

MATHS

BOOKS - HIMALAYA MATHS (KANNADA ENGLISH)

COORDINATE SYSTEMS, LOCUS AND STRAIGHT LINES

Question Bank

1. The ratio in which the point (-1,4) divides the line joining (-7,1) and (3,6)

is

A. 2:1

B. 3: 1

C. 1: 2

D. 3: 2

Answer: D

2. The point which divides the join of (1,2) and (3,4) externally in the ratio

1: 1

A. lies in the 1 st rant

B. lies in the 2 nd rant

C. lies in the 3rd rant

D. cannot be found

Answer: D

Watch Video Solution

3. The ratio in which the y -axis divides the line segment joining (-4,2) and

(8,3) is

A. 0.04305555555556

B. 0.08541666666667 C. -2: 3 D. 1:2 Answer: A **Watch Video Solution 4.** The ratio in which x -axis divides the line segment joining (3,6) and (12,-3) is A. 0.08402777777778 B. 1: 2 C. 2: 1 D. -1: 2 Answer: A **Watch Video Solution**

- 5. The ratio in which (-3,4) divides the line joining (1,2) and (7,-1) is
 - A. 2: 5 externally
 - B. 5: 2 internally
 - C. 1: 5 externally
 - D. 1: 5 internally

Answer: A

- **6.** The points $(a,2a),\,(\,-2,6)$ and (3,1) are collinear then a=
- A. 1) $\frac{3}{4}$
 - B. 2) $\frac{4}{3}$
 - C. 3)3
 - D. 4)4

Answer: B

Watch Video Solution

7.
$$egin{bmatrix} x_1 & y_1 & 1 \ x_2 & y_2 & 1 \ x_3 & y_3 & 1 \end{bmatrix}=0$$
 is the condition that the points $(x_i,y_j),\,i=1,2,3$

- A. form an equilateral triangle
- B. are collinear
- C. form a angled triangle
- D. (x_2,y_2) is the | point of the line joining (x_1,y_1) and (x_3,y_3)

Answer: B

8. The value of λ for which the lines 3x+4y=5, 5x+4y=4 and

$$\lambda x + 4y = 6$$
 meet at a point is

- A. 2
- B. 1
- C. 4
- D. 3

Answer: B

Watch Video Solution

9. Area of the parallelograms formed by the lines

$$4y - 3x - a = 0, 3y - 4x + a = 0$$

$$4y - 3x - 3a = 0, 3y - 4x + 2a = 0$$

A.
$$a^2$$

B.
$$\frac{a^{\gamma}}{7}$$

C.
$$\frac{2a}{7}$$
D. $\frac{2a}{9}$

Answer: C

Watch Video Solution

- **10.** The vertices of a triangle are (0,3),(-3,0) and (3,0). The coordinates of its orthocentre are
 - A. (0,-2)
 - B. (0,2)
 - C. (0,3)
 - D. (0,-3)

Answer: C

11. The fourth vertex of the square formed by points (2,1),(4,3),(-2,5) is A. (2,3) B. (-3,3) C. (-4,3) D. (4,3) **Answer: C Watch Video Solution** 12. Three vertices of a parallelogram taken in order are (-1,-6),(2,-5) and (7,2), The fourth vertex is A. (1,4) B. (1,1) C. (4,4) D. (4,1)

Answer: D

Watch Video Solution

13. The vertices of a triangle are (0, 0), (3, 0) and (0, 4). Its orthocentre is at:

$$\mathsf{B.}\left(1,\frac{4}{3}\right)$$

$$\mathsf{C.}\left(rac{3}{2},2
ight)$$

D. (0,4)

Answer: A

Watch Video Solution

14. The points (3,2),(-3,2),(0,h) are the vertices of an equilateral triangle. If $h\leq 0$ then the value of h is

- A. $2-\sqrt{27}$
- B. $3 + 2\sqrt{3}$
- $\mathsf{C.}\,2+3\sqrt{3}$
 - D. none

Answer: C

Watch Video Solution

- 15. The area of the quadrilateral formed by (2,-1), (4,3),(-1,2) and (-3,-2) is
 - A. 54
 - B. 36
 - C. 18
 - D. 9

Answer: C

16. If (-2,2), (1,0), (x,0), (1,y) form a parallelogram then (x,y) =A. (-4,-2)

B.(4,-2)

C. (-4,2)

D.(4,2)

Answer: D

Watch Video Solution

17. The mid points of BC, CA and AB of the triangle ABC are

D = (1, 2), E = (4, 3) and F = (6, 4) then A =

A. (6,5)

B. (6,6)

C.(3,-3)

Answer: D

Watch Video Solution

- 18. The extremities of a diagonal of a parallelogram are (3,-4) and (-6,5). If the third vertex is (-2,1) then the fourth vertex is
 - A. (1,0)
 - B. (-1,0)
 - C. (1,1)
 - D. (-1,-1)

Answer: B

19. Mid points of the sides AB and AC of a triangle ABC are (-3,-5) and (3,3) respectively then the length of BC is

A. 15

B. 10

C. 20

D. 30

Answer: C

Watch Video Solution

20. A = (3,5), B = (-5, -4) and C = (7,10) are the vertices of a parallelogram ABCD =

A. (15,19)

B. (-15, 19)

C. (15,-19)

D. (-15,-19)

Answer: A

Watch Video Solution

- **21.** The base vertices of an isosceles triangle are (7,9) and (3,-7), then the third vertex is
 - A. (13,1) or (-3,3)
 - B. (13,-1) or (3,-3)
 - C. (13,-1) or (-3,3)
 - D. (13,1) or (3,3)

