© ${ }^{\prime}$ doubtnut

India's Number 1 Education App

MATHS

BOOKS - HIMALAYA MATHS (KANNADA

ENGLISH)

APPLICATION OF DIFFERENTIATION

Question Bank

1. The tangent to the curve $x^{2}=2 y$ at $(1,1 / 2)$
makes an angle with the x-axis
A. 30°
B. 0^{0}
C. 45°
D. 60^{0}

Answer: C

D View Text Solution

2. The point on the curve $y=x^{2}$, where slope of
the tangent is equal to the x-coordinate of the point is :
A. $(2,4)$
B. $(0,0)$
C. $\left(-\frac{1}{2}, \frac{1}{4}\right)$
D. $(-2,2)$

Answer: B

D Watch Video Solution

3. The curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1$ and $y^{3}=16 x$ intersect each other orthogonally, then $a^{2}=$
A. $\frac{1}{2}$
B. $\frac{3}{4}$
C. $\frac{4}{3}$
D. 2

Answer: C

D View Text Solution

4. The tangent to the curve $y=e^{2 x}$ at the point
$(0,1)$ meets the x-axis at
A. $(0,0)$
B. $(2,0)$
C. $\left(-\frac{1}{2}, 0\right)$
D. $\left(\frac{1}{2}, 0\right)$

Answer: C

D View Text Solution
5. $x=a \cos \theta, y=b \sin \theta$.
A. 0
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. π

Answer: C

D Watch Video Solution

6. The tangent at any point on the curve $x^{4}+y^{4}=a^{4}$ cuts off intercepts p and q on the coordinate axes then the value of $p^{-\frac{4}{3}}+q^{-\frac{4}{3}}=$
A. $a^{-\frac{4}{3}}$
B. $a^{-\frac{1}{2}}$
C. $a^{\frac{1}{2}}$
D. $a^{\frac{4}{3}}$

Answer: A

D Watch Video Solution

7. The area of the triangle formed by the coordinate axes and a tangent to the curve $x y=a^{2}$ at the point $\left(x_{1}, y_{1}\right)$ on it is:
A. 8.sq.units
B. 6 sq.units
C. 64 sq.units

D. 128 sq.unts

Answer: C

D Watch Video Solution

8. The curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ touches the
straight line $\frac{x}{a}+\frac{y}{b}=2$ at the point (a, b) :
A. 2
B. 3
C. 4

D. Any real number

Answer: D

D Watch Video Solution

9. The tangent to the parabola $x^{2}=2 y$ at the point ($1,1 / 2$) makes with x-axis an angle
A. 0°
B. 45°
C. 30°
D. 60°

Answer: B

D Watch Video Solution

10. The points on the curve $y=12 x-x^{3}$, the tangents at which are parallel to x-axis are :
A. $(2,16),(-2,16)$
B. $(-2,16),(2,-16)$
C. $(2,16),(-2,-16)$

D. None of these

Answer: C

D Watch Video Solution

11. If the curves $y^{2}=16 x$ and $9 x^{2}+b y^{2}=16$ cut each other at right angles, then the value of b is
A. 2
B. 4
C. $\frac{9}{2}$
D. 6

Answer: C

D Watch Video Solution

12. If the circles $x^{2}+y^{2}-2 x-2 y-7=0$ and $x^{2}+y^{2}+4 x+2 y+k=0$ cut orthogonally,
then the length of the common chord of the circles is
A. 6
B. 4
C. 7
D. 9

Answer: C

Watch Video Solution
13. Out of the four curves given below choose
the curve which intersects the parabola $y^{2}=4 a x$ orthogonally.
A. $x^{2}+y^{2}=a^{2}$
B. $y=e^{-\frac{x}{2 a}}$
C. $y=a x$
D. $x^{2}=4 a y$

Answer: B
14. If the curves $y^{2}=16 x$ and $9 x^{2}+b y^{2}=16$
cut each other at right angles, then the value of b is
A. 3
B. $\frac{4}{3}$
C. $\frac{3}{4}$
D. 2

Answer: D

- Watch Video Solution

15. Angle of intersection of the curves $y=x^{2}$
and $6 y=7-x^{3}$ at $(1,1)$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{6}$

Answer: C

- Watch Video Solution

16. The line $4 x+6 y+9=0$ touches the parabola $y^{2}=4 x$ at the point
A. $(2,4)$
B. $(4,2)$
C. $(-2,4)$
D. $(-4,2)$

Answer: B
17. Angle of intersection of the curves
$y=4-x^{2}$ and $y=x^{2}$ is
A. $\frac{\pi}{2}$
B. $\frac{\tan ^{-1} 4}{3}$
C. $\frac{\tan ^{-1}(4 \sqrt{2})}{7}$
D. $\frac{\tan ^{-1} 3}{4}$

Answer: C
18. The curve $\frac{x^{2}}{25}+\frac{y^{2}}{16}=2$ touches the line $\mathrm{x} / 5$ $+y / 4=2$ at the point
A. $(5,4)$
B. $(4,5)$
C. $(-5,4)$
D. $(4,-5)$

Answer: A

Watch Video Solution
19. The parabolas $y=x^{2+a x+b}$ and $\mathrm{y}=\mathrm{x}(\mathrm{c}-\mathrm{x})$ touch each other at (1,0). Then a, b, c are respectively,
A. $3,2,-1$
B. $-3,2,1$
C. $3,-2,1$
D. $-3,-2,1$

Answer: B
20. For the curve $x y^{m}=a^{m+1}$ the length of the subnormal at any point is a constant. Then the value of m must be
A. 2
B. -1
C. -2
D. 1

Answer: C
(D) Watch Video Solution
21. If the subnormal at any point on the curve $y^{n}=a x$ is a constant, then $\mathrm{n}=$
A. 2
B. 1
C. $\frac{3}{2}$
D. -2

Answer: A

- Watch Video Solution

22. The length of subtangent at any point (x, y)
on $y=4 e^{\frac{x}{7}}$ is
A. $\frac{y^{2}}{7}$
B. $\frac{y}{4}$
C. 7
D. $\frac{1}{7}$

Answer: C
(D) Watch Video Solution
23. The lengths of the subnormal and subtangent to the parabola $y^{2}=8 x$ at $(2,-4)$ are respectively
A. 8,2
B. 6,4
C. 4,4
D. 2,8

Answer: C

24. For the parabola $y^{2}=4 a x$, the ratio of the subtangent to the abscissa is
A. 1:1
B. 2:1
C. 3:1
D. 1:2

Answer: B
25. For the curve $x^{3} y^{3}=32$, the length of the subtangent at $(2,-2)$ is
A. -4
B. 2
C. $-\frac{3}{4}$
D. $\frac{3}{4}$

Answer: B

- Watch Video Solution

26. For the curve $y=a x^{n}$ the length of the subnormal at any point is a constant. The value of n must be
A. 3
B. $\frac{3}{2}$
C. $\frac{1}{2}$
D. 1

Answer: C

27. Subnormal to the curve $x y=\frac{c^{2}}{2}$ at $(c / 2, \mathrm{c})$ is
A. 2 c
B. - 2 c
C. $\frac{c}{2}$
D. $\frac{2}{c}$

Answer: B

- Watch Video Solution

28. The subtangent at $x=\frac{\pi}{2}$ on the curve $\mathrm{y}=\mathrm{x}$. $\sin x$ is
A. 0
B.
C. $\frac{\pi}{2}$
D. None of these

Answer: C

- Watch Video Solution

29. The length of the subnormal to the curve $x^{2}-y^{2}=12$ at $(4,-2)$ is
A. -2
B. 2
C. 4
D. 8

Answer: C
30. The length of the subnormal at ' t ' on the curve $x=a(t+\sin t), y=a(1-\cos t)$ is
A. $a \sin t$
B. $2 a \sin ^{3}\left(\frac{t}{2}\right) \cdot \sec \left(\frac{1}{2}\right)$
C. $\sin \left(\frac{t}{2}\right) \cdot \tan \left(\frac{t}{2}\right)$
D. $2 a \sin \left(\frac{t}{2}\right)$

