©'doubtnut

India's Number 1 Education App

MATHS

BOOKS - HIMALAYA MATHS (KANNADA ENGLISH)

COMMON ENTRANCE TEST - 2014

Question Bank

1. Which one of the following is not correct for the features of exponential function given by $f(x)=b^{x}$ where $b>1$?
A. For very large negative values of x, the function is very close to 0
B. The domain of the function is R, the set of real numbers
C. The point $(1,0)$ is always on the graph of the function
D. The range of the function is the set of all positive real numbers

Answer: C

D Watch Video Solution

2. If $y=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)$, then $\frac{d y}{d x}$ at $x=1$ is
A. 20
B. 28
C. 1
D. 0
3. If $y=\left(\tan ^{-1} x\right)^{2}$ show that

$$
\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2
$$

A. 4
B. 0
C. 2
D. 1

Answer: B

- Watch Video Solution

4. If $f(x)=x^{3}$ and $g(x)=x^{3}-4 x$ in $-2 \leq x \leq 2$, then
(i) $f(x)$ and $g(x)$ satisfy Rolle's theorem.
(ii) $f(x)$ and $g(x)$ both satisfy Rolle's theorem.
(iii) Only $g(x)$ satisfies Rolle's theorem. Of these statements
A. (a) and (b) are correct
B. (a) alone is correct
C. None is correct
D. (a) and (c) are correct

Answer: D

- Watch Video Solution

5. Which of the following is not a correct statement?
A. Mthematical is interesting
B. $\sqrt{3} i s a^{\prime}$
C. $\sqrt{2}$ isirrational
D. The sun is a star

Answer: A

D Watch Video Solution

6. If the function $f(x)$ satisfies $\lim _{x \rightarrow 1} \frac{f(x)-2}{x^{2}-1}=\pi$, then $\lim _{x \rightarrow 1} f(x)=$
A. 1
B. 2
C. 0
D. 3
7. The tangent to the curve $y=x^{3}+1$ at $(1,2)$ makes an angle θ with y-axis, then the value of $\tan \theta$ is
A. minus $1 / 3$
B. 3
C. minus 3
D. 44256

Answer: D

- Watch Video Solution

$$
\begin{aligned}
& \text { 8. If the function } \mathrm{f}(\mathrm{x}) \quad \text { defined } \\
& f(x)=\frac{x^{100}}{100}+\frac{x^{99}}{99}+\ldots .+\frac{x^{2}}{2}+x+1 \text {, then } f^{\prime}(0)=
\end{aligned}
$$

A. $100 f^{\prime}(0)$
B. 100
C. 1
D. minus 1

Answer: C

D Watch Video Solution

9. If $f(x)=f(\pi+e-x)$ and $\int_{e}^{\pi} f(x) d x=\frac{2}{e+\pi}$, then $\int_{e}^{\pi} x f(x) d x$ is equal to
A. $\pi-e$
B. $\frac{\pi+e}{2}$
C. 1
D. $\frac{\pi-e}{2}$

Answer: C

- Watch Video Solution

10. If linear function $f(x)$ and $g(x)$ satisfy $\int[(3 x-1) \cos x+(1-2 x) \sin x] d x=f(x) \cos x+g(x) \sin x+C$, then
A. $f(x)=3(x-1)$
B. $f(x)=3 x-5$
C. $g(x)=3(x-1)$
D. $g(x)=3+x$
11. The value of the integral $\int_{-\pi / 4}^{\pi / 4} \log (\sec \theta-\tan \theta) d \theta$ is
A. 0
B. $\frac{\pi}{4}$
C. π
D. $\frac{\pi}{2}$

Answer: A

- Watch Video Solution

12. $\int \frac{\sin 2 x}{\sin ^{2} x+2 \cos ^{2} x} d x=$
A. $-\log \left(1+\sin ^{2} x\right)+C$
B. $\log \left(1+\cos ^{2} x\right)+C$
C. $-\log \left(1+\cos ^{2} x\right)+C$
D. $\log \left(1+\tan ^{2} x\right)+C$

Answer: C

- Watch Video Solution

13. Let S be the set of all real numbers. A relation R has been defined on S by a $\mathrm{Rb} \Rightarrow|a-b| \leq 1$, then R is
A. symmetric and transitive but not reflexive
B. Reflexive and transive but not symmetric
C. Reflexive and symmetric but not transitive
D. An equivalence relation

- Watch Video Solution

14. For any two real numbers, an operation * defined by a * $\mathrm{b}=1+$ $a b$ is
A. neither commutative nor associative
B. commutative but not associative
C. both commutative and associative
D. associative but not commutative

