©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BITSAT GUIDE

SOLVED PAPER 2019 BITSAT

Part I Physics

1. A radioactive sample of half life 23.1 days is
disintegrating continuously. The percentage

decay of its in 15th to 16th days will be

[Take $e^{0.03}=1.03$]
A. 5%
B. 1%
C. 2.9%
D. 3.5%

Answer: C

D Watch Video Solution
2. Two seperate soap bubbles of radii
$3 \times 10^{-3} \mathrm{~m}$ and $2 \times 10^{-3} \mathrm{~m}$ respectively,
formed of same liquid (surface tension $6.5 \times 10^{-2} \mathrm{~N} / \mathrm{m}$) come together to form a double bubble. The radius of interface of doubl bubble is
A. $6 \times 10^{-3} \mathrm{~m}$
B. $4 \times 10^{-3} \mathrm{~m}$
C. $1.5 \times 10^{-3} \mathrm{~m}$
D. $0.66 \times 10^{-3} \mathrm{~m}$

Answer: A

- Watch Video Solution

3. An electron revolves in a circular orbit of
radius r with angular speed ω. The magnetic
field at the centre of electron orbit is
A. $\frac{\mu_{0} e \omega}{\pi r}$
B. $\frac{\mu_{0} e \omega}{4 \pi r}$
C. $\frac{\mu_{0} e^{2} \omega}{4 \pi r}$
D. $\frac{\mu_{0} e \omega}{2 \pi r}$

Answer: B

- Watch Video Solution

4. A steel wire of cross-sectional area 4 cm 2 has elastic limit of $2.2 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$. The maximum upward acceleration that can be given to a 1000 kg elevator supported by this steel wire if the stress is to exceed one-fourth of the elastic limit is [Take, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$]
A. $10 m / s^{2}$
B. $9 m / s^{2}$
C. $11 m / s^{2}$
D. $12 m / s^{2}$

Answer: D

D Watch Video Solution

5. An ideal monoatomic gas at 300 K expands adiabatically to twice its volume. What is the final temperature?
A. $300 \sqrt{2}$
B. $300 \sqrt{3}$
C. $300\left(\frac{1}{2}\right)^{2 / 3}$
D. $300(2)^{2 / 3}$

Answer: C

- Watch Video Solution

6. Two sound producing sources A and B are
moving towards and away from a stationary
observer with same speed respectively. If
frequency of sound produced by both sources are equal as 400 Hz , then speed of sources
(approximately) when observer detects 4 beats per second, is [Given, speed of sound $=340 \mathrm{~m} / \mathrm{s}$]
A. $1.7 \mathrm{~m} / \mathrm{s}$
B. $3.4 \mathrm{~m} / \mathrm{s}$
C. $2.4 \mathrm{~m} / \mathrm{s}$
D. $1 \mathrm{~m} / \mathrm{s}$

Answer: A
7. Pressure versus temperature graph of an ideal gas is shown in figure. Density of the gas at point A is ρ_{0}. Density at B will be

A. $2 \rho_{0}$
B. $\frac{2}{3} \rho_{0}$
C. $\frac{3}{2} \rho_{0}$
D. $3 \rho_{0}$

Answer: B

D Watch Video Solution

8. A rubber cord has a cross-sectional area
$10^{-6} m^{2}$ and total unstretched length 0.1 m . It is stretched to 0.125 m and then released to project a particle of mass 5.0 g . The velocity of
projection is [Given, Young's modulus of rubber $Y=5 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$]
A. $45 \mathrm{~m} / \mathrm{s}$
B. $30 \mathrm{~m} / \mathrm{s}$
C. $25 \mathrm{~m} / \mathrm{s}$
D. $15 \mathrm{~m} / \mathrm{s}$

Answer: A

- Watch Video Solution

9. A body is moving unidirectionally under the
influence of a sources of constant power. The square of its displacement in time t is proportional to
A. t^{3}
B. t^{2}
C. t
D. \sqrt{t}

Answer: C

10. Two electrons are moving with speed of $5 \times 10^{5} \mathrm{~m} / \mathrm{s}$ parallel to each other, then the electrostatic and magnetic force between them is
A. 5×10^{5}
B. 2.5×10^{4}
C. 3.6×10^{5}
D. 4.4×10^{3}

Answer: D

- Watch Video Solution

11. In the following circuit diagram, the current
through battery is

A. $4 A$
B. $3 A$
C. $1 A$
D. $2 A$

Answer: B

D Watch Video Solution
12. A semicircular disc of mass M and radius R
is free to rotate about its diameter. The moment of inertia of semicircular disc about a
line perpendicular to its plane through centre
is

$$
\begin{aligned}
& \text { A. } \frac{3}{4} M R^{2} \\
& \text { B. } \frac{M R^{2}}{2} \\
& \text { C. } \frac{M R^{2}}{3} \\
& \text { D. } \frac{M R^{2}}{4}
\end{aligned}
$$

Answer: B
(Watch Video Solution
13. 12 eV energy is given to electron in third orbit of H -atom, then final energy of electron when it ionise from third orbit, is
A. 5.25 eV
B. 10.49 eV
C. 12 eV
D. 11.15 eV