Answer: B

D Watch Video Solution

31. The length of the subtangent at t on the curve $x=a(t+\sin t), y=a(1-\cos t)$ is
A. a $\sin t$
B. $2 \mathrm{a} \sin ^{\wedge}(3)(\mathrm{t} / 2) \cdot \sec (1 / 2)$
C. $2 \mathrm{a} \sin (\mathrm{t} / 2) \cdot \tan (\mathrm{t} / 2)$
D. $2 \mathrm{a} \sin (\mathrm{t} / 2)$

Answer: A
32. The length of the subnormal at any point (x, y)
on the curve $y^{2}=4 a x$ is
A. $2 a$
B. $2 x$
C. $\frac{y^{2}}{2 a}$
D. $\frac{2 a}{x}$

Answer: B
33. The length of the subnormal to the curve $y^{2}=x^{3}$ at the point $(4,8)$ is
A. 24
B. $(8 / 3)$
C. $(3 / 8)$
D. None of these

Answer: A
34. The length of the subtangent to the curve
$\sqrt{x}+\sqrt{y}=3$ at $(4,1)$
A. 2
B. $(1 / 2)$
C. (-3)
D. 4

Answer: A

- Watch Video Solution

35. The length of the subtangent to the curve $x^{2} y^{2}=a^{4}$ at $(-a,-\mathrm{a})$ is
A. 3 a
B. 2a
C. a
D. 4 a

Answer: C
36. The length of the subtangent for the curve $x^{5}=2 y^{6}$ at $(1 / 2,1 / 2)$ is
A. $(5 / 3)$
B. $(6 / 5)$
C. $(-3 / 5)$
D. $(3 / 5)$

Answer: D
37. The length of the subtangent for the curve $2 y^{2}=x^{3}$ at $(2,2)$ is
A. (4/3)
B. $(3 / 4)$
C. $(3 / 2)$
D. $(2 / 3)$

Answer: A

- Watch Video Solution

38. The square of the subtangent to the curve $(x+a)^{3}=b y^{2}$ is proportional to
A. $(\text { subnormal })^{3}$
B. subnormal
C. $(\text { subnormal })^{\frac{1}{2}}$
D. $(\text { subnormal })^{2}$

Answer: B
39. The subtangent, ordinate and subnormal to
th parabola $y^{2}=4 a x$ at a point different from origin, are in
A. AP
B. G.P
C. H.P
D. None of these

Answer: B
40. Subtangent at any point (x, y) on $y=a e^{\frac{x}{b}}$ is
A. $\frac{y^{2}}{b}$
B. y / b
C. b
D. None of these

Answer: C

(D) Watch Video Solution
41. If $s=5 \sin 2 t$, then the velocity at the end of
$\frac{\pi}{4}$ second is
A. 10
B. 0
C. 5
D. None of these

Answer: B

- Watch Video Solution

42. The distance s feet travelled by a particle in
time t seconds is given by $s=t^{3}-6 t^{2}-4 t-8$
. Its acceleration vanishes at time $\mathrm{t}=$
A. t
B. 980 g
C. gt
D. πt

Answer: C
43. If the displacement of a particle is nil then distance travelled will be
A. a constant
B. directly proportional to displacement
C. inversely proportional to displacement
D. None of these

Answer: A
(D) Watch Video Solution
44. If the displacement s at a time t is given by
$s=\sqrt{1-t}$, than the velocity is
A. directly proportional to displacement
B. inversely proportional to displacement
C. equal to displacement
D. None of these

Answer: B
45. An edge of a variable cube is increasing at the rate of 10 cm per second. Then the volume of the cube is increasing when the edge is 5 cm long, at the rate
A. $650 \frac{(\mathrm{~cm})^{3}}{\mathrm{sec}}$
B. $550 \frac{(\mathrm{~cm})^{3}}{\mathrm{sec}}$
C. $750 \frac{(\mathrm{~cm})^{3}}{\mathrm{sec}}$
D. $900 \frac{(\mathrm{~cm})^{3}}{\mathrm{sec}}$

Answer: C
46. The rate of change of the volume of the sphere w.r.t its surface area, when its radius is

2 cm is
A. $1 \frac{(c m)^{3}}{(c m)^{2}}$
$(\mathrm{cm})^{2}$
B. $2 \frac{(\mathrm{~cm})^{3}}{(\mathrm{~cm})^{2}}$
C. $3 \frac{(\mathrm{~cm})^{2}}{(\mathrm{~cm})^{3}}$
D. $4 \frac{(\mathrm{~cm})^{3}}{(\mathrm{~cm})^{2}}$

Answer: A
47. The volume of the sphere is increasing at a constant rate. Then the radius is increasing at a rate
A. inversely proportional to the radius
B. inversely proportional to the square of the
radius
C. directly proportional to radius
D. directly proportional to square of the radius

Answer: B

D Watch Video Solution

48. A rod of length 13 metres. has its end P on the x-axis and the other end Q on the y-axis. If P moves along the x-axis with a speed of $12 \mathrm{~m} / \mathrm{sec}$, then the speed of the other end Q when it is 12 metres from the origin is
A. $(-3 \mathrm{~m} / \mathrm{sec})$
B. $5 \mathrm{~m} / \mathrm{sec}$
C. $(-5 \mathrm{~m} / \mathrm{sec})$

D. $(-4 \mathrm{~m} / \mathrm{sec})$

Answer: C

D Watch Video Solution

49. With a given surface area, the volume of a right circular cylinder will be maximum if the height is
A. equal to the diameter of the base
B. equal to the radius of the base
C. three times the radius

D. $3 / 2$ times the radius

Answer: A

D Watch Video Solution

50. The sides of an equilateral triangle are increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. The rate at which the area increases, when side is 10 cm is
A. $\sqrt{3} S q$. unit $\frac{s}{\mathrm{sec}}$
B. 10 Sq. units/sec ${ }^{`}$
C. $10 \sqrt{3}$ Sq. unit $\frac{s}{\sec }$
D. $\frac{10}{\sqrt{3}}$ Sq. unit $\frac{s}{\sec }$

Answer: C

D Watch Video Solution

51. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$, then :
A. $a>0, b>0$

$$
\text { B. } a>0, b<0 \text { or } a<0, b>0
$$

C. $a<0, b<0$
D. $a>0, b<0$

Answer: B

D Watch Video Solution

52. The curve $y=x^{1 / 5}$ has at $(0,0)$:
A. a vertical tangent
B. a horizontal tangent
C. an oblique tangent

D. no tangent

Answer: A

D Watch Video Solution

53. The line $\frac{x}{a}+\frac{y}{b}=1$ touches the curves $y=b e^{-x / a}$ at the point :
A. $(a, b / a)$
B. (-a, ba)
C. $(a, b / a)$
D. $(0, b)$

Answer: D

D Watch Video Solution

54. The normal at the point $(1,1)$ on the curve
$2 y=3-x^{2}$ is
A. $x+y=0$
B. $x+y+1=0$
C. $x-y+1=0$

$$
\text { D. } x-y=0
$$

Answer: D

D Watch Video Solution

55. If the slope of the normal to the curve $x^{3}=8 a^{2} y, a>0$ at a point in the first quadrant is $-\frac{2}{3}$, then the point is :
A. $(2 a,-a)$
B. $(2 a, a)$
C. $(a, 2 a)$

D. $(-a, a)$

Answer: B

D Watch Video Solution

56. The point on the curve $y=6 x-x^{2}$ where the tangent is parallel to x-axis is
A. $(0,0)$
B. $(2,8)$
C. $(4,0)$

D. $(3,9)$

Answer: D

D Watch Video Solution

57. The area of the triangle formed by the coordinate axes and a tangent to the curve $x y=a^{2}$ at the point $\left(x_{1}, y_{1}\right)$ on it is :
A. $\frac{a^{2} x_{1}}{y_{1}}$
B. $\frac{a^{2} y_{1}}{x_{1}}$
C. $2 a^{2}$