Answer: B

- Watch Video Solution

15. Let $f: N \rightarrow N$ defined by :
$f(n)=\left\{\begin{array}{l}\frac{n+1}{2} \text { if } \mathrm{n} \text { is odd } \\ \frac{n}{2} \text { if } \mathrm{n} \text { is even }\end{array}\right.$
A. onto but not one-one
B. one-one and onto
C. neither one-one nor onto
D. one-one but not onto

Answer: A

D Watch Video Solution

16. Suppose $f(x)=(x+1)^{2}$ for $x \geq-1$. If $\mathrm{g}(\mathrm{x})$ is the function whose graph is the reflection of the graph of $f(x)$ in the line $y=x$, then $g(x)=$
A. $\frac{1}{(x+1)^{2}} x>-1$
B. $-\sqrt{x}-1$
C. $\sqrt{x}+1$
D. $\sqrt{x}-1$

Answer: D

- Watch Video Solution

17. The domain of the function $f(x)=\sqrt{\cos x}$ is
A. $\left[\frac{3 \pi}{2}, 2 \pi\right]$
B. $\left[0, \frac{\pi}{2}\right]$
C. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
D. $\left[0, \frac{\pi}{2}\right] \cup\left[\frac{3 \pi}{2}, 2 \pi\right]$

- Watch Video Solution

18. In a class of 60 students, 25 students play cricket and 20 students play tennis and 10 students play both the games, then the number of students who play neither is
A. 45
B. 0
C. 25
D. 35

Answer: C

- Watch Video Solution

19. Given $0 \leq x \leq \frac{1}{2}$ then the value of
$\tan \left[\sin ^{-1}\left\{\frac{x}{\sqrt{2}}+\frac{\sqrt{1-x^{2}}}{\sqrt{2}}\right\}-\sin ^{-1} x\right]$ is
A. 1
B. $\sqrt{3}$
C. minus 1
D. $\frac{1}{\sqrt{3}}$

Answer: A

- Watch Video Solution

20. The value of $\sin \left(2 \sin ^{-1} 0.8\right)$ is equal to
A. 0.48
B. $\sin 1.2^{\circ}$
C. $\sin 1.6^{\circ}$
D. 0.96

Answer: D

D Watch Video Solution

21. If A is 3×4 matrix and B is a matrix such that $A^{1} B$ and $B A^{1}$ are both defined, then B is of the type
A. 4×4
B. 3×4
C. 4×3
D. 3×3

- Watch Video Solution

22. The symmetric part of the matrix $A=\left(\begin{array}{ccc}1 & 2 & 4 \\ 6 & 8 & 2 \\ 2 & -2 & 7\end{array}\right)$ is
A. $\left(\begin{array}{ccc}0 & -2 & -1 \\ -2 & 0 & -2 \\ -1 & -2 & 0\end{array}\right)$
B. $\left(\begin{array}{lll}1 & 4 & 3 \\ 2 & 8 & 0 \\ 3 & 0 & 7\end{array}\right)$
C. $\left(\begin{array}{ccc}0 & -2 & 1 \\ 2 & 0 & 2 \\ -1 & 2 & 0\end{array}\right)$
D. $\left(\begin{array}{lll}1 & 4 & 3 \\ 4 & 8 & 0 \\ 3 & 0 & 7\end{array}\right)$

Answer: D
23. If A is a matrix of order 3 , such that $A(\operatorname{adj} A)=101$, then $|\operatorname{adj} A|$
=
A. 1
B. 10
C. 100
D. 101

Answer: C

- Watch Video Solution

24. Consider the following statements :
(a) If any two rows or columns of a determinant are identical, then the value of the determinant is zero
(b) If the corresponding rows and columns of a determinant are
interchanged, then the value of the determinant does not change.
(c) If any two rows or columns of a determinant are interchanged, then the value of the determinant changes in sign.

Which of these are correct?
A. (a) and ©
B. (a) and (b)
C. (a), (b) and ©
D. (b) and ©

Answer: A::B::C::D

25. The inverse of the matrix $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$ is
A. $\frac{1}{24}\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$
B. $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4\end{array}\right]$
C. $\frac{1}{24}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
D. $\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{4}\end{array}\right]$

Answer: D

- Watch Video Solution

26. If a, b and c are in A.P., then the value of
$\left|\begin{array}{lll}x+2 & x+3 & x+a \\ x+4 & x+5 & x+b \\ x+6 & x+7 & x+c\end{array}\right|$ is
A. 0
B. $x-(a+b+c)$
C. $a+b+c$
D. $9 x^{2}+a+b+c$

Answer: A

- Watch Video Solution

27. The local minimum value of the function f^{\prime} given by
$f(x)=3+|x|, x \in R$ is
A. minus 1
B. 3
C. 1
D. 0

Answer: A::C

D Watch Video Solution

28. A stone is dropped into a quiet lake and waves move in circles at the speed of $5 \mathrm{~cm} / \mathrm{sec}$. At that instant, when the radius of circular wave is 8 cm , how fast is the enclosed area is increasing
A. $6 \pi \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}$
B. $8 \pi \frac{\mathrm{~cm}^{2}}{s}$
C. $\frac{8}{3} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}$
D. $80 \pi \frac{\mathrm{~cm}^{2}}{\mathrm{~s}}$