Answer: A

- Watch Video Solution

14. In Young's double slit experiment, the distance between slits and screen is 2 m and distance between slits is 0.25 mm . A light of wavelength 800 nm is used to find fringes on
the screen. If screen moves with a speed of 5 m / s, then first maxima will move with a speed of
A. $16 \mathrm{~mm} / \mathrm{s}$
B. $8 \mathrm{~mm} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$

D. $50 \mathrm{~mm} / \mathrm{s}$

Answer: C

D Watch Video Solution

15. The magnetic field at the point O in the following current carrying square loop at the
centre will be

A. $12 \times 10^{-5} \mathrm{~T}$
B. $4 \times 10^{-5} \mathrm{~T}$
C. $4 \sqrt{2} \times 10^{-5} \mathrm{~T}$
D. $2 \sqrt{2} \times 10^{-5} \mathrm{~T}$

Answer: C

- Watch Video Solution

16. The value of current I as shown in the given
circuit diagram is

A. 2 A
B. 1.5 A
C. $0.9 A$
D. $0.2 A$

Answer: A

D Watch Video Solution

17. In a uniform magneitc field of induced B a
wire in the form of a semicircle of radius r rotates about the diameter of the circle with an angular frequency ω. The axis of rotation is
perpendicular to the field. If the total resistance of the circuit is R, the mean power generated per period of rotation is

$$
\begin{aligned}
& \text { A. } \frac{\left(\pi B r^{2} \omega\right)^{2}}{8 R} \\
& \text { B. } \frac{\pi B r \omega^{2}}{8 R} \\
& \text { C. } \frac{(\pi B r \omega)^{2}}{8 R} \\
& \text { D. } 0
\end{aligned}
$$

Answer: B

18. A convex lens of focal length 25 cm
produces images of the same magnification 2 ,
when an object is kept at two positions x_{1} and
$x_{2}\left(x_{1}>x_{2}\right)$ from the lens. The ratio of x_{2}
and x_{1} is
A. $2: 1$
B. $1: 3$
C. 1:2
D. $3: 1$

- Watch Video Solution

19. A particle X of massm and initial velocity u
collide with another particle Y of mass $\frac{3 m}{4}$ which is at rest, The collision is head on and perfectly elastic. The ratio of de-Broglie wavelengths λ_{Y} and λ_{X} after the collision is

D Watch Video Solution

20. The dimensional formula of $\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$ is
A. $\left[M L^{2} T^{-3} A^{2}\right]$
B. $\left[M^{0} L T^{-1} A^{0}\right]$
C. $\left[M L^{2} T^{-3} A^{-2}\right]$
D. $\left[M^{-1} L^{-2} T^{3} A^{2}\right]$

Answer: A

D Watch Video Solution

21. A body of massm is moving in a straight
line with momentum p. Starting at time $t=0, a$
force $F=$ at acts in the same direction on the
moving particle during time interval of T . So
that its momentum changes from p to $2 p$. The
value of T is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 p}{a}} \\
& \text { B. } \sqrt{\frac{p}{a}} \\
& \text { C. } \sqrt{\frac{2 p}{a}} \\
& \text { D. } \frac{2 p}{a}
\end{aligned}
$$

Answer: D

D Watch Video Solution
22. When a maximum force of $3 N$ is applied on
a body kept on rough inclined plane of shown
in the figure, then body remains stationary.
The maximum external force up the inclined plane that does not move the block is 12 N .

The coefficient of static friction between the block and the plane is [Take, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$]

A. $\frac{\sqrt{3}}{5}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{3 \sqrt{3}}{5}$
D. $\frac{5}{3 \sqrt{3}}$

Answer: A

D Watch Video Solution

23. In the shown situation, if middle portion of
the lens is painted black, then

A. complete image of the object will
formwith low intensity
B. complete image of the object will formwith high intensity
C. incomplete image of the object will form
with low intensity

D. incomplete image of the object will form

with high intensity

Answer: D

- Watch Video Solution

24. If sound travels in air with the speed of 340
m / s, then number of tones present in an open
organ pipe of length 2 m and its maximum frequency 1200 Hz , are
A. 17
B. 11
C. 9
D. 14

Answer: A

D Watch Video Solution

25. A proton is revolving on a circular path of radius 2 mm with frequency 10 Hz . Magnetic dipole moment associated with proton is

$$
\begin{aligned}
& \text { A. } 2 \times 10^{-24} A-m^{2} \\
& \text { B. } 4 \times 10^{-24} A-m^{2} \\
& \text { C. } 3 \times 10^{-20} A-m^{2} \\
& \text { D. } 6 \times 10^{-20} A-m^{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

26. When a capacitor is fully charged as shown in the following figure, then current drawn

from the cell is

A. 1 mA
B. 0.5 mA
C. 2 mA
D. 5 mA

Answer: C
27. A charged capacitor of capacitance C is discharging through a resistor of resistance R.

At what time the charge on the capacitor is equal to one half of its initial value?

