown in the figure. The observer is at rest.

The apparent frequency observed by the observer (velocity of sound in air $330 \mathrm{~ms}^{-1}$) is
A. 103 Hz
B. 106 Hz
C. 94 Hz
D. 100 Hz

Answer: A

38. A resistor of resistance R, capacitor of capacitance C and inductor of inductance L are connected in parallel to AC power source of voltage $\varepsilon_{0} \sin \omega t$. The maximum current through the resistance is half of the maximum current through the power source. Then value of R is
A. $\frac{\sqrt{3}}{\left|\omega C-\frac{1}{\omega L}\right|}$
B. $\sqrt{3}\left|\frac{1}{\omega C}-\omega L\right|$
C. $\sqrt{5}\left|\frac{1}{\omega C}-\omega L\right|$

D. None of these

Answer: A

- Watch Video Solution

39. A lens haivng focal length and aperture of diameter d forms an image of intensity I. Aperture of diameter $\frac{d}{2}$ in central region of lens is covered by a black paper. Focal length of lens and intensity of image now will be respectively.
A. f and $\frac{I}{4}$
B. $\frac{3 f}{4}$ and $\frac{I}{2}$
C. f and $\frac{3 I}{4}$
D. $\frac{f}{2}$ and $\frac{I}{2}$

Answer: C

- Watch Video Solution

40. A circular disc of radius R and thickness
$R / 6$ has moment of inertia I about an axis passing through its centre and perpendicular
to its plane. It is melted and recast into a solid
sphere. The M.I of the sphere about its diameter as axis of rotation is
A. I
B. $\frac{2 I}{8}$
C. $\frac{I}{5}$
D. $\frac{I}{10}$

Answer: C

- Watch Video Solution