Answer: D

- Watch Video Solution

29. A gardener is digging a plot of land. As he gets tired, he works more slowly. After 't' minutes he is digging at a rate of 2 $\overline{\sqrt{t}}$ square metres per minut
an area of 40 square meters ?
A. 100 minutes
B. 10 minutes
C. 30 minutes
D. 40 minutes

- Watch Video Solution

30. The area of the region bounded by the lines $y=m x, x=1, x=2$, and x axis is 6 sq. units then ' m ' is
A. 3
B. 1
C. 2
D. 4

Answer: D

- Watch Video Solution

31. Area of the region bounded by two parabolas $y=x^{2}$ and $x=y^{2}$ is
A. 44287
B. 44256
C. 4
D. 3

Answer: B

D Watch Video Solution

32. The order and degree of the differential equation
$y=x \frac{d y}{d x}+\frac{2}{\frac{d y}{d x}}$ is
A. 1,2
B. 1,3
C. 2,1
D. 1,1

Answer: A

D Watch Video Solution

33. The general solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=3 x$ is
A. $y=x-c / x$
B. $y=x+c / x$
C. $y=x^{2}-\frac{c}{x}$
D. $y=x^{2}+\frac{c}{x}$

(D) Watch Video Solution

34. The distance of the point $P(a, b, c)$ from the x-axis is
A. $\sqrt{a^{2}+b^{2}}$
B. ${ }^{\wedge} \operatorname{sqrt}\left(b^{\wedge}(2)+c^{\wedge}(2)\right)$
C. a
D. $\sqrt{a^{2}+c^{2}}$

Answer: B

35. Equation of the plane perpendicular to the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and passing through the point $(2,3,4)$ is
A. $2 x+3 y+z=17$
B. $x+2 y+3 z=9$
C. $3 x+2 y+z=16$
D. $x+2 y+3 z=20$

Answer: D

- Watch Video Solution

36. The line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ is parallel to the plane
A. $2 x+3 y+4 z=0$
B. $3 x+4 y+5 z=0$
C. $2 x+y-2 z=0$
D. $x+y+z=2$

Answer: C

- Watch Video Solution

37. The angle between two diagonals of a cube is
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. 30°
C. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
D. 45°

Answer: A

38. The lines : $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k} \quad$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are co-planar if :
A. $K=2$
B. $K=0$
C. $K=3$
D. $K=-1$

Answer: B

D Watch Video Solution

39. A and B are two events such that $P(A) \neq 0, P(B / A)$ is
B. 0 and 1
C. 0,0
D. 1,0

Answer: D

- Watch Video Solution

40. Two dice are thrown simultaneously. The probability of obtaining a total score of 5 is

- Watch Video Solution

41. If the events A and B are independent if $P\left(A^{\prime}\right)=\frac{2}{3}$ and $P\left(B^{\prime}\right)=\frac{2}{7}$, then $P(A \cap B)$ is equal to
A. 44287
B. 44317
C. 44197
D. 44256

Answer: B

D Watch Video Solution

42. A box contains 100 bulbs, out of which 10 are defective. A sample of 5 bulbs is drawn. The probability that none is defective is
A. 44478
B. ${ }^{`}(1 / 10)^{\wedge}(5)$
C. $\left(\frac{9}{10}\right)^{5}$
D. $\left(\frac{1}{2}\right)^{5}$

Answer: C

- Watch Video Solution

43. The area of the parallelogram whose adjacent sides are $\hat{i}+\hat{k}$ and $2 \hat{i}+\hat{j}+\hat{k}$ is:
A. 3
B. $\sqrt{2}$
C. 4
D. $\sqrt{3}$

Answer: D

44. If \vec{a} and \vec{b} are two unit vectors inclined at an angle $\frac{\pi}{3}$, then the value of $|\vec{a}+\vec{b}|$ is
A. equal to 1
B. greater than 1
C. equal to 0
D. less than 1

Answer: B

D Watch Video Solution

45. The value of $[\vec{a}-\vec{b} \vec{b}-\vec{c} \vec{c}-\vec{a}]$ is equal to
A. 0
B. 1
C. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
D. 2

Answer: A

D Watch Video Solution

46. If $x+y \leq 2, x \geq 0, y \leq 0$ the point at which maximum value of $3 x+2 y$ attained will be
A. $(0,2)$
B. $(0,0)$
C. $(2,0)$
D. $(1 / 2,1 / 2)$