Answer: C

22. The one of the possible third vertex of the equilateral triangle whose two vertices are (3,4) and (-2,3)

$$\begin{aligned} &\mathsf{A.}\left(\frac{1-\sqrt{3}}{2},\frac{7+5\sqrt{3}}{2}\right)\\ &\mathsf{B.}\left(\frac{1-\sqrt{3}}{2},\frac{7-5\sqrt{3}}{2}\right)\cdot 0\\ &\mathsf{C.}\left(\frac{1+\sqrt{3}}{2},\frac{7+5\sqrt{3}}{2}\right)\\ &\mathsf{D.}\left(\frac{1+\sqrt{3}}{2},\frac{1-\sqrt{3}}{2}\right) \end{aligned}$$

Answer: B

23. The points (4,-1),(7,9) and (4,11) are the mid points of the sides of the triangle. Then the centroid is

A. (5,-3)

B.(5,3)

C.
$$\left(-5, \frac{19}{2}\right)$$
D. $\left(5, \frac{19}{2}\right)$

Answer: D

Watch Video Solution

24. The vertices of a triangle are (0,0),(0,2) and (2,0) .The distance between the circumcentre and orthocentre is

A. 0

B. $\sqrt{2}$

 $\mathsf{C.}\;\frac{1}{\sqrt{2}}$

D. 1

Answer: B

25. Two opposite vertices of a square are (1,-2) and (-5,6), then the other two vertices are

- A. (2,5),(-6,-1)
- B. (-2,5),(6,1)
- C. (2,-5),(6,-1)
- D. none of these

Answer: A

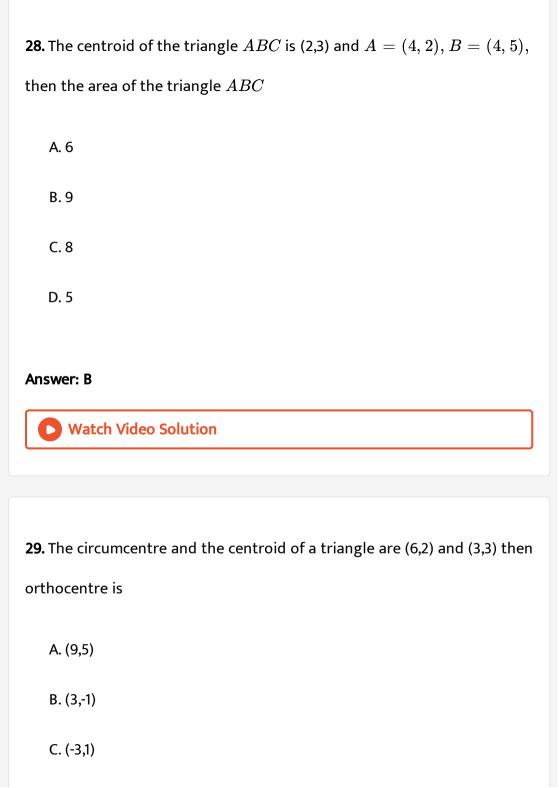
Watch Video Solution

26. The length of the line segment joining A(2,3) and B is 10 units . If absc is a of B is 10, its ordinate can be

- A. 3 or 9
- B. 3 or -9
- C. -3 or 9

D.	-3	or	-9
L .	_	\mathbf{v}	_

Answer: B



Watch Video Solution

- **27.** The image of the point P(3,5) w.r.t the line y=x is the point Q and the image of Q along the line y=0 is the point R(a,b), then (a,b)=
 - A. (5,3)
 - B. (5,-3)
 - C. (-5,3)
 - D. (-5,-3)

Answer: B

Answer: D

Watch Video Solution

30. The orthocentre and centroid of a triangle are (-3,5),(3,3) then the circumcentre is

- A. (6,2)
- B. (0,8)
- C. (6,-2)
- D. (0,4)

Answer: A

31. If the points (1, 2) and (3, 4) were to be on the same side of the line

$$3x - 5y + a = 0$$
, then:

A.
$$7 < a < 11$$

$$B.a=7$$

$$\mathsf{C}.\,a=1$$

D.
$$a < 7$$
 or $a > 11$

Answer: D

32. A (1, 3) and C(7, 5) are two opposite vertices of a square. The equation of a side thro' A is :

A.
$$x + 2y - 7 = 0$$
 or $2x - y + 1 = 0$

$$\mathsf{B.}\,x-2y+5=0$$

$$\mathsf{C.}\,2x+y-5=0$$

D. none of 'these

Answer: A

Watch Video Solution

33. One of the equations of the lines passing through the point (3, -2) and inclined at 60° to the line $\sqrt{3}x+y=1$ is :

A.
$$y + 2 = 0$$

B.
$$x - 3 = 0$$

$$C. x + y = 1$$

D.
$$x + y = 1$$

Answer: A

34. The equation of the diagonal through the origin of the rilateral formed by x=0, y=0 x+y=1 and 6x+y=3 is

A.
$$3x-2y=0$$

$$\mathsf{B.}\,3x-y=0$$

$$\mathsf{C.}\,x-y=0$$

D.
$$3x - 4y = 0$$

Answer: A

Watch Video Solution

35. The area of the triangle whose sides are along x=0,y=0 and

$$4x+5y=20$$
 is

$$\frac{1}{10}$$

D.
$$\frac{1}{20}$$

Answer: B

Watch Video Solution

36. If a, b, c are in A. P., then st. line ax + by + c = 0 will always pass through a fixed point whose co-ordinates are:

- A. (1,-2)
- B. (-1,2)
- C. (1,2)
- D. (-1,-2)

Answer: A

37. The number of lines that are parallel to 2x+6y-7=0 and have an intercept 10 between the coordinate axes is

- A. 1
- B. 2
- C. 3
- D. infinitely many

Answer: B

Watch Video Solution

38. The inclination of the line through (-3,6) and the midpoint of the line joining the point (4,-5) and (-2,9) is

- A. $\frac{\pi}{4}$

D.
$$\frac{3\pi}{4}$$

Answer: D

Watch Video Solution

39. A line through the point A(2,0) which makes an angle of 30° with the positive direction of x -axis is rotated about A thro' an angle 15° in the clockwise direction. The equation of the line in the new position is