D. $4 a^{2}$

Answer: C

D Watch Video Solution

58. The point on the curve $y=(x-3)^{2}$, where the tangent is parallel to the chord joining $(3,0)$ and $(4,1)$ is :
A. $(-7 / 2,1 / 4)$
B. $(5 / 2,1 / 4)$
C. $(-5 / 2,1 / 4)$

D. $(7 / 2,1 / 4)$

Answer: D

D Watch Video Solution

59. The slope of the tangent to the curve :
$x=a \sin t, y=a\left(\cos t+\log \tan \frac{t}{2}\right)$
at the point ' t ' is :
A. $(\tan) \mathrm{t} / 2$
B. $\cot t$
C. $\tan t$

D. $(\cot) \mathrm{t} / 2$

Answer: B

D Watch Video Solution

60. The equation of the horizontal tangent to the curve $y=e^{x}+e^{-x}$ is :
A. $y=-2$
B. $y=-3$
C. $y=2$
D. $y=1$

Answer: C

D Watch Video Solution

61. The points on the curve $y=12 x-x^{3}$, the tangents at which are parallel to x-axis are :
A. $(-2,16)$ and (2, -16)
B. $(2,16)$ and $(-2,-16)$
C. $(2,16)$ and $(-2,16)$

D. $(-2,-16)$ an $\mathrm{d}(2,-16)$

Answer: B

D Watch Video Solution

62. The angle between the curves $y^{2}=x$ and $x^{2}=y$ at $(1,1)$ is
A. 0
B. $\tan ^{-1} 1$
C. $\left(\tan ^{-1}\right) \frac{3}{4}$
D. $\left(\tan ^{-1}\right) \frac{1}{3}$

Answer: C

D Watch Video Solution

63. The equation of the tangent to the curve

$$
\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2 \text { at }(\mathrm{a}, \mathrm{~b}) \text { is }
$$

A. $x / a+y / b=2$
B. $x / a+y / b=1 / 2$
C. $x / a-y / b=2$

$$
\text { D. } a x+b y=2
$$

Answer: A

D Watch Video Solution

64. The curves $4 x^{2}+9 y^{2}=72$ and $x^{2}-y^{2}=5$ at $(3,2)$
A. touch each other
B. cut orthogonally
C. intersect at 45°

D. intersect at 60°

Answer: B

D Watch Video Solution

65. The angle between the curves $x y=2$ and $y^{2}=4 x$ at their point of intersection is
A. $(1 / 3)$
B. 3
C. 2
D. $(2 / 3)$

Answer: B

D Watch Video Solution

66. The two curves $y^{2}=4 x$ and
$x^{2}+y^{2}-6 x+1=0$ at the point $(1,2)$
A. intersect orthogonally
B. intersect at angle $\frac{\pi}{3}$
C. touch each other
D. intersect at an angle $\frac{\pi}{4}$

Answer: C

D Watch Video Solution

67. The curve $y=a x^{3}+b x^{2}+c x+5$ touches
the x-axis at $A(-2,0)$ and cuts the y-axis at a point B where its slope is 3 . Then
A. $a=1 / 2, b=-3 / 4, c=3$
B. $a=-1 / 2, b=-3 / 4, c=3$
C. $a=1 / 2, b=3 / 4, c=3$

$$
\text { D. } a=-1 / 2, b=3 / 4, c=3
$$

Answer: B

D Watch Video Solution

68. The abscissa of the point on the curve $x y=(c+x)^{2}$, the normal at which cuts off numerically equal intercepts from the axes of coordinates is
A. $\frac{c}{\sqrt{2}}$
B. C
C. $2 \sqrt{c}$

$$
\text { D. } \sqrt{c}
$$

Answer: A

(Watch Video Solution

69. If the line $a x+b y+c=0$ is a normal to the
curve $x y=1$, then :
A. $a>0, b>0$

$$
\text { B. } a>0, b<0
$$

C. $a<0, b<0$

$$
\text { D. } a=0 \text { or } b=0
$$

Answer: B

D Watch Video Solution

70. The radius of a cylinder is increasing at the rate of $3 \mathrm{~m} / \mathrm{sec}$ and its attitude is decreasing at the rate of $4 \mathrm{~m} / \mathrm{sec}$. The rate of change of volume when radius is 4 metres and attitude is 6 metres
A. $80 \pi c u b i c \mathrm{~m} / \mathrm{sec}$.
B. 144π cubic $\mathrm{m} / \mathrm{sec}$.'
C. 80 ` cubic $\mathrm{m} / \mathrm{sec}$.
D. 64 cubic $\mathrm{m} / \mathrm{sec}$.

Answer: A

D Watch Video Solution

71. A particle moves so that the space described in time ' t ' is square root of a quadratic function of ' t ', then
A. acceleration varies at s^{3}
B. acceleration varies at $1 / \mathrm{s}$
C. acceleration varies as $\frac{1}{s^{3}}$
D. acceleration varies as s

Answer: C

D Watch Video Solution

72. On uniform heating, the side of a square
sheet of metal is increasing at the rate of 0.02
$\mathrm{cm} / \mathrm{sec}$. The rate at which the area is increasing when the side is 10 cm long is :
A. $0.4 c \frac{m^{2}}{\mathrm{sec}}$
B. $0.2 c \frac{\mathrm{~m}^{2}}{\mathrm{sec}}$
C. $4.0 c \frac{\mathrm{~m}^{2}}{\mathrm{sec}}$
D. $40 c \frac{\mathrm{~m}^{2}}{\mathrm{sec}}$

Answer: A
(D) Watch Video Solution
73. The radius of a circular plate is increasing at the rate of $0.01 \mathrm{~cm} / \mathrm{sec}$ when the radius is 12 cm .

Then the rate at which the area increases is
A. $0.24 \pi \frac{\mathrm{sq} . \mathrm{cm}}{\mathrm{sec}}$
B. $60 \pi \frac{\mathrm{sq} . \mathrm{cm}}{\mathrm{sec}}$
C. $24 \pi \frac{\mathrm{sq} . \mathrm{cm}}{\mathrm{sec}}$
D. $1.2 \pi \frac{\mathrm{sq} \cdot \mathrm{cm}}{\mathrm{sec}}$

Answer: A

74. The rate of change of the area of a circle with

 respect to its radius r at $r=6 \mathrm{~cm}$ isA. 10π
B. 12π
C. 8π
D. 11π

Answer: B
75. The total revenue in Rupees received from the sale of x units of a product is given by
$R(x)=3 x^{2}+36 x+5$. The marginal revenue, when
$x=15$ is
A. 116
B. 96
C. 90
D. 126

Answer: D
76. The slope of the normal to the curve

$$
y=2 x^{3}+3 \sin x \text { at } \mathrm{x}=0 \text { is }
$$

A. 3
B. $(1 / 3)$
C. (-3)
D. $(-1 / 3)$

Answer: D

- Watch Video Solution

77. The line $y=x+1$ is a tangent to the curve $y^{2}=$ $4 x$ at the poin
A. $(1,2)$
B. $(2,1)$
C. $(1,-2)$
D. $(-1,2)$

Answer: A

- Watch Video Solution

78. The maximum value of $[x(x-1)+1]^{\frac{1}{3}}$ is $0 \leq x \leq 1$ is
A. $\left(\frac{1}{3}\right)^{\frac{1}{3}}$
B. (1/2)
C. 1
D. 0

Answer: C

Watch Video Solution
79. The points on the curve $9 y^{2}=x^{3}$ where the normal to the curve makes equal intercepts with the axes are
A. $\left(4,(\pm) \frac{8}{3}\right)$
B. $(4,-8 / 3)$
C. $\left(4,+\frac{3}{8}\right)$
D. $\left(+_{4}, \frac{3}{8}\right)$

Answer: A
80. The normal at the point $(1,1)$ on the curve $2 y=3-x^{2}$ is
A. $x+y=0$
B. $x-y=0$
C. $x+y+1=0$
D. $x-y=1$

Answer: B
81. The line $y=m x+1$ is a tangent to the curve
$y^{2}=4 x$ if the value of m is
A. 1
B. 2
C. 3
D. $(1 / 2)$