- Watch Video Solution

47. If $\sin \theta=\sin \alpha$, then
A. $\frac{\theta+\alpha}{2}$ is any multiple of $\mathrm{pi} / 2$ and
$\frac{\theta-\alpha}{2} i s a n y o d d \mu<i p \leq o f \mathrm{pi}^{\circ}$
B. $\frac{\theta+\alpha}{2}$ is any odd multiple of $\mathrm{pi} / 2$ and
$\frac{\theta-\alpha}{2} i s a n y o d d \mu<i p \leq o f \mathrm{pi}^{\circ}$
C. $\frac{\theta+\alpha}{2}$ is any multiple
$\frac{\theta-\alpha}{2}$ isanyeven $\mu<i p \leq o f \mathrm{pi}^{\text {® }}$
D. $\frac{\theta+\alpha}{2}$ is any even multiple of $\mathrm{pi} / 2$ and

$$
\frac{\theta-\alpha}{2} i s a n y o d d \mu<i p \leq o f \mathrm{pi}
$$

- Watch Video Solution

48. If $\tan x=\frac{3}{4}, \pi<x<\frac{3 \pi}{2}$, then the value of $\cos . \frac{x}{2}$ is
A. $-\frac{1}{\sqrt{10}}$
B. $\frac{3}{\sqrt{10}}$
C. $\frac{1}{\sqrt{10}}$
D. $-\frac{3}{\sqrt{10}}$

Answer: A

D Watch Video Solution

49. In a triangle ABC, $a[b \cos C-c \cos B]=$
A. 0
B. a^{2}
C. $b^{2}-c^{2}$
D. b^{2}

Answer: C

D Watch Video Solution

50. If α and β two different complex numbers with $|\beta|=1$, then $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$ is equal to
A. 44228
B. 0
C. minus 1
D. 1

Answer: D

- Watch Video Solution

51. The set $A=\{x:|2 x+3|<7\}$ is equal to the set
A. $D=\{x: 0<x+5<7\}$
B. $B=\{x:-3<x<7\}$
C. $E=\{x:-7<x<7\}$
D. $C=\{x:-13<2 x<4\}$
52. How many 5 digit telephone numbers can be constructed using the digits 0 to 9 , if each number starts with 67 and no digit appears more than once?
A. 335
B. 336
C. 338
D. 337

Answer: B

- Watch Video Solution

53. If $21^{\text {st }}$ and $22^{\text {nd }}$ terms in the expansion of $(1+x)^{44}$ are equal, then x is equal to
A. 44385
B. $21 / 22$
C. 44415
D. $23 / 24$

Answer: C

D Watch Video Solution

54. Consider an infinite geometric series with first term 'a' and common ratio 'r'. If the sum is 4 and the second term is $\frac{3}{4}$ then
A. $a=2, r=3 / 8$
B. $a=4 / 7, r=3 / 7$
C. $a=3 / 2, r=1 / 2$
D. $a=3, r=1 / 4$

Answer: D

- Watch Video Solution

55. A straight line passes through the points $(5,0)$ and $(0,3)$. The length of perpendicular from the point $(4,4)$ on the line is
A. $\frac{15}{\sqrt{34}}$
B. $\frac{\sqrt{17}}{2}$
C. 44244
D. $\sqrt{\frac{17}{2}}$

Answer: D

56. Equation of circle with centre $(-a,-b)$ and radius $\sqrt{a^{2}-b^{2}}$ is
A. $x^{2}+y^{2}+2 a x+2 b y+2 b^{2}=0$
B. $x^{2}+y^{2}-2 a x-2 b y-2 b^{2}=0$
C. $x^{2}+y^{2}-2 a x-2 b y+2 b^{2}=0$
D. $x^{2}+y^{2}-2 a x+2 b y+2 a^{2}=0$

Answer: A

- Watch Video Solution

57. The area of the triangle formed by the lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of latus rectum is
A. 20 sq.units
B. 18 sq.units
C. 17 sq.units
D. 19 sq. units

Answer: B

- Watch Video Solution

58. If the coefficient of variation and standard deviation are 60
and 21 respectively, the arithmetic mean of distribution is
A. 60
B. 30
C. 35
D. 21

- Watch Video Solution

59. The fucntion represented by the following graph is

A. Continuous but not differential at $x=1$
B. Differential but not continuous at $x=1$
C. Continuous and differential at $x=1$
D. Neither continuous nor differential at $x=1$

- Watch Video Solution

60. If $f(x)=\left\{\begin{array}{ll}\frac{3 \sin \pi x}{5 x} & x \neq 0 \\ 2 k & x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$, then the value of k is equal to :
A. $\frac{\pi}{10}$
B. $\frac{3 \pi}{10}$
C. $\frac{3 \pi}{2}$
D. $\frac{3 \pi}{5}$

Answer: B