A.
$$(2-\sqrt{3})x-y-4+2\sqrt{3}=0$$

B.
$$(2-\sqrt{3})x+y-4+2\sqrt{3}=0$$

C.
$$(2-\sqrt{3})x-y+4+2\sqrt{3}=0$$

D.
$$(2-,\sqrt{3})x+y+4-2\sqrt{3}=0$$

Answer: A

40. The equation of the line which makes an angle 15° with the positive direction of x -axis and cuts an intercept of length 4 on the negative direction of y-axis is

A.
$$(2-\sqrt{3})x-y-4=0$$

B.
$$\left(2-\sqrt{3}\right)x+y-4=0$$

C.
$$\left(2+\sqrt{3}
ight)x-y-4=0$$

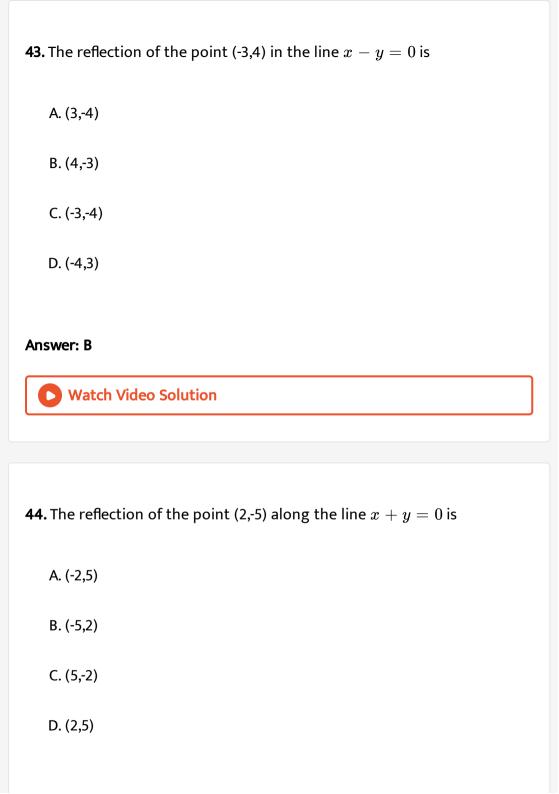
D.
$$(2+\sqrt{3})x+y-4=0$$

Answer: A

- **41.** Distance between the lines 3x+4y=9 and 6x+8y=15 is
 - A. A: $\frac{6}{5}$
 - B. B: $\frac{3}{10}$
 - C. C: $\frac{3}{12}$

Answer: B

Watch Video Solution


42. If (-2,6) is the image of the point (4,2) with respect to the line $L=0,\,$

 ${\rm then}\; L =$

- A. 3x-2y+5
- B. 3x 2y + 10
- C. 2x + 3y 5
- D. 6x 4y 7

Answer: A

Answer: C

Watch Video Solution

45. The co-ordinates of the image of the origin O. w.r.t. st. line x+y+1=0 are :

$$\mathsf{A.}\left(\,-\,\frac{1}{2},\;-\,\frac{1}{2}\,\right)$$

B. (-2,-2)

C. (1,1)

D. (-1,-1)

Answer: D

Watch Video Solution

46. The centroid of a triangle formed by the points (0, 0), $(\cos\theta,\sin\theta)$ and $(\sin\theta,\,-\cos\theta)$ lies on the line y=2x. Then θ is :

$$\mathsf{B.}\left(2,\;-\,\frac{1}{2}\right)$$

C. (1,1)

Answer: D

A. $tan^{-1} 2$

B. $\frac{\tan^{-1}(1)}{3}$

c. $\frac{\tan^{-1}(1)}{2}$

D. $\tan^{-1}(-3)$

Watch Video Solution

47. Foot of the perpendicular from (-2,-1) on to the line 3x+2y-5=0

48. The equation of base of an equilateral triangle is x+y=2 and vertex is (2, -1). Then the length of the side of the triangle equals:

A.
$$\frac{\sqrt{3}}{2}$$

B.
$$\sqrt{\frac{2}{3}}$$

$$\operatorname{C.}2\sqrt{\frac{3}{2}}$$

D. $\sqrt{6}$

Answer: B

Watch Video Solution

C(a, 0) are perpendicular ot each other if:

49. The medians AD and BE of a triangle with vertices A (0, b), B(0, 0) and

$$\mathsf{A}.\,ab=1$$

B.
$$a=~\pm~2\sqrt{b}$$

$$\mathsf{C.}\,a = \frac{b}{2}$$

D.
$$b=rac{a}{2}$$

Answer: B

Watch Video Solution

50. The equation of the line through (2,3) and parallel to

A.
$$2x - 3y + 3 = 0$$

B.
$$2x - 3y - 3 = 0$$

C.
$$2x - 3y - 5 = 0$$

2x - 3y + 1 = 0 is

D.
$$2x - 3y + 5 = 0$$

Answer: D

51. The equation of the line whose intercepts on x= axis and y -axis are respectively twice and thrice of those by the line 3x+4y=12 is