Answer: A

- Watch Video Solution

82. The abscissa of the point on the curve
$3 y=6 x-5 x^{3}$, the normal at which passes
through origin is :
A. 1
B. $(1 / 3)$
C. 2
D. $(1 / 2)$

Answer: A

83.
 The two
 curves
 $x^{3}-3 x y^{2}+2=0$ and $3 x^{2} y-y^{3}=2$

A. touch each other
B. cut at right angles
C. cut at an angle $\frac{\pi}{3}$
D. cut at an angle $\frac{\pi}{4}$

Answer: B
84. The tangent to the curve given by :
$x=e^{t} \cos t, y=e^{t} \sin t$ at $t=\frac{\pi}{4}$ makes with x-axis an angle :
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D
85. The equation of the normal to the curve $y=\sin x$ at $(0,0)$ is :
A. $x=0$
B. $y=0$
C. $x+y=0$
D. $x-y=0$

Answer: C
86. The point on the curve $y^{2}=x$, where the tangent makes an angle of $\frac{\pi}{4}$ with x-axis is :
A. $(1 / 2,1 / 4)$
B. $(1 / 4,1 / 2)$
C. $(4,2)$
D. $(1,1)$

Answer: B
87. The sides of an equilateral triangle are increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. The rate at which the area increases, when side is 10 cm is
A. $10 \mathrm{~cm}^{2} / \mathrm{s}$
B. $\sqrt{3} \mathrm{~cm}^{2} / \mathrm{s}$
C. $10 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{s}$
D. $\frac{10}{3} \mathrm{~cm}^{2} / \mathrm{s}$

Answer: C
88. A ladder, 5 meter long, standing on a horizontal floor, leans against a vertical wall. If
the top of the ladder slides downwards at the rate of $10 \mathrm{~cm} / \mathrm{sec}$ then the rate at which the angle between the floor and the ladder is decreasing when lower end of the ladder is 2 meters from the wall is
A. $1 / 10 \mathrm{radian} / \mathrm{sec}$
B. 1/20 radian/sec
C. 20 radian/sec
D. 10 radian $/ \mathrm{sec}$

Answer: B

D Watch Video Solution

89. The curve $y=x^{1 / 5}$ has at $(0,0)$:
A. a vertical tangent
B. a horizontal tangent
C. an oblique tangent
D. no tangent
90. The equation of the normal to the curve $3 x^{2}-y^{2}=8$ which is parallel to the line $x+3 y=$ 8 is
A. $3 x-y=8$
B. $3 x+y+8=0$
C. $x+3 y+8=0$
D. $x+3 y=0$

Answer: C
91. If the curve $a y+x^{2}=7$ and $x^{3}=y$, cut orthogonally at $(1,1)$, then the value of 'a' is
A. 1
B. 0
C. (-6)
D. 6

Answer: D

D Watch Video Solution
92. The equation of the tangent to the curve $y\left(1+x^{2}\right)=2-x$, where it crosses x-axis is
A. $x+5 y=2$
B. $x-5 y=2$
C. $5 x-y=2$
D. $5 x+y=2$

Answer: A
93. Find points at which the tangent to the curve $y=x^{3}-3 x^{2}-9 x+7$ is parallel to the x-axis.
A. A. $(2,-2),(-2,-34)$
B. B. $(2,34),(-2,0)$
C. C. $(0,34),(-2,0)$
D. D. $(2,2),(-2,34)$

Answer: D
94. The tangent to the curve $y=e^{2 x}$ at the point $(0,1)$ meets x-axis at
A. $(0,1)$
B. $(-1 / 2,0)$
C. $(2,0)$
D. $(0,2)$

Answer: B
95. The slope of the tangent to the curve $x=t^{2}+3 t-8, y=2 t^{2}-2 t-5$ at the point $(2,-1)$ is
A. $(22 / 7)$
B. (6/7)
C. (-6/7)
D. (-6)

Answer: B
96. A cylindrical tank of radius 10 m is being filled
with wheat at the rate of 314 cubic metre per hour. The depth of the wheat is increasing at the rate of
A. $1 \mathrm{~m} / \mathrm{h}$
B. $0.1 \mathrm{~m} / \mathrm{h}$
C. $1.1 \mathrm{~m} / \mathrm{h}$
D. $0.5 \mathrm{~m} / \mathrm{h}$

Answer: A
97. The radius of a circular plate is increasing at the rate of $0.01 \mathrm{~cm} / \mathrm{sec}$ when the radius is 12 cm .

Then the rate at which the area increases is
A. $0.24 \pi s q \cdot c \frac{m}{\mathrm{sec}}$
B. $60 \pi s q . c \frac{m}{\mathrm{sec}}$
C. $24 \pi s q . c \frac{m}{\sec }$
D. $1.2 \pi s q . c \frac{m}{\mathrm{sec}}$

Answer: A
98. The approximate value of $\sqrt[3]{63}$ correct to four decimal places is
A. 3.7929
B. 3.9792
C. 3.7992
D. 3.9279

Answer: B

99. Approximate value of $f(x)=2 x^{3}+7 x+1$

 at $x=2.001$ isA. 31.231
B. 31.13
C. 31.031
D. 31.321

Answer: C
100. The approximate value of $\tan \left(45^{\circ}, 30^{\prime}\right)$
given $1^{o}=0.0175$ radians, is
A. 1.0187
B. 1.187
C. 1.0716
D. 1.0175

Answer: D
101.
Find
the
value
$\cos 60^{\circ} \cos 30^{\circ}-\sin 60^{\circ} \sin 30^{\circ}$
A. 0.8716
B. 0.8616
C. 0.8816
D. 0.8916

Answer: B
102. If the radius of a sphere is measured as 7 m
with an error of 0.02 m , then approximate error in calculating its volume.
A. $\frac{s q r 3}{2400} b c \pi$
B. $(\mathrm{bc}) / 2400 \mathrm{pi}^{`}$
C. $\frac{\sqrt{3}}{240} b c \pi$
D. $\frac{\sqrt{3}}{24} b c \pi$

Answer: A
103. Each edge of a cube is increased by 50%.

Find the percentage increase in the surface area.
A. 0.03
B. 0.04
C. 0.05
D. 0.06

Answer: D
104. The length of the subnormal at any point(x, y) on the curve $y^{2}=4 a x$ is
A. 2 x
B. 2 a
C. 4 a
D. None of these

Answer: B
105. The length of the sub - tangent to the curve $x^{m} y^{n}=a^{m+n}$ at any point $\left(x_{1}, y_{1}\right)$ on it is

$$
\begin{aligned}
& \text { A. } \frac{m x_{1}}{n} \\
& \text { B. }-\frac{n y_{1}}{m} \\
& \text { C. }-\frac{m y_{1}}{n} \\
& \text { D. }-\frac{n x_{1}}{m}
\end{aligned}
$$

Answer: D

106. The length of subtangent to the curve $x^{2}+x y+y^{2}=7$ at $(1,-3)$ is :
A. 3
B. 5
C. 15
D. $(3 / 5)$

Answer: C
107. The abscissae of the points where the tangent to curve $y=x^{3}-3 x^{2}-9 x+5$ is parallel to x axis are
A. $x=-1,3$
B. $x=-3,1$
C. $x=1,-1$
D. $x=0$

Answer: A
108. The point at which the tangent to the curve $y=2 x^{2}-x+1$ is parallel to $y=3 x+9$ is
A. $(-2,1)$
B. $(3,9)$
C. $(1,2)$
D. $(2,1)$

Answer: C
109. The equation to the tangent to the curve $y=b e^{-\frac{x}{a}}$ at the point where it crosses the y axis is
A. $x / a-y / b=1$
B. $a x+b y=1$
C. $a x-b y=1$
D. $x / a+y / b=1$

Answer: D
110. The slope of the tangent to the curve $x=3 t^{2}+1, y=t^{3}-1$ at $\mathrm{x}=1$ is
A. $(1 / 2)$
B. 0
C. (-2)
D. ∞

Answer: B
111. For the curve $x y=c^{2}$ the subnormal at any point varies as
A. x^{3}
B. x^{2}
C. y^{3}
D. y^{2}

