

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR ENGLISH

BINOMIAL THEOREM

Others

1. In the binomial expansion of $(a-b)^n$, $n \ge 5$, the sum of 5th and 6th terms is zero, then $\frac{a}{b}$ equals (1) $\frac{5}{n-4}$ (2) $\frac{6}{n-5}$ (3) $\frac{n-5}{6}$ (4) $\frac{n-4}{5}$

Watch Video Solution

2. The sum of the series ${}^{20}C_0 - {}^{20}C_1 + {}^{20}C_2 - {}^{20}C_3 + ... - ... + {}^{20}C_{10}$

is:

Watch Video Solution

3. In a binomial distribution $B\left(n, p = \frac{1}{4}\right)$, if the probability of at least one success is greater than or equal to $\frac{9}{10}$, then n is greater than (1) $\frac{1}{\left(\log_{10}^{4} - \left(\log_{10}^{3}\right)\right)^{4}}\left(2\right) \quad \frac{1}{\left(\log_{10}^{4} + \left(\log_{10}^{3}\right)\right)^{4}}\left(3\right) \quad \frac{9}{\left(\log_{10}^{4} - \left(\log_{10}^{3}\right)\right)^{4}}\left(4\right)$ $\frac{1}{\left(\log_{10}^{4} - \left(\log_{10}^{3}\right)\right)^{4}}\left(\log_{10}^{4} + \log_{10}^{3}\right)^{4}\right)$ Watch Video Solution

4. The reamainder left out when $8^{2n} - \left(62
ight)^{2n+1}$ is divided by 9 is

Watch Video Solution

5. The term independent of x in expansion of
$$\left(\frac{x+1}{x^{\frac{2}{3}}-x^{\frac{1}{3}}+1}-\frac{x-1}{x-x^{\frac{1}{2}}}\right)^{10}$$
 is (1) 120 (2) 210 (3) 310 (4) 4

Watch Video Solution

6. The sum of coefficients of integral powers of x in the binomial expansion of $(1 - 2\sqrt{x})^{50}$ is: (1) $\frac{1}{2}(3^{50} + 1)$ (2) $\frac{1}{2}(3^{50})$ (3) $\frac{1}{2}(3^{50} - 1)$ (4) $\frac{1}{2}(2^{50} + 1)$

View Text Solution