A.
$$9x - 8y = 72$$

B.
$$9x + 8y = 72$$

$$6.8x + 9y = 72$$

D.
$$8x - 9y = 72$$

Answer: B

Watch Video Solution

52. Equation of the bisector of the obtuse angle between the lines

$$4x + 3y - 6 = 0$$
 and $5x + 12y + 9 = 0$ is

A.
$$7x + 9y - 3 = 0$$

B.
$$7x + 7y - 3 = 0$$

C.
$$9x - 7y - 41 = 0$$

D.
$$7x - 7y - 3 = 0$$

Answer: C

Watch Video Solution

53. The equations of the bisector of the acute angle between the lines

$$3x + 4y - 11 = 0$$
 and $12x - 5y - 2 = 0$ is

A.
$$11x + 3y + 17 = 0$$

B.
$$11x + 3y - 17 = 0$$

C.
$$11x - 3y + 17 = 0$$

D.
$$11x - 3y - 17 = 0$$

Answer: B

54. A point moves such that the area of the triangle formed by it with the points (1,5) and (3,-7) is + 21 sq. units. The locus of the point is

A.
$$6x + y - 32 = 0$$

B.
$$6x - y + 32 = 0$$

C.
$$x + 6y - 32 = 0$$

D.
$$6x - y - 32 = 0$$

Answer: A

Watch Video Solution

55. The locus of the point equidistant from (1,-1) and (-1,1) is

A.
$$x + y = 0$$

$$B. x - y = 0$$

$$\mathsf{C.}\,2y-x=0$$

$$\mathsf{D}.\,x+2y=0$$

Answer: B

Watch Video Solution

56. The locus of the point whose distance from x -axis is twice its distance from y -axis is

A.
$$y = x$$

$$\mathsf{B.}\,y=2x$$

$$\mathsf{C}.\, x = y'$$

$$D. x = 2y$$

Answer: B

Watch Video Solution

57. Locus of a point which moves such that its distance from the X-axis is twice its distance from the line x-y=0 is

$$A. x = 2y$$

B.
$$y=2x$$

C.
$$x + y = 3$$

D. none of these

Answer: A

Watch Video Solution

58. A straight rod of length 9 units slides with its ends A, B always on the

X and Y-axis respectively . Then the locus of the centroid of ΔOAB is :

A.
$$x^2+y^2=3$$

$$\mathsf{B.}\,x^2+y^2=9$$

$$\mathsf{C.}\,x^2+y^2=1$$

D.
$$x^2 + y^2 = 81$$

Answer: B

59. The locus of the mid-point of the portion of the line $x\cos lpha + y\sin lpha = p$, which is intercepted between the axes is :

A.
$$p^2ig(x^2+y^2ig)=4xy$$

B.
$$pig(x^2+y^2ig)=4x^2y^2$$

$$\mathsf{C.}\, p^2(x+y) = x^2 y^2$$

D.
$$p^2(x^2+y^2)=4x^2y^2$$

Answer: D

Watch Video Solution

60. The locus of the point $x=a\cos\theta,\,y=b\sin\theta$ is

A.
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

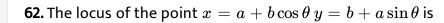
B.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

C.
$$\displaystyle rac{x^2}{a^2} + rac{y^2}{b^2} = 2$$

D.
$$a^2x^2+b^2y^2=1$$

Answer: B

61. The locus of the point $x=a(\cos\theta+\sin\theta)\ y=b(\cos\theta-\sin\theta)$ is


A.
$$\displaystyle rac{x^2}{a^2} + rac{y^2}{b^2} = 1$$

B.
$$rac{x^2}{a^2} + rac{y^2}{b^2} = 2$$
C. $rac{x^2}{a^2} + rac{y^2}{b^2} = rac{1}{2}$

D.
$$\dfrac{a^2}{a^2}+\dfrac{b^2}{b^2}=\dfrac{2}{3}$$

Answer: B

A. circle

B. ellipse

C. parabola

D. hyperbola

Answer: B

Watch Video Solution

63. The locus of the point $x=a+\sec heta\,y=b+a an heta$ is

A. circle

B. ellipse

C. parabola

D. hyperbola

Answer: D

Watch Video Solution

64. The locus of the point $\left(a\cos^3\theta,\,a\sin^3\theta\right)$ is

A.
$$x^{rac{2}{3}} - y^{rac{2}{3}} = a^{rac{2}{3}}$$

B.
$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$$

C.
$$x^{rac{2}{3}} + y^{rac{2}{3}} = a^{rac{3}{2}}$$

D.
$$x^{rac{3}{2}} + y^{rac{1}{2}} = a^{rac{1}{2}}$$

Answer: B

Watch Video Solution

65. The locus of the point $\left(a+bt,b-\frac{a}{t}\right)$, where t is the parameter is

$$A. (x-a)(y-b) = ab$$

B.(x+a)(y-b) = ab

C. (x - a)(y + b) = ab

D.(x-a)(b-y)=ab

Answer: D

Watch Video Solution

66. A line segment AB of length ' a ' moves with its ends on the axes. The locus of the point P which divides the line in the ratio 1: 2 is

A. $9x^2 + 4y^2 = a^2$

 $B. 9(y^2 + 4x^2) = -4a^2$

 $\mathsf{C.}\, 9(x^2 + 4y^2) = 4a^2$

D. $9x^2 + 9y^2 = 4a^2$

Answer: C

67. Distance between the parallel lines 3x+4y+7=0 and 6x+8y+k=0 is 4 . Then k=

A. 54,26

B. -54,26

C. 54,-26

D. -54,-26

Answer: C

Watch Video Solution

68. Equation of the line cutting off an intercept 2 from the negative direction of the axis of y and inclined at 30° to the positive direction of axis of x, is

A.
$$y+x-\sqrt{3}=0$$

B. y - x + 2 = 0

C. $y - \sqrt{3}x - 2 = 0$

D. $\sqrt{3}y - x + 2\sqrt{3} = 0$

Answer: D

Watch Video Solution

is

69. Equation of the line perpendicular to y = x and passing through (3,2)

A. x - y = 5

B. x + y = 5

C. x + y = 1

D. x - y = 1

Answer: B

70. The length of the perpendicular from the point $(a\cos\alpha, a\sin\alpha)$ upon the line $y=x\tan\alpha+c, c\leq 0,$ is