Answer: C

- Watch Video Solution

112. For the curve $y^{n} \equiv a^{n-1} x$ if the subnormal

 at any point is a constant then $\mathrm{n}=$A. 3
B. 0
C. 1
D. 2

Answer: D
113. If ST and SN are the lengths of the subtangent and the subnormal at the point
$\theta=\frac{\pi}{2}$ the
curve
$x=a(\theta+\sin \theta), y=a(1-\cos \theta), a \neq 1$
then...
A. $S T^{2}=a . S N^{3}$
B. $S T^{3}=a . S N$
C. $\mathrm{ST}=\mathrm{SN}$
D. $\mathrm{ST}=2 \mathrm{SN}$

Answer: C
114. If is the acute angle of intersection at a real point of intersection of the circle $x^{2}+y^{2}=5$ and the parabola $y^{2}=4 x$ then \tan is equal to...
A. 1
B. $\sqrt{3}$
C. 3
D. $\frac{1}{\sqrt{3}}$
115. If the curve $y=2 x^{3}+a x^{2}+b x+c$ passes through the origin and the tangents drawn to it at $x=-1$ and $\mathrm{x}=2$ are parallel to the X -axis, then the values a, b and c are respectively
A. $3,-12$ and 0
B. $(-3,12$ and 0$)$
C. (-3, -12 and 0)
D. 12, -3 and 0

- Watch Video Solution

116. The tangent and the normal drawn to the curve $y=x^{2}-x+4$ at $P(1,4)$ cut the X-axis at A and B respectively. If the length of the substangent drawn to the curve at P is equal to the length of the subnormal, then the area of the triangle PAB in sq. units is
A. 16
B. 8
C. 32
D. 4

Answer: A

(D) Watch Video Solution

117. The length of the subtangent to the curve $x^{2} y^{2}=a^{4}$ at $(-a,-\mathrm{a})$ is
A. 2 a
B. $(a / 2)$
C. $(a / 3)$
D. a

Answer: D

D Watch Video Solution

118. The point on the curve $y^{2}=x$ where the tangent makes an angle $\frac{\pi}{4}$ with X -axis is
A. $(1 / 2,1 / 4)$
B. $(1 / 4,1 / 2)$
C. $(1 / 2,1 / 2)$
D. $(1 / 2,-1 / 2)$

Answer: B

D Watch Video Solution

119. The point(s) on the curve $y^{3}+3 x^{2}=12 y$, where the tangent is vertical, is (are) :
A. $(\sqrt{2}, \sqrt{128})$
B. $(\sqrt{128}, \sqrt{2})$
C. $(2, \sqrt{128})$
D. $(\sqrt{128}, 2)$

Answer: B

D Watch Video Solution

120. The equation of the tangent to the curve $x^{n}+y^{n}=2 a^{n}$ at (a, a) is
A. $x+y=a$
B. $x+y=2 a$
C. $x+y=a^{n}$

$$
\text { D. } x+y=2 a^{n}
$$

Answer: B

D Watch Video Solution

121. The volume of a ball is increasing at the rate of $4 \pi c . c / \mathrm{sec}$. The rate of increase of the radius when the volume is 288π is
A. $1 / 6 \mathrm{~mm} / \mathrm{sec}$
B. $1 / 36 \mathrm{~cm} / \mathrm{sec}$
C. $1 / 9 \mathrm{~cm} / \mathrm{sec}$

D. $1 / 24 \mathrm{~cm} / \mathrm{sec}$

Answer: B

D Watch Video Solution

122. The speed ν of the particle moving along straight line is given by $a+b v^{2}=x^{2}$, where x is its distance from the origin. The acceleration of the particle is
A. x / b
B. $x /(a b)$
C. $a b x$

D. $a x$

Answer: A

D Watch Video Solution

123. If the area of an expanding circular region increases at a constant rate with respect to time, then the rate of increase of the perimeter with respect to time
A. varies inversely as the radius

B. varies directly as the radius

C. remains constant
D. varies directly as square of the radius

Answer: A

D Watch Video Solution

124. The rate of change of the surface area of a sphere of radius r when the radius is increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$ is proportional to

$$
\text { A. }\left(\frac{1}{r^{2}}\right.
$$

B. $(1 / r)$
C. r^{2}
D. r

Answer: D

D Watch Video Solution

125. If the distance 's' metres traversed by a particle in 1 seconds is given by $s=t^{3}-3 t^{2}$, then the velocity of the particle when the acceleration is zero, in metres $/ \mathrm{sec}$. is
A. 3
B. (-2)
C. (-3)
D. 2

Answer: C

D Watch Video Solution

126. A spherical balloon is being inflated at the rate of $35 \mathrm{cc} / / \mathrm{min}$. The rate of increase of the
surface area of the balloon when its diameter is

14 cm is...
A. 7 sq.cm/min
B. $10 \mathrm{sq} . \mathrm{cm} / \mathrm{min}$
C. $17.5 \mathrm{~cm} / \mathrm{min}$
D. 28 sq.cm/min

Answer: B
(D) Watch Video Solution
127. If the rate of decrease of $\frac{x^{2}}{2}-2 x+5$ is twice the rate of decrease of x, then $x=$
A. 1
B. 2
C. 3
D. 4

Answer: D
(D) Watch Video Solution
128. $O A$ and $O B$ are two roads enclosing an angle of $120^{\circ} . \mathrm{X}$ and y start from ' O ' at the same time. X travels along OA with a speed of $\frac{4 \mathrm{~km}}{h o u r}$ and Y travels along OB with a speed of $\frac{3 k m}{h o u r}$. The rate at which the shortest distance between X and Y is increasing after 1 hour is

A. $37 \mathrm{~km} / \mathrm{hour}$
B. $\sqrt{37} k \frac{m}{h}$ our
C. $\sqrt{13} k \frac{m}{h}$ our

D. $13 \mathrm{~km} / \mathrm{hour}$

Answer: B

D Watch Video Solution

129.

The
two
curves
$x^{3}-3 x y^{2}+2=0$ and $3 x^{2} y-y^{3}-2=0:$
A. cut at right angles
B. touch each other
C. cut at an angle $\frac{\pi}{3}$
D. cut at an angle $\frac{\pi}{4}$

Answer: A

D Watch Video Solution

130. A function $y=f(x)$ has a second order derivative $f^{\prime \prime}(x)=6(x-1)$. If its graph passes thro' the point $(2,1)$ and at the point the tangent to the graph is $y=3 x-5$, then the function is :
A. $(x-1)^{2}$
B. $(x-1)^{3}$
C. $(x+1)^{3}$
D. $(x+1)^{2}$

Answer: B

D Watch Video Solution

131. The normal to the curve
$x=a(1+\cos \theta), y=a \sin \theta$ at θ always passes
through the fixed point
A. $(a, 0)$
B. $(0, a)$
C. $(0,0)$
D. (a, a)

Answer: A

D Watch Video Solution

132. The normal to the curve :
$x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$
at any point ' θ ' is such that:
A. it makes angle $\frac{\pi}{2}+\theta$ with the x-axis
B. it passes through the origin
C. it is at constant distance from the origin
D. it passes through $\left(\frac{a \pi}{2},-a\right)$

Answer: A

D Watch Video Solution

133. Angle between the tangents to the curve $y=x^{2}-5 x+6$ at the points $(2,0)$ and $(3,0)$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$

Answer: A

D Watch Video Solution

134. A spherical iron ball 10 cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of $50 \mathrm{~cm}^{3} / \mathrm{min}$. When the
thickness of ice is 5 cm , then the rate at which the thickness of ice decreases, is :
A. $\frac{1}{18 \pi} c \frac{m}{\min }$
B. $\frac{1}{36 \pi} c \frac{m}{\mathrm{~min}}$
C. $\frac{5}{6 \pi} c \frac{m}{\min }$
D. $\frac{1}{54 \pi} c \frac{m}{\mathrm{~min}}$

Answer: A
(D) Watch Video Solution
135. A point an the parabola $y^{2}=18 x$ at which the ordinate increases at twice the rate of the abscissa is :
A. $(2,4)$
B. $(2,-4)$
C. $(-9 / 8,9 / 2)$
D. $(9 / 8,9 / 2)$

