びdoubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE

SOLVED PAPER 2017

Part I Physics

1. If temperature of black body increases from
$300 K$ to $900 K$, then the rate of energy radiation
increases by
A. 81
B. 3
C. 9
D. 2

Answer: a

- Watch Video Solution

2. A whistle of frequency 500 Hz tied to the end of a string of length 1.2 m revolves at $400 \mathrm{rev} / \mathrm{min}$.

A listener standing some distance away in the
plane of rotation of whistle hears frequencies in the range (speed of sound $=340 \mathrm{~m} / \mathrm{s}$)
A. 436 to 574
B. 426 to 586
C. 426 to 574
D. . 436 to 586

Answer: d
3. The focal lengths of convex lens for red and blue light are 100 cm and 96.8 cm respectively. The dispersive power of material of lens is
A. 0.968
B. 0.98
C. 0.0325
D. 0.325

Answer: c
4. Two metal pieces having a potential difference of 800 V are 0.02 m apart horizontally. A particle of mass $1.96 \times 10^{-15} \mathrm{~kg}$ is suspended in equilibrium between the plates. If the e is the elementary charge, then charge on the particle is
A. 2 e
B. 3 e
C. 6 e
D. 8 e

Answer: b
5. At what angle to the horizontal should an object be projected so that the maximum height reached is equal to the horizontal range.
A. $\tan ^{-1}(2)$
B. $\tan ^{-1}(4)$
C. $\tan ^{-1}\left(\frac{2}{3}\right)$
D. $\tan ^{-1}(3)$

Answer: b

6. A body of mass 1 kg is executing simple harmonic motion. Its displacement $y(c m)$ at t seconds is given by $y=6 \sin (100 t+\pi / 4)$. Its maximum kinetic energy is
A. 6 J
B. 18 J
C. 24 J
D. 36 J

Answer: b

7. A positive charge q is projected in magnetic field of width $\frac{m v}{\sqrt{2} q B}$ with velocity v. Then, the time taken by charged particle to emerge from the magnetic field is
A. $\frac{m}{\sqrt{2} q B}$
B. $\frac{\pi m}{4 q B}$
C. $\frac{\pi m}{2 q B}$
D. $\frac{n \pi}{\sqrt{2} \cdot q B}$

Answer: b
8. In Young's double-slit experiment, the slits are
$2 m m$ apart and are illuminated by photons of two wavelengths $\lambda_{1}=12000 \AA$ and $\lambda_{2}=10000 \AA$.

At what minimum distance from the common central bright fringe on the screen $2 m$ from the
slit will a bright fringe from one interference pattern coincide with a bright fringe from the other?
A. 8 mm
B. 6 mm
C. 4 mm
D. 3 mm

Answer: b

- Watch Video Solution

9. Two blocks A and B are placed one over the other on a smooth horizontal surface. The maximum horizontal force that can be applied on the lower block A, so that A and B move without separation is 49 N . The coefficient of friction
between A and B is (take $\mathrm{g}=9.8 \mathrm{~ms} \mathrm{~s}^{-2}$)

A. 0.2
B. 0.3
C. 0.5
D. 0.8

Answer: c
10. An aeroplane is flying in a horizontal direction with a velocityu and at a height of 2000 m . When
it is vertically below a point A on the ground a
food packet is released from it. The packet strikes
the ground at point B. If $A B=3 \mathrm{~km}$ and $g=10$
m / s^{2}, then the value of u is
A. $54 \mathrm{~km} / \mathrm{h}$
B. $540 \mathrm{~km} / \mathrm{h}$
C. $150 \mathrm{~km} / \mathrm{h}$
D. $300 \mathrm{~km} / \mathrm{h}$

- Watch Video Solution

11. A conducting circular loop is placed in a uniform magnetic field, $B=0.025 T$ with its plane perpendicular to the loop. The radius of the loop is made to shrink at a constant rate of $1 \mathrm{mms}^{-1}$. The induced emf when the radius is 2 cm is
A. $2 \pi \mu V$
B. $\pi \mu V$
C. $\frac{\pi}{2} \mu V$
D. $2 \mu V$