A. *c*

B. $c\sin^2 \alpha$

C. $c\cos\alpha$

D. $c\sec^2 \alpha$

Answer: C

Watch Video Solution

71. If the quadrilateral formed by the lines

ax + by + c = 0, a'x + b'y + c = 0

 $ax+by+c^{\prime}=0, a^{\prime}x+b^{\prime}y+c^{\prime}=0$ have perpendicular diagonals,

then

A.
$$b^2+c^2=\left(b^\prime
ight)^2+\left(c^\prime
ight)^2$$

B.
$$c^2+a^2=\left(c'
ight)^2+\left(a^r
ight)^2$$

C.
$$a^2+b^2=\left(a^{\,\prime}
ight)^2+\left(b^{\,\prime}
ight)^2$$

D.
$$b^2+c^2=\left(b'
ight)^2+\left(a'
ight)^2$$

Answer: C

- 72. If the algebraic sum of the perpendicular distances from the points (2,
- 0), (0, 2) and (1, 1) to a variable st. line be zero, then the line passes thro' the point:
 - A. (-1,1)
 - B. (1,1)
 - C. (1,-1)
 - D. (-1,-1)

Answer: B

Watch Video Solution

73. A point moves in the xy-plane such that the sum of its distances from two mutually perpendicular lines is always equal to 3. The area enclosed by the locus of the point is

- A. 18 sq. units
- B. $\frac{9}{2}$ sq. units
- C. 7 sq. units
- D. $\frac{7}{2}$ sq. units

Answer: B

74. The incentre of the triangle formed by the axes and the line

$$\frac{x}{4} + \frac{y}{3} = 1$$
 is

A.
$$\left(2, \frac{3}{2}\right)$$

B.
$$\left(\frac{12}{7+\sqrt{7}},\,\frac{12}{7+\sqrt{7}}\right)$$
C. $\left(\frac{4}{3},1\right)$

D. (1,1)

Answer: D

Watch Video Solution

75. The incentre of the triangle formed by $\frac{x}{a} + \frac{y}{b} = 1$ is

A.
$$\left(\frac{a}{2}, \frac{b}{2}\right)$$

$$\mathsf{B.}\left(\frac{ab}{a+b+\sqrt{ab}},\frac{ab}{a+b+\sqrt{ab}}\right)$$

$$\mathsf{C.}\left(\frac{a}{3},\frac{b}{3}\right)$$

D.
$$\left(\frac{ab}{a+b+\sqrt{a^2+b^2}}, \frac{ab}{a+b+\sqrt{a^2+b^2}}\right)$$

Answer: D

Watch Video Solution

76. If the line segment joining (2,3) and (-1,2) is divided internally in the ratio 3: 4 by the line x + 2y = k then k is

A.
$$\frac{41}{7}$$

B.
$$\frac{5}{7}$$
.

c.
$$\frac{36}{7}$$
 D. $\frac{31}{7}$

Answer: A

A.
$$\frac{11}{8}$$
B. $\frac{8}{11}$

D.
$$\frac{1}{3}$$

C. 3

Answer: A

equidistant from A(4,0) and B(0,5) is

A.
$$(2,2)$$
B. $\left(\frac{3}{2}, \frac{3}{2}\right)$

B.
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$
C. $\left(\frac{9}{2}, \frac{9}{2}\right)$

Answer: C

Watch Video Solution

79. $A(3,\,-4)$ and $B(\,-4,\,3)$ are the vertices of a triangle ABC. If the centroid of this triangle moves on the line 3x-2y=4 then the locus of the vertex C is the line

$$\mathsf{A.}\,2x+3y=13$$

B.
$$3x + 2y = 13$$

C.
$$3x - 2y = 13$$

D.
$$2x - 3y = 13$$

Answer: C

80. A square of side 2 units lie above the x -axis and has one vertex at the origin. The side passing through the origin makes an angle 30° with the positive direction of x -axis. The equation of its diagonal not passing through the origin is

A.
$$\left(\sqrt{3}+1\right)y+\left(\sqrt{3}-1\right)x=4$$

B.
$$\left(\sqrt{3}-1\right)y-\left(\sqrt{3}-1\right)x=4$$

C.
$$\left(\sqrt{3}+1\right)y-\left(\sqrt{3}-1\right)x=4$$

D.
$$\left(\sqrt{3}+1\right)y+\left(1+\sqrt{3}\right)x=4$$

Answer: A

Watch Video Solution

81. A line meets the axes at P and Q such that the centroid of the triangle OPQ is (h,h). The equation of the line PQ is

A.
$$x-y=3h$$

$$\mathsf{B.}\,x+y=2h$$

$$\mathsf{C.}\,x+y=3h$$

$$\mathsf{D}.\,x+y=h$$

Answer: C

Watch Video Solution

82. A point (3,-2) undergoes the following transformations (i) reflection about the line y=x (ii) translation through a distance 3 units along -ve y -axis then the co-ordinates of final position of the point is

- A. (-2,0)
- B. (3,-1)
- C. (-2,6)
- D. (-1,3)

Answer: A

83. If
$$(x,y)$$
 represents a point on a plane then
$$\begin{bmatrix} 2 & -1 & 3 \\ 1 & 2 & -1 \\ x & y & 1 \end{bmatrix} = 0$$

$$\begin{vmatrix} 2 & -1 & 3 \\ 1 & 2 & -1 \\ 3 & 4 & 1 \end{vmatrix} = 0$$

represents

- A. a line parallel to x -axis
- B. a line parallel to y -axis
- C. a line through (0,0)
- D. a line with numerically equal intercepts on the axes