Answer: D
136. The area of the triangle formed by the coordinate axes and a tangent to the curve $x y=a^{2}$ at the point $\left(x_{1}, y_{1}\right)$ on it is:
A. $\frac{a^{2} x_{1}}{y_{1}}$
B. $\frac{a^{2} y_{1}}{x_{1}}$
C. $2 a^{2}$
D. $4 a^{2}$

Answer: C

D Watch Video Solution

137. The curve $y-e^{x y}+x=0$ has a vertical tangent at the point :
A. $(1,1)$
B. at a point
C. $(0,1)$
D. $(1,0)$

Answer: D

- Watch Video Solution

138. If the parametric equation of a curve is given
by $x=e^{t} \cos t, y=e^{t} \sin t$, then the tangent to
the curve at the point $t=\frac{\pi}{4}$ makes with the x axis of the angle.
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D
139. If $y=4 x-5$ is a tangent to the curve $y^{2}=a x^{3}+b$ at $(2,3)$ then
A. $a=2, b=-7$
B. $a=-2, b=7$
C. $a=-2, b=-7$
D. $a=2, b=7$

Answer: A

- Watch Video Solution

140. The triangle formed by the tangent to the curve $f(x)=x^{2}+b x-b$ at the point $(1,1)$ and the co-ordinate axes, lies in the first quadrant. If its area is 2 , then the value of b is :
A. (-1)
B. 3
C. (-3)
D. 1

Answer: C

141. If the normal to the curve $y=f(x)$ at the point $(3,4)$ makes an angle $3 \pi / 4$ with the positive x -axis, then $f^{\prime}(3)$ is :
A. (-1)
B. $(-3 / 4)$
C. (4/3)
D. 1

Answer: D
142. If $x+y=k$ is normal to $y^{2}=12 x$, then k is :
A. 3
B. 9
C. (-9)
D. (-3)

Answer: B

- Watch Video Solution

143. The point(s) on the curve $y^{3}+3 x^{2}=12 y$, where the tangent is vertical, is (are) :
A. $\left(\pm \frac{4}{\sqrt{3}}, 0\right)$
B. $\left(\pm \sqrt{\frac{11}{3}}, 1\right)$
C. $(0,0)$
D. $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$

Answer: D

- Watch Video Solution

144. The line $2 x+\sqrt{6} y=2$ is a tangent to the curve $x^{2}-2 y^{2}=4$. The point of contact is :
A. $(4,-\sqrt{6})$
B. $(7,-2 \sqrt{6})$
C. $(2,3)$
D. ${ }^{`}(\mathrm{sqrt} 6,7)$

Answer: A

D Watch Video Solution

145. The angle between the curves $y=\sin x$ and y
$=\cos x$ is
A. $\tan ^{-1}(2 \sqrt{2})$
B. $\tan ^{-1}(3 \sqrt{2})$
C. $\tan ^{-1}(3 \sqrt{3})$
D. $\tan ^{-1}(5 \sqrt{2})$

Answer: A
146. If θ is the angle between the curves $x y=2$ and $x^{2}+4 y=0$ then $\tan \theta=$
A. 1
B. (-1)
C. 2
D. 3

Answer: D

147. The angle between the curves $x^{2}=4 y, y^{2}=4 x$ at $(4,4)$ is
A. $\tan ^{-1}\left(\frac{1}{2}\right)$
B. $\tan ^{-1}\left(\frac{3}{4}\right)$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: B

D Watch Video Solution

148. The curves $x=y^{2}$ and $x y=a^{3}$ cut orthogonally at a point, then $a^{2}=$
A. $(1 / 3)$
B. (1/2)
C. 2
D. 3

Answer: B
149. The equation of the tangent to the curve $y=x^{3}-2 x+1$ at the point $(1,6)$ is
A. $y=x+5$
B. $x+y=7$
C. $2 x+y=8$
D. $x+2 y=13$

Answer: A
150. The equation of the tangent to the curve $6 y=7-x^{3}$ at $(1,1)$ is
A. $2 x+y=3$
B. $x+2 y=3$
C. $x+y=-1$
D. $x+y+2=0$

Answer: B
151. The slope of the nomal to the curve $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$ at $\theta=\frac{\pi}{2}$ is
A. 0
B. 1
C. (-1)
D. $\frac{1}{\sqrt{2}}$

Answer: C
152. Area of the triangle formed by the normal to the curve $x=e^{\sin y}$ at $(1,0)$ with the coordinate axes is
A. $(1 / 4)$
B. $(1 / 2)$
C. (3/4)
D. 1

Answer: B
153. If the rate of decrease of $\frac{x^{2}}{2}-2 x+5$ is twice the rate of decrease of x, then $x=$
A. 2
B. 3
C. 4
D. 1

Answer: C
(D) Watch Video Solution
154. For a particle moving on a straight line it is observed that the distance 's' and time ' t ' is given by $s=6 t-\frac{1}{2} t^{3}$. The maximum velocity during the motion is
A. 3
B. 6
C. 9
D. 12

Answer: B
155. A cylindrical vessel of radius 0.5 mts is filled with oil at the rate of $0.25 \pi c . m t \frac{s}{\min }$. The rate at which the surface of the oil is increasing is
A. $1 \mathrm{mts} / \mathrm{min}$
B. $2 \mathrm{mts} / \mathrm{min}$
C. $5 \mathrm{mts} / \mathrm{min}$

D. $1.25 \mathrm{mts} / \mathrm{min}$

Answer: A

156. The distance moved by the particle in time t is given by $x=t^{3}-12 t^{2}+6 t+8$ At the instant when its acceleration is zero, the velocity is
A. 42
B. (-42)
C. 48
D. (-48)

Answer: B
157. Gas is being pumped into a spherical
balloon at the rate of $30 \frac{(\mathrm{ft})^{3}}{\mathrm{~min}}$. Then the rate at which the radius increases when it reaches the value 15 ft is
A. $\frac{1}{30 \pi} \frac{f t}{\min }$
B. $\frac{1}{5 \pi} \frac{f t}{\mathrm{~min}}$
C. $1 / 20 \mathrm{ft} / \mathrm{min}$
D. $1 / 25 \mathrm{ft} / \mathrm{min}$

- Watch Video Solution

158. A point is moving on $y=4-2 x^{2}$. The x coordiante of the point is decreasing at the rate of 5 units per second. Then the rate at which y coordinate of the point is changing when the point is at $(1,2)$ is
A. 5 units/sec
B. 10 units/sec
C. 15 units/sec
D. 20 units/sec

Answer: D

D Watch Video Solution

159. The particle moves along the curve $y=x^{2}+2 x$ Then the point on the curve such that x and y coordiantes of the particle change with the same rate
A. $(1,3)$
B. $(1 / 2,5 / 2)$
C. $(-1 / 2,-3 / 4)$

D. $(-1,-1)$

Answer: C

D Watch Video Solution

160. A stone thrown upwards, has its equation of motion $s=490 t-(4.9) t^{2}$. Then the maximum height reached by it is
A. 24500
B. 12500
C. 12250

D. 25400

Answer: C

D Watch Video Solution

161. The radius of a circular plate is increasing at the rate of $0.01 \mathrm{~cm} / \mathrm{sec}$ when the radius is 12 cm .