Answer: b

(D) Watch Video Solution

12. A mild steel wire of length 2 L and crosssectional area A is stretched, well with in the elastic limit, horizontally between two pillars as
shown in figure. A mass m is suspended from the
mid-point of the wire strain in the wire is

A. $\frac{x^{2}}{2 L^{2}}$
B. $\frac{x}{L}$

- x^{2}
C. $\frac{x}{L}$
D. $\frac{x^{2}}{2 L}$

Answer: a

13. The resistance of a wire at $20^{\circ} C$ is 20Ω and at
$500^{\circ} \mathrm{C}$ is 60Ω. At which temperature its resistance will be 25Ω ?
A. $50^{\circ} \mathrm{C}$
B. $60^{\circ} \mathrm{C}$
C. $70^{\circ} \mathrm{C}$
D. $80^{\circ} \mathrm{C}$

Answer: d
14. The de-Broglie wavelength of proton
$\left(\right.$ charge $=1.6 \times 10^{-19} C$, mass $\left.=1.6 \times 10^{-27} \mathrm{Kg}\right)$
accelerated through a potential difference of 1 kV
is
A. $600 \AA$
B. $0.9 \times 10^{-12} m$
C. $7 \AA$
D. 0.9 nm

Answer: b

15. An iceberg of density $900 \mathrm{~kg} / \mathrm{m}^{3}$ is floating in water of density $1000 \mathrm{~kg} / \mathrm{m}^{3}$. The percentage of volume of ice cube outside the water is
A. 20%
B. 35%
C. 10%
D. 11%

Answer: c
16. The total energy of an electron in the first excited state of hydrogen is about $-3.4 e V$. Its
kinetic energy in this state is:
A. $-3.4 e V$
B. -6.8 eV
C. 6.8 eV
D. 3.4 eV

Answer: d

17. A common emitter amplifier has a voltage gain

 of 50 , an input impedance of 100Ω and an output impedance of 200Ω. The power gain of the amplifier is :-A. 500
B. 1000
C. 1250
D. 50

Answer: c
18. The horizontal range and maximum height attained by a projectile are R and H respectively. If a constant horizontal acceleration $a=\frac{g}{4}$ is is imparted to the projectile due to wind, then its horizontal range and maximum height will be
A. $(R+H), \frac{H}{2}$
B. $\left(R+\frac{H}{2}\right), 2 H$
C. $(R+2 H), H$
D. $(R+H), H$

Answer: d

- Watch Video Solution

19. A balloon is filled at $27^{\circ} C$ and 1 atm pressure by $500 \mathrm{~m}^{3} \mathrm{He}$. At- $3^{\circ} \mathrm{C}$ and 0.5 atm pressures, the volume of He-gas contained in balloon will be
A. $700 m^{3}$
B. $900 m^{3}$
C. $1000 \mathrm{~m}^{3}$
D. $500 \mathrm{~m}^{3}$

D Watch Video Solution

20. The ratio of intensity at the centre of a bright fringe to the intensity at a point distant onefourth of the distance between two successive bright fringes will be
A. 4
B. 3
C. 2
D. 1

Answer: c

(D) Watch Video Solution

21. A rectangular block of mass m and area of cross-section A floats in a liquid of density ρ. If it is given a small vertical displacement from equilibrium, it undergoes oscillation with a time period T. Then
A. $T \propto \sqrt{\rho}$
B. $T \propto \frac{1}{\sqrt{A}}$
C. $T \propto \frac{1}{\sqrt{\rho}}$
D. $T \propto \frac{1}{\sqrt{m}}$

Answer: b

D Watch Video Solution

22. Three charges are placed at the vertices of an equilateral trianlge of side a as shown in the following figure. The force experienced by the charge placed at the vertex A in a direction
normal to $B C$ is

A. $\frac{Q^{2}}{4 \pi \varepsilon_{0} a^{2}}$
B. $-\frac{Q^{2}}{4 \pi \varepsilon_{0} a^{2}}$
C. zero
D. $\frac{Q^{2}}{2 \pi \varepsilon_{0} a^{2}}$