Answer: D

Watch Video Solution

84. The equation of the diagonal through the origin of the quadrilateral formed by $x=0,\,y=0$, 3x+y=1 and 4x+y=7 is

A.
$$6x + 17y = 0$$

$$B.17x - 6y = 0$$

$$\mathsf{C.}\,6r-17y=0$$

D.
$$17x + 6y = 0$$

Answer: D

Watch Video Solution

85. If a, b, c are in A. P., then st. line ax+by+c=0 will always pass through a fixed point whose co-ordinates are:

A. (1,-2)

B. (-1,2)

C. (1,2)

D. (-1,-2)

Answer: A

86. If the lines x+2ay+a=0, x+3by+b=0 and x+4cy+c=0 are concurrent, then a, b, c are in:

A. A.P

B. H.P

C. G .P

D. none of these

Answer: B

Watch Video Solution

87. A line passing through P(3,4) meets the x -axis and y -axis at A and B respectively. If O is the origin, then locus of the centre of the circum centre of ΔOAB is

A.
$$4x^{-1} + 3y^{-1} = 2$$

B.
$$3x^{-1} + 4y^{-1} = 1$$

C.
$$3x^{-1} + 4y^{-1} = 2$$

D.
$$4x^{-1} + 3y^{-1} = 1$$

Answer: C

Watch Video Solution

88. If two vertices of an equilateral triangle have integral co-ordinates, then the third vertex will have :

A. integral coordinates

B. coordinates which are rational

C. at least one coordinate irrational

D. coordinates, which are irrational

Answer: C

89. If two sides of a triangle are represented by:

 $2x-3y+4=0 \ {
m and} \ 3x+2y-3=0$, then its orthocentre lies on the

line:

A.
$$x - y + \frac{8}{15} = 0$$

$${\rm B.}\, 4x + 3y + \frac{5}{13} = 0$$

C.
$$9x - y + \frac{9}{13} = 0$$

D.

Answer: C

Watch Video Solution

90. The distance of the point (1, 2) from the line x+y=0 measured parallel to the line 3x-y=2 is :

A.
$$\frac{3\sqrt{2}}{8}$$

B.
$$\frac{3\sqrt{10}}{4}$$

C. 10

D. $5\sqrt{5}$

Answer: B

Watch Video Solution

91. A and B are two fixed points. The locus of the point P such that

 $A\widehat{P}B$ is a right angle is

A.
$$x^2 + y^2 = a^2$$

$$\mathsf{B.}\, x^2 - y^2 = a^2$$

$$\mathsf{C.}\,2x^2+y^2=a^2$$

$$\mathsf{D.}\, 2x^2 - y^2 = a^2$$

Answer: A

92. Equation of the bisector of the obtuse angle between the lines

$$4x + 3y - 6 = 0$$
 and $5x + 12y + 9 = 0$ is

A.
$$9x - 7y - 41 = 0$$

B.
$$7x + 9y - 3 = 0$$

C.
$$9x + 7y - 3 = 0$$

D.
$$7x - 9y - 3 = 0$$

Answer: A

Watch Video Solution

93. If one of the diagonals of a square is along the line x=2y and one of its vertices is (3,0), then its sides through this vertex are given by the equations

A.
$$y - 3x + 9 = 0$$
, $3y + x - 3 = 0$

B.
$$y + 3x + 9 = 0$$
, $3y + x - 3 = 0$

C.
$$y - 3x + 9 = 0$$
, $3y - x + 3 = 0$

D.
$$y - 3x + 3 = 0$$
, $3y + x + 9 = 0$

Answer: A

Watch Video Solution

94. The line parallel to the x axis and passing through the intersection of the lines

$$ax+2by+3b=0$$
 and bx -2ay-3a=0

where (a,b)
$$\neq$$
 (0,0) is

A. above the
$$x$$
 -axis at a distance of $\frac{2}{3}$ from it

B. above the
$$x$$
 -axis at a distance of $\frac{3}{2}$ from it

C. below the
$$x$$
 -axis at a distance of $\frac{2}{3}$ from it

D. below the
$$x$$
 -axis at a distance of $\frac{3}{2}$ from it

Answer: D

95. If the point
$$P(x, y)$$
 is equidistant from the points $A(a + b, b - a)$ and

$$B(a - b, a + b)$$
. Prove that $bx = ay$.

A.
$$ax = by$$

$$B.\,bx=ay$$

$$\mathsf{C.}\,ax+by=0$$

$$D. bx + ay = 0$$

Answer: B

96. If the points
$$\left(a^2,\,0\right),\,\left(0,\,b^2\right)$$
 and (1,1) are collinear then

A.
$$\frac{1}{a^2} + \frac{1}{b^2} = 1$$

$$\mathsf{B.}\,\frac{1}{a}+\frac{1}{b}=1$$

C.
$$a^2 + b^2 = 1$$

D.
$$a + b = 1$$

Answer: A

Watch Video Solution

97. The vertices of a triangle are at (0,0),(a,0) and (0,b). The distance between the circumcentre and the orthocentre is

A.
$$\sqrt{a^2+b^2}$$

B.
$$rac{1}{2}\sqrt{a^2+b^2}$$

C.
$$rac{\sqrt{a^2+b^2}}{\sqrt{2}}$$

D.
$$\frac{1}{4}\sqrt{a^2+b^2}$$

Answer: B

98. The number of points equidistant to three given distinct non-collinear points is

A. 0

B. 1

C. 2

D. infinite

Answer: B

Watch Video Solution

99. The points Q,R and S lie on the line joining P(a,x) and T(b,y) such that PQ=QR=RS=ST then $\left(\frac{5a+3b}{8},\frac{5x+3y}{8}\right)$ is the mid point of the segment

A. PQ

 $\mathsf{B.}\,QR$

 $\mathsf{C}.\,RS$

D. ST

Answer: B

Watch Video Solution

100. The x-co-ordinate of the incentre of the triangle that has the coordinates of mid-points of its sides as (0, 1), (1, 1) and (1, 0) is:

A.
$$2 + \sqrt{2}$$

B.
$$1 + \sqrt{2}$$

$$\mathsf{C.}\,2-\sqrt{2}$$

D.
$$1 - \sqrt{2}$$

Answer: C

101. The area of the figure formed by a|x|+b|y|+c=0 is

A.
$$\dfrac{c^2}{|ab|}$$

B.
$$\frac{2c^2}{|ab|}$$

C.
$$\dfrac{c^2}{2|ab|}$$

D.
$$c^2 \cdot |ab|$$

Answer: B

Watch Video Solution

102. Area of the parallelogram formed by the lines

$$2x-3y+a=0, 3x-2y-a=0, 2x-3y+3a=0$$
 and

$$3x-2y-2c=0$$
 is 10 sq. units, then $a=$

D. none of these

Answer: C

Watch Video Solution

103. The inclination of the line x-y+3=0 with the positive direction of x-axis is:

A. 45°

B. 135°

C. -45°

D. -135°

Answer: A

104. The two lines ax+by=c and $a^{\prime}x+b^{\prime}y=c^{\prime}$ are perpendicular if

A.
$$aa^{\prime}+bb^{\prime}=0$$

$$\mathtt{B.}\,ab^{\prime}=ba^{\prime}$$

$$\mathsf{C.}\,ab+a'b^r=0$$

D.
$$ab^{\prime}+ba^{\prime}=0$$

Answer: A

105. The equation of the line passing through (1, 2) and perpendicular to

x + y + 7 = 0 is :

A.
$$y - x + 1 = 0$$

$$\mathsf{B.}\,y-x-1=0$$

$$\mathsf{C.}\,y-x+2=0$$

$$\mathsf{D}.\,y-x-2=0$$

Answer: B

Watch Video Solution

106. The distance of the point $P(1,\;-3)$ from the line 2y-3x=4 is

A. 13

$$\text{B.}\ \frac{7\sqrt{13}}{13}$$

C.
$$\sqrt{13}$$

D. none of these

Answer: C

Watch Video Solution

107. The coordinates of the foot of the perpendicular from the point (2,3) on the line x+y-11=0 is

- A. (-6,5)
- B. (5,6)
- C. (-5,6)
- D. (6,5)

Answer: B

Watch Video Solution

108. The intercept cut off by a line from y-axis is twice than that of from x -axis and the line passes through the point (1,2). The equation of the line is

- $\mathsf{A.}\,2x+y=4$
- $\operatorname{B.}2x+y+4=0$
- $\mathsf{C.}\,2x-y=4$
- $\mathsf{D.}\,2x-y+4=0$

Answer: A

Watch Video Solution

109. A straight line through P(1,2) is such that the intercept between the axes is bisected at p then the equation of the straight line is

A.
$$x + 2y = 5$$

B.
$$x - y + 1 = 0$$

C.
$$x + y - 3 = 0$$

D.
$$2x + y - 4 = 0$$

Answer: D

Watch Video Solution

110. The reflection of the point (4, -13) in the line 5x+y+6=0 is :

B.(3,4)

C.(0,0)

D. (1,2)

Answer: A

Watch Video Solution

111. A point moves such that its distance from the point (4,0) is half that of its distance from the line x=16. The locus of the point is

A.
$$3x^2 + 4y^2 = 192$$

$${\sf B.}\,4x^2+3y^2=192$$

$$\mathsf{C.}\,x^2+y^2=192$$

D. none of these

Answer: A

112. A line cutting off intercept -3 from the y -axis and the tangent of the angle to the x -axis is $\frac{3}{5}$, its equation -is

A.
$$5y - 3x + 15 = 0$$

B.
$$3y - 5x + 15 = 0$$

C.
$$5y - 3x - 15 = 0$$

D. none of these

Answer: A

Watch Video Solution

113. Slope of a line which cuts off intercepts of equal lengths on the axes

is

A. -1

B. 0

C. 2

D. $\sqrt{3}$

Answer: A

Watch Video Solution

114. The equation of the line passing through the point (3,2) and perpendicular to the line y = x is

A. x - y = 5

B. x + y = 5

C. x + y = 1

D. x - y = 1

Answer: B

115. Equation of the line passing through the point (1,2) and perpendicular to the line x+y+1=0 is

A.
$$y - x + 1 = 0$$

B.
$$y - x - 1 = 0$$

C.
$$y - x + 2 = 0$$

D.
$$y - x - 2 = 0$$

Answer: B

Watch Video Solution

116. The tangent of angle between the lines whose intercepts on the axes are $a,\ -b$ and $b,\ -a$ respectively, is

A.
$$\dfrac{a^2-b^2}{ab}$$

B.
$$\frac{b^2 - a^2}{2}$$

C.
$$rac{b^2-a^2}{2ab}$$

D. none of thesc

Answer: C

Watch Video Solution

117. If the line $\frac{x}{a} + \frac{y}{b} = 1$ passes through the points (2,-3) and (4, -5), then (a, b) is

A. (1,1)

B. (-1,1)

C. (1,-1)

D. (-1,-1)

Answer: D

118. The distance of the point of intersection of the lines

$$2x-3y+5=0$$
 and $3x+4y=0$ from the line $5x-2y=0$ is

A.
$$\frac{130}{17\sqrt{29}}$$

$$\mathrm{B.}\ \frac{13}{7\sqrt{29}}$$

c.
$$\frac{130}{7}$$

D. none of these

Answer: A

Watch Video Solution

119. One of the equations of the lines passing through the point (3, -2) and inclined at 60° to the line $\sqrt{3}x+y=1$ is :

A.
$$y+2=0, \sqrt{3}x-y-2-3\sqrt{3}=0$$

B.
$$x-2=0, \sqrt{3}x-y+2+3\sqrt{3}=0$$

$$\mathsf{C.}\,\sqrt{3}x-y-2-3\sqrt{3}=0$$

D. none of these

Answer: A

Watch Video Solution

120. The equation of the lines passing through the point (1,0) and at a distance $\frac{\sqrt{3}}{2}$ from the origin, are