Then the rate at which the area increases is
A. $0.24 \pi s q \cdot c \frac{m}{\mathrm{sec}}$
B. $60 \pi s q . c \frac{m}{\mathrm{sec}}$
C. $24 \pi s q . c \frac{m}{\mathrm{sec}}$
D. $1.2 \pi s q \cdot c \frac{m}{\mathrm{sec}}$

Answer: A

D Watch Video Solution

162. A particle moves along a straight line such
that its displacement at any time t is given by
$x=t^{3}-6 t^{2}+3 t+4$ in m . The velocity when
acceleration is zero is
A. A. $0<t<\frac{3}{2}$
B. B. $0<t<1$
C. C. $0<t \frac{2}{3}$
D. D. $\frac{1}{2}<t<1$

Answer: C

D Watch Video Solution

163. A stone thrown upwards, has its equation of motion $s=490 t-(4.9) t^{2}$. Then the maximum height reached by it is
A. A. 2
B. B. 4
C. C. 0.25

D. D. 2.5

Answer: C

D Watch Video Solution

164. The velocity $v \mathrm{~m} / \mathrm{sec}$ of particle is proportional to the cube of the time. If the velocity after 2 secs is $4 \mathrm{~m} / \mathrm{sec}$, then v is equal to :
A. t^{3}
B. $\frac{t^{3}}{2}$
C. $\frac{t^{3}}{3}$
D. $\frac{t^{3}}{4}$

Answer: B

D Watch Video Solution

165. The point on the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ at which the normal is parallel to the x-axis is
A. $(0,0)$
B. $(0, a)$
C. $(a, 0)$
D. (a, a)

Answer: B

(Watch Video Solution

166. If $4 x^{2}+p y^{2}=45$ and $x^{2}-4 y^{2}=5$ cut orthogonally, then the value of p is
A. $(1 / 9)$
B. $(1 / 3)$
C. 3
D. 9

Answer: D

D Watch Video Solution

167. The volume of the sphere is increasing at a
constant rate. Then the radius is increasing at a rate
A. a constant
B. proportional to the radius
C. inversely proportional to radius

D. inversely proportional to surface area

Answer: D

D Watch Video Solution

168. If a particle is moving such that the velocity
acquired is proportional to the square root of the distance covered, then its acceleration is
A. a constant
B. αs^{2}
C. $\alpha \frac{1}{s^{2}}$
D. αs

Answer: A

D Watch Video Solution

169. The radius of a cylinder is increasing at the
rate of $3 \mathrm{~m} / \mathrm{sec}$ and its attitude is decreasing at
the rate of $4 \mathrm{~m} / \mathrm{sec}$. The rate of change of volume
when radius is 4 metres and attitude is 6 metres
A. $80 \pi \mathrm{cum} / \mathrm{sec}$
B. 144π cumsec
C. $-80 \mathrm{cum} / \mathrm{sec}$
D. $64 \mathrm{cum} / \mathrm{sec}$

Answer: A

D Watch Video Solution

170. A ladder 5 m long is leaning against a wall.

The bottom of the ladder is pulled along the ground, away from the wall, at the rate of $2 \mathrm{~cm} / \mathrm{s}$.

How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall ?
A. A. $4 \sqrt{3} m$
B. B. $5 \sqrt{3} m$
C. C. $5 \sqrt{2} m$
D. D. 6 m

Answer: D
(D) Watch Video Solution
171. If the line $y=2 x+k$ is a tangent to the curve $x^{2}=4 y$ then $\mathrm{k}=$
A. 4
B. $(1 / 2)$
C. (-4)
D. $(-1 / 2)$

Answer: C

- Watch Video Solution

172. The curve $y-e^{x y}+x=0$ has a vertical tangent at the point :
A. $(1,0)$
B. at no point
C. $(0,1)$
D. $(0,0)$

Answer: A

- Watch Video Solution

173. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$, then :

$$
\begin{aligned}
& \text { A. } a>0, b>0 \\
& \text { B. } a>0, b<0 \\
& \text { C. } a<0, b<0
\end{aligned}
$$

D. data is insufficient

Answer: B
174. The tangent drawn at the point $(0,1)$ on the curve $y=e^{2 x}$ meets x-axis at the point
A. $(1 / 2,0)$
B. $(-1 / 2,0)$
C. $(2,0)$
D. $(0,0)$

Answer: B
175. An equation of the tangent to the curve $y=x^{4}$ from the point $(2,0)$ not on the curve is
A. $y=0$
B. $x=0$
C. $x+y=0$
D. None of these

Answer: A

Watch Video Solution

176. At what point on the curve $x^{3}-8 a^{2} y=0$ the slope of the normal is $-2 / 3$?
A. (a, a)
B. $(2 a,-a)$
C. $(2 a, a)$
D. None of these

Answer: C
177. Coordinates of a point on the curve $y=x \log$ x at which the normal is parallel to the line $2 x-$ $2 y=3$ are
A. $(0,0)$
B. (e, e)
C. $\left(e^{2}, 2 e^{2}\right)$
D. $\left(e^{-2},-2 e^{-2}\right)$

Answer: D

178. The distance s metres covered by a body in t

 seconds, is given by $s=3 t^{2}-8 t+5$, the body will stop afterA. 1 sec
B. $3 / 4 \mathrm{sec}$
C. $4 / 3 \mathrm{sec}$
D. 4 sec

Answer: C
(D) Watch Video Solution
179. If the curve $y=a^{x}$ and $y=b^{x}$ intersect at angle α, then $\tan \alpha$ is equal to
A. $(a-b) /(1+a b)$
B. $(\log a-\log b) /(1+\log a \log b)$
C. $(a+b) /(1-a b)$
D. $(\log a+\log b) /(1-\log a \log b)$

Answer: B
(D) Watch Video Solution
180. If $\mathrm{x}+\mathrm{y}=\mathrm{k}$ is a normal to $y^{2}=12 x$, then $\mathrm{k}=$
A. 3
B. 9
C. (-9)
D. (-3)

Answer: B

- Watch Video Solution

181. The curves $x=y^{2}$ and $x y=a^{3}$ cut orthogonally at a point, then $a^{2}=$
A. $(1 / 3)$
B. 3
C. 2
D. $(1 / 2)$

Answer: D
182. The angle between the curves $y=\sin x$ and y
$=\cos x$ is
A. $\operatorname{tn} a^{-1}(2 \sqrt{2})$
B. $\tan ^{-1}(3 \sqrt{2})$
C. $\tan ^{-1}(3 \sqrt{3})$
D. $\tan ^{-1}(5 \sqrt{2})$

Answer: A
183. The angle between the curves $y^{2}=x$ and $x^{2}=y$ at $(1,1)$ is
A. A. 30°
B. B. 45°
C. C. 60°
D. D. 90°

Answer: D
184. The equation of the normal to the curve,

$$
y^{4}=a x^{3} \text { at }(\mathrm{a}, \mathrm{a}) \text { is }
$$

A. A. $x+2 y=3 a$
B. B. $3 x-4 y+a=0$
C. C. $4 x+3 y=7 a$
D. D. $4 x-3 y=a$

Answer: C
185. The line which is parallel to x-axis and crosses the curve $y=\sqrt{x}$ at an angle of 45° is
A. $y=1 / 4$
B. $y=1 / 2$
C. $y=1$
D. $y=4$

Answer: B
186. The tangent to a given curve $y=f(x)$ is perpendicular to the x-axis if
A. $d y / d x$
B. $d y / d x=1$
C. $d x / d y=0$
D. $d x / d y=1$

Answer: C
187. The equation of the normal to the curve $y=\sin x$ at $(0,0)$ is :
A. $x=0$
B. $y=0$
C. $x+Y=0$
D. $x-y=0$

Answer: C
188. $x=a \cos \theta, y=b \sin \theta$.
A. π
B. 0
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

189. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$, then :

$$
\begin{aligned}
& \text { A. }(a>0, b>0) \text { or }(a<0, b<0) \\
& \text { B. }(a>0, b<0) \text { or }(a<0, b>0) \\
& \text { C. }(b \leq 0, a \leq 0) \text { or }(a \geq 0, b \leq 0) \\
& \text { D. }(a \leq 0, b \leq 0) \text { or }(a \geq 0, b \geq 0)
\end{aligned}
$$

Answer: B
190. For the curve $x=t^{2}-1, y=t^{2}-t$ the tangent line is perpendicular to x-axis when
A. $t=0$
B. $t=\infty$
C. $t=\frac{1}{\sqrt{3}}$
D. $t=-\frac{1}{\sqrt{3}}$

Answer: A

Watch Video Solution

191. The line $\frac{x}{a}+\frac{y}{b}=1$ touches the curves $y=b e^{-x / a}$ at the point :
A. $(a, b / a)$
B. $(-a, b / a)$
C. $(a, a / b)$
D. None of these