Answer: c

- Watch Video Solution

23. A body of mass m falls from a height h onto the pan of a spring balance. The masses of the pan and spring are negligible. The force constant of the spring is k. The body sticks to the pan and oscillates simple harmonically. The amplitude of

oscillation is

A. $\frac{m g}{k}$
B. $\frac{m g}{k} \sqrt{1+\frac{2 h k}{m g}}$
C. $\frac{m g}{k}+\frac{m g}{k} \sqrt{\frac{1+2 h k}{m g}}$
D. None of these

Answer: b

(D) Watch Video Solution

24. The activity of a radioactive sample is measures as N_{0} counts per minute at $t=0$ and
N_{0} / e counts per minute at $t=5 \mathrm{~min}$. The time
(in minute) at which the activity reduces to half its
value is.
A. $\log _{e} \frac{2}{5}$
B. $\frac{5}{\log _{e} 2}$
C. $5 \log _{10} 2$
D. $5 \log _{e} 2$

Answer: d
25. A plano-convex lens fits exactly into a planoconcave lens. Their plane surfaces are parallel to each other. If the lenses are made of different material of refractive indices μ_{1} and μ_{2} and R is the radius of curvature of the curved surface of the lenses, then focal length of the combination is
A. $\frac{R}{2\left(\mu_{1}+\mu_{2}\right)}$
B. $\frac{R}{2\left(\mu_{1}-\mu_{2}\right)}$
C. $\frac{R}{\left(\mu_{1}-\mu_{2}\right)}$
D. $\frac{2 R}{\mu_{1}=\mu_{2}}$

- Watch Video Solution

26. In Fig, $\quad E=5 \quad$ volt \quad,
$r=1 \Omega, R_{2}=4 \Omega, R_{1}=R_{3}=1 \Omega$ and $C=3 \mu F$
. Then the numbercal value of the charge on each
plate of the capacitor is

A. $24 \mu C$
B. $12 \mu C$
C. $6 \mu C$
D. $3 \mu C$

Answer: c

(D) Watch Video Solution

27. A block A of mass 100 kg rests on another block B of mass 200 kg and is tied to a wall as
shown in the figure. The coefficient of friction
between A and B is 0.2 and that between B and ground is 0.3 . The minimum force required to move the block B is $\left(g=10 \mathrm{~ms}^{-2}\right)$

A. 900 N
B. 200 N
C. 1100 N
D. 700 N
28. A unifrom rod of length l and mass m is free to rotate in a vertical plane about A, Fig. The rod initially in horizontal position is released. The initial angular acceleration of the rod is
$\left(M I\right.$ of rod about A is $\left.\frac{m l^{2}}{3}\right)$

A. $\frac{3 g}{2 l}$
B. $\frac{2 l}{3 g}$
C. $\frac{3 g}{2 l^{2}}$
D. $\operatorname{mg} \frac{l}{2}$

Answer: a

- Watch Video Solution

29. Monochromatic radiation of wavelength λ is incident on a hydrogen sample in ground state.

Hydrogen atoms absorb a fraction of light and subsequently emit radiations of six different wavelength . Find the wavelength λ.
A. 97.5 nm
B. 121.6 nm
C. 110.3 nm
D. 45.2 nm

Answer: a

(D) Watch Video Solution

30. A coil in the shape of an equilateral triangle of
side l is suspended between the pole pieces of permanent magnet. Such that \vec{B} is in plane of the
coil. If due to a current I in the triangle, a torque τ acts on it, the side I of the triangel is:
A. $2 \frac{\left(\frac{\tau}{\sqrt{3} B i}\right)^{1}}{2}$
B. $\frac{2}{\sqrt{3}}\left(\frac{\tau}{B i}\right)$
C. $2 \frac{\left(\frac{\tau}{B i}\right)^{1}}{2}$
D. $\frac{1}{\sqrt{3}}\left(\frac{\tau}{B i}\right)$