> A. $\frac{R C}{2}$
> B. $\frac{R C}{\log _{e} 2}$
C. RC $\log _{e} 2$
D. $\frac{1}{R C} \log _{e} 2$

D Watch Video Solution

28. A body is projected from the surface of the
earth with thrice the escape velocity $\left(V_{e}\right)$ from
the surface of the earth. What will be its
velocity, when it will escape the gravitational pull?
A. V_{e}
B. $3 V_{e}$
C. $\sqrt{2} V_{e}$

D. $2 \sqrt{2} V_{e}$

Answer: D

D Watch Video Solution

29. The time period of a bob performing simple harmonic motion in water is 2 s . If density of bob is $\frac{4}{3} \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ then time period of bob performing simple harmonic motion in air will be A. 3 s
B. 4 s
C. 2 s
D. 1 s

Answer: C

D Watch Video Solution

30. A uniform solid cylindrical roller of mass ' m
' is being pulled on a horizontal surface with
force F parallel to the surface and applied at its centre. If the acceleration of the cylinder is '

value of ' F ' is : -

A. 2 ma
B. 3 ma
C. $\frac{3 m a}{2}$
D. $\frac{5 m a}{2}$

Answer: A
(Watch Video Solution
31. A projectile is given an initial velocity of $(\hat{i}+\sqrt{3} \hat{j}) \mathrm{m} / \mathrm{s}$, where \hat{i} is along the ground and \hat{j} is along the vertical. Then, the equation of the path of projectile is [Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$]
A. $y=\sqrt{3 x}-5 x^{2}$
B. $y=\sqrt{3} x+5 x^{2}$
C. $x=\sqrt{3} y+5 x^{2}$
D. $x^{2}=y^{2}+\sqrt{3}$

Answer: A
32. The force on a body of mass 1 kg is $(20 \hat{i}+10 \hat{j}) \mathrm{N}$. If is starts from rest, then the position of the body at time $t=2 \mathrm{~s}$, is
A. $-20 \hat{i}-40 \hat{j}$
B. $20 \hat{i}-40 \hat{j}$
C. $40 \hat{i}-20 \hat{j}$
D. $40 \hat{i}+20 \hat{j}$

Answer: B
33. A cylinder of mass 2 kg is released from rest from the top of an inclined plane of inclination 30° and length 1 m . If the cylinder rolls without slipping, then its speed when it reaches the bottom, is [Take, $g=10 \mathrm{~m} / \mathrm{s}^{2}$]

$$
\begin{aligned}
& \text { A. } \frac{20}{3} \mathrm{~m} / \mathrm{s} \\
& \text { B. } \sqrt{\frac{20}{3}} \mathrm{~m} / \mathrm{s} \\
& \text { C. } \frac{10}{3} \mathrm{~m} / \mathrm{s} \\
& \text { D. } \sqrt{\frac{10}{3}} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Answer: A

D Watch Video Solution

34. Frequency of oscillation of a body is 5 Hz
when a force F_{1} is applied and 12 Hz when
another force F_{2} is applied. If both forces F_{1}
and F_{2} are applied together, then frequency of
oscillation of the body will be
A. 13 Hz
B. 169 Hz
C. 62 Hz
D. 52 Hz

Answer: C

D Watch Video Solution

35. The figure shows the graph of $\frac{p V}{T}$ versus p for $2 \times 10^{-4} \mathrm{~kg}$ of hydrogen gas at two different temperatures, where p, V andT represents pressure, volume and temperature respectively. Then, the value of $\frac{p V}{T}$ where the
curve meet on the vertical axis, is

A. $\frac{R}{5}$
B. $\frac{2 R}{3}$
C. $\frac{R}{10}$
D. $\frac{R}{15}$
36. An ammeter of resistance 1.5Ω can measure currents upto 1 A . The value of shunt resistance to measure current upto 4 A is
A. 0.5Ω
B. 1Ω
C. 1.5Ω
D. 0.2Ω

- Watch Video Solution

37. An isolated non-conducting solid sphere of radius R is given an electric charge. The charge is uniformly distributed in the volume of sphere. The graph which shows the correct variation of magnitude of electric field with distance from the centre of the sphere is

Answer: A

D Watch Video Solution
38. A carbon resistor of $(56 \pm 5.6) \mathrm{k} \Omega$ is to be marked with rings of different colours for its identification. The colour code sequence will be
A. green, blue, orange, silver
B. blue, yellow, orange, silver
C. green, red, orange, silver
D. red, green, blue, gold

Answer: C

39. When two waves with same frequency and constant phase differenc interfere,
A. there is a gain of energy
B. there is a loss of energy
C. the energy is redistributed and the distribution remains constant in time
D. the energy is redistributed and the distribution changes with time

Answer: D

D Watch Video Solution

40. In a coil of resistance 50 W , the induced current developed by changing magnetic flux through it, is shown in figure as a function of time. The magnitude of change in flux through
the coil is

A. 10 Wb

B. 20 Wb
C. 32 Wb
D. 40 Wb

Answer: A

Watch Video Solution