Answer: D
192. If m is the slope of the tangent to the curve, $e^{y}=1+x^{2}$, then,
A. $|m|>1$
B. $m<1$
C. $|m|<1$
D. $|m| \leq 1$

Answer: D

- Watch Video Solution

193. The curve $y-e^{x y}+x=0$ has a vertical tangent at the point :
A. $(1,1)$
B. at no point
C. $(0,1)$
D. $(1,0)$

Answer: D
194. The point at which the tangent to the curve $y=x^{2}-4 x$ is parallel to x-axis is
A. $(0,4)$
B. $(-2,4)$
C. $(2,4)$
D. $(2,-4)$

Answer: D

195. The curve $x=y^{2}$ and $x y=\mathrm{k}$ cut at right angles if
A. $2 k^{2}=1$
B. $4 k^{2}=1$
C. $6 k^{2}=1$
D. $8 k^{2}=1$

Answer: D

- Watch Video Solution

196. The angle between the tangents to the curves $y=x^{2}-5 x+6$ at the point $(2,0)$ and $(3,0)$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{6}$

Answer: C

197. A particle is moving along the curve $x=a t^{2}+b t+c$. If $a c=b^{2}$, then the particle
would be moving with uniform
A. rotation
B. velocity
C. acceleration
D. retardation

Answer: C

- Watch Video Solution

198. The curve $\frac{x^{n}}{a^{n}}+\frac{y^{n}}{b^{n}}=2$ touches the line, $x / a+y / b=2$ at the point,
A. (b, a)
B. (a, b)
C. $(1,1)$
D. (1/b, 1/a)

Answer: B

Watch Video Solution
199. A particle moves in a straight line so that,
$s=\sqrt{t}$, then its acceleration is proportional to
A. $(\text { velocity })^{3}$
B. velocity
C. $(\text { velocity })^{2}$
D. $(\text { velocity })^{\frac{3}{2}}$

Answer: A

Watch Video Solution

200. The distance travelled by a motor car in t seconds after the brakes are applied is s feet where $s=22 t-12 t^{2}$. The distance travelled by the car before it stop is
A. 10.08 ft
B. 10 ft
C. 11 ft
D. 11.5 ft

Answer: A
201. A stone is thrown vertically upwards and the height $x \mathrm{ft}$, reached by the stone in t seconds is given by $x=80 t-16 t^{2}$. The stone reaches the maximum height in
A. 2.5 seconds
B. 2 seconds
C. 1.5 seconds
D. 3 seconds
202. A stone is thrown vertically upwards from the top of a tower 64 metres high according to law $s=48 t-16 t^{2}$. The greatest height attained by the stone above the ground is
A. 100 metre
B. 64 metre
C. 36 metre
D. 32 metre

- Watch Video Solution

203. The tangent to a given curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is perpendicular to the x -axis if
A. $d x / d y=1$
B. $d y / d x=0$
C. $d y / d x=1$
D. $d x / d y=0$

Answer: D
204. A sphere increases its volume at the rate of π / s. The rate at which its surface area increases when the radius is 1 cm is
A. $2 \pi s q . c \frac{m}{s}$
B. $\pi s q . c \frac{m}{s}$
C. $\frac{3 \pi}{2} s q . c \frac{m}{s}$
D. $\frac{\pi}{2} s q \cdot c \frac{m}{s}$

Answer: A
205. The angle between $y^{2}=4 x$ and $x^{2}+y^{2}=12$ at a point of their intersection is
A. $\tan ^{-1} \sqrt{2}$
B. $\tan ^{-1} 2$
C. $\tan ^{-1} 2 \sqrt{2}$
D. $\left(\tan ^{-1}\right) \frac{1}{2}$

Answer: C

- Watch Video Solution

206. The slopes of the tangent and normal at (0 ,
1) for the curve $y=\sin x+e^{x}$ are respectively:
A. 1 and -1
B. (-1/2 and 2$)$
C. 2 and $-1 / 2$
D. (-1 and 1)

Answer: C
(D) Watch Video Solution
207. If for the curve $y=1+b x-x^{2}$ the tangent $a t(1,-2)$ is parallel to x-axis, then $b=$
A. 2
B. (-2)
C. 1
D. (-1)

Answer: A

- Watch Video Solution

208. The surface area of a ball is increasing at the rate of $2 \pi s q . \mathrm{cm} / \mathrm{sec}$. The rate at which the radius increasing when the surface area is $16 \pi s q . \mathrm{cm}$ is
A. $0.125 \mathrm{~cm} / \mathrm{sec}$
B. $0.25 \mathrm{~cm} / \mathrm{sec}$
C. $0.5 \mathrm{~cm} / \mathrm{sec}$
D. $1 \mathrm{~cm} / \mathrm{sec}$

Answer: A
209. If the area of an expanding circular region increases at a constant rate with respect to time,
then the rate of increase of the perimeter with respect to time
A. directly as its radius
B. inversely as its radius
C. directly as the square of its radius
D. inversely as the square of its radius
210. If $f(x)=x^{\alpha} \log x$ and $f(0)=0$, then the
value of α for which Roll's theorem can be applied in $[0,1]$ is :
A. (-2)
B. (-1)
C. 0
D. $(1 / 2)$

Answer: D
211. A point an the parabola $y^{2}=18 x$ at which the ordinate increases at twice the rate of the abscissa is :
A. $(9 / 8,9 / 2)$
B. $(2,-4)$
C. $(-9 / 8,9 / 2)$
D. $(2,4)$

Answer: A
212. If $2 a+3 b+6 c=0, a, b, c \in R$ then the equation a $x^{2}+b x+c=0$ has a root in
A. $(0,1)$
B. $(1,2)$
C. $(2,3)$
D. None of these

Answer: A
213. Let f be differentiable for all x. If $f(1)=-2, f^{\prime}(x) \geq 2$ for all $x \in[1,6]$, then :
A. $f(6)=5$
B. $f(6)<5$
C. $f(6)<8$
D. $f(6) \geq 8$

Answer: D

214. If the equation

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots .+a_{1} x=0, a_{1} \neq 0, n \geq 2
$$

, has a positive root $\mathrm{x}=\alpha$, then the equation n
$a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-1}+\ldots ., a_{1}=0$
has a positive root, which is :
A. a positive root less than α
B. a positive root larger than α
C. a negative root
D. no positive root

Answer: A
215. If $a+b+c=0$, then the equation $3 a x^{2}+2 b x+c=0$ has:
A. at least one root
B. at most one root
C. no root

D. None of these

Answer: A
216. If $f(x)$ satisfiles requirements of Rolle's
theorem in $[1,2]$ and $f(x)$ is continuous in [1,2],
then $\int_{1}^{2} f^{\prime}(x) d x$ is :
A. 3
B. 0
C. 1
D. 2

Answer: B
217. Let $f(x)=e^{x}, x \in[0,1]$, then a number c of the Lagrange's mean value theorem is
A. $\log _{e}(e-1)$
B. $\log _{e}(e+1)$
C. $\log _{e} e$
D. None of these

Answer: A
(D) Watch Video Solution
218. If $f(x)$ satisfies of conditions of Rolle's
theorem on [3,5], then $\int_{3}^{5} f(x) d x$ equals
A. 2
B. (-1)
C. 0
D. $(-4 / 3)$

Answer: D
(D) Watch Video Solution
219. The function $f(x)=x(x+3) e^{-\frac{x}{2}}$ satisfies all the conditions of Rolle's theorem in $[-3,0]$. The value of c is
A. 0
B. (-1)
C. (-2)
D. (-3)

Answer: C

220. In a triangle $A B C$ if sides a and b remain constant such that α is the error in C , then relative error in its area is
A. A. $\alpha \cot C$
B. B. $\alpha \sin C$
C. C. $\alpha \tan C$
D. D. $\alpha \cos C$

Answer: A
(D) Watch Video Solution
221. The circumference of a circle is measured as

56 cm with an error 0.02 cm . The percentage error in its area is
A. $(1 / 7)$
B. $(1 / 28)$
C. (1/14)
D. $(1 / 56)$

Answer: C