Answer: a
31. Work done in increasing the size of a soap bubble from a radius of 3 cm to 5 cm is nearly
(Surface tension of soap solution $=0.03 \mathrm{Nm}^{-1}$)
A. $0.2 \pi m J$
B. $2 \pi m J$
C. 0.4 mJ
D. $4 \pi m J$

Answer: d

32. The velocity of a projectile at the initial point A is $(2 \hat{i}+3 \hat{j}) m / s$. Its velocity (in m / s) at point B is

A. $-2 \hat{i}-3 \hat{j}$
B. $-2 \hat{i}+3 \hat{j}$
C. $2 \hat{i}-3 \hat{j}$
D. $2 \hat{i}+3 \hat{j}$

Answer: c

(D) Watch Video Solution

33. In the circuit shown, the heat produced in 5Ω
resistot is $10 \mathrm{cal} s^{-1}$. The heat produced per sec in 4Ω resistor will be

A. 1 cal
B. 2 cal
C. 3 cal
D. 4 cal

Answer: b

- Watch Video Solution

34. An α - particle after passing through a potential difference of V volts collides with a nucleus. If the atomic number of the nucleus is Z
then the distance of closest approach of α particle to the nucleus will be
A. 14.4. $\frac{Z}{V}$
B. $14.4 \frac{Z}{V} m$
C. $14.4 \frac{V}{Z} m$
D. $14.4 \frac{\mathrm{~V}}{\mathrm{Z}}$

Answer: a

(D) Watch Video Solution

35. Two simple pendulum of length $5 m$ and 20 m respectively are given small displacement in time direction at the same time. They will again in the
plane when the pendulum of shorter length has

completed oscillation.

A. 5
B. 1
C. 2
D. 3

Answer: c
36. A parallel plate capacitor with air between the
plates has capacitance of $9 p F$. The separation between its plates is ' d '. The space between the plates is now filled with two dielectrics. One of the dielectrics has dielectric constant $k_{1}=3$ and thickness $\frac{d}{3}$ while the other one has dielectric constant $k_{2}=6$ and thickness $\frac{2 d}{3}$. Capacitance of the capacitor is now
A. 1.8 pF
B. 45 pF
C. 40.5 pF
D. 20.25 pF

Answer: c

(D) Watch Video Solution

37. A particle moving along x-axis has acceleration f, at time t, given by $f=f_{0}\left(1-\frac{t}{T}\right)$, where f_{0} and T are constant.

The particle at $t=0$ has zero velocity. In the time interval between $t=0$ and the instant when $f=0$, the particle's velocity $\left(v_{x}\right)$ is :
A. $f_{0} T$
B. $\frac{1}{2} f_{0} T^{2}$
C. $f_{0} T^{2}$
D. $\frac{1}{2} f_{0} T$

Answer: d

- Watch Video Solution

38. A geostationary satellite orbits around the earth in a circular orbit of radius $36,000 \mathrm{~km}$. then the time period of a spy satellite orbiting a few
hundred km (600 km) above the earth's surface
($\mathrm{R}=6400 \mathrm{~km}$) will approximately be
A. $\frac{1}{2} \mathrm{n}$
B. 1 n
C. 2 h
D. 4 h

Answer: c
39. A tranverse wave propagating on a stretched string of linear density $3 \times 10^{-4} \mathrm{~kg}$ per m is represented by the equation

$$
y=0.2 \sin (1.5 x+60 t)
$$

Where, x is in metre and t is in second. The tension in the string (in newton) is
A. 0.24
B. 0.48
C. 1.20
D. 1.80
40. What is the magnetic field at the centre of arc in the figure below?

A. $\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i}{r}[\sqrt{2}+\pi]$
B. $\frac{\mu_{0}}{4 \pi} \cdot \frac{2 i}{r}\left[\sqrt{2}+\frac{\pi}{4}\right]$
C. $\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r}[\sqrt{2}+\pi]$
D. $\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r}\left[\sqrt{2}+\frac{\pi}{4}\right]$

Answer: b

- Watch Video Solution