A.
$$\sqrt{3}x+y-\sqrt{3}=0,$$
 $\sqrt{3}x-y-\sqrt{3}=0$

B.
$$\sqrt{3}x + y + \sqrt{3} = 0$$
, $\sqrt{3}x - y + \sqrt{3} = 0$

C.
$$x + \sqrt{3}y - \sqrt{3} = 0, x - \sqrt{3}y - \sqrt{3} = 0$$

D. none of these

Answer: A

121. Derive an expression for the distance between two parallel lines

$$y = mx + c_1 \text{ and } y = mx + c_2.$$

A.
$$\dfrac{c_1-c_2}{\sqrt{m^2+1}}$$

B.
$$\dfrac{|c_1-c_2|}{\sqrt{1+m^2}}$$

C.
$$\frac{c_2-c_1}{\sqrt{1+m^2}}$$

D. 0

Answer: B

Watch Video Solution

122. The co-ordinates of the foot of perpendicular from the point (2, 3) on the line y = 3x + 4 are given by:

A.
$$\left(\frac{37}{10}, -\frac{1}{10}\right)$$

$$\mathsf{B.}\left(\,-\,\frac{1}{10},\,\frac{37}{10}\right)$$

C.
$$\left(\frac{10}{37}, -10\right)$$

D.
$$\left(\frac{2}{3}, -\frac{1}{3}\right)$$

Answer: B

Watch Video Solution

123. If the co-ordinates of the middle point of the portion of the line intercepted between the co-ordinate axes is (3, 2), then the equation of the line will be:

$$\mathsf{A.}\,2x+3y=12$$

$$\mathrm{B.}\,3x+2y=12$$

$$\mathsf{C.}\,4x-3y=6$$

D.
$$5x - 2y = 10$$

Answer: A

124. Equation of the line passing through (1, 2) and parallel to the line

$$y=3x-1$$
 is :

A.
$$y + 2 = x + 1$$

B.
$$y + 2 = 3(x + 1)$$

C.
$$y - 2 = 3(x - 1)$$

D.
$$y - 2 = x - 1$$

Answer: C

Watch Video Solution

125. Equation of diagonals of the square formed by the lines:

$$x = 0, y = 0, x = 1 \text{ and } y = 1 \text{ are:}$$

A.
$$y = x, y + x = 1$$

$$\mathtt{B.}\,y=x,x+y=2$$

$$\mathsf{C.}\,2y=x,y+x=\frac{1}{3}$$

D.
$$y = 2x, y + 2x = 1$$

Answer: A

Watch Video Solution

- 126. For specifying a straight line, how many geometrical parameters should be known?
 - A. 1
 - B. 2
 - C. 4
 - D. 3

Answer: B

127. The point (4, 1) undergoes the following transformations:

(i) reflection about the line y = x (ii) translation through a distance of 2 units along the positive x-axis. Then the final co-ordinates of the point are :

- A. (4,3)
- B. (3,4)
- C. (1,4)
- D. $\left(\frac{7}{2}, \frac{7}{2}\right)$

Answer: B

Watch Video Solution

128. A point equidistant from the lines

4x + 3y + 10 = 0, 5x - 12y + 26 = 0 and 7x + 24y - 50 = 0 is:

A. (1,-1)

B. (1,1)

C.(0,0)

D. (0,1)

Answer: C

Watch Video Solution

129. A line passes through (2,2) and is perpendicular to the line

$$3x+y=3$$
 Its y - intercept is _____

A. $\frac{1}{3}$

 $\mathsf{B.}\;\frac{2}{3}$

C. 1

D. $\frac{4}{3}$

Answer: D

130. The ratio in which the line 3x+4y+2=0 divides the distance between the lines 3x+4y+5=0 and 3x+4y-5=0 is :

- A. 1: 2
- B. 0.12986111111111
- C. 0.085416666666667
- D. 0.08680555555556

Answer: B

Watch Video Solution

131. One vertex of the equilateral triangle with centroid at the origin and one side as x+y-2=0 is :

- A. (-1,-1)
- B. (2,2)

C. (-2,-2)`		
D. (2,	_	2)

Answer: B

Watch Video Solution

132. If the sum of the distances of a point from two perpendicular lines in the plane is 1, then its locus is

A. a square

B. a circle

C. a parabola

D. an ellipse

Answer: A

133. The locus of the point which moves such that the ratio of its distance

from two fixed point in the plane is always a constant $K(\,<1)$ is

- A. a parabola
- B. an ellipse
- C. a circle
- D. a hyperbola

Answer: C

Watch Video Solution

134. A point (-4,5) is the vertex of a square and one of its diagonals is

7x - y + 8 = 0. The equation of the other diagonals is

- A. 7x y + 23 = 0
- B. x + 7y = 31
- C. x 7y = 37

D. none of these

Answer: B

Watch Video Solution

135. The equation of a straight line passing through the point (-5, 4) and which cuts off an intercept of $\sqrt{2}$ units between the lines x+y+1=0 and x+y-1=0 is :

A.
$$x - 2y + 13 = 0$$

B.
$$2x - y + 14 = 0$$

C.
$$x - y + 9 = 0$$

D.
$$x - y + 10 = 0$$

Answer: C

cx+ay+b=0 are concurrent only when

lines ax + by + c = 0, bx + cy + a = 0

and

A.
$$a + b + c = 1$$

The

B.
$$a^2 + b^2 + c^2 = ab + bc + ca$$

three

C.
$$a^3 + b^3 + c^3 = 3abc$$

$$\mathsf{D}.\,a^3+b^3+c^3=abc$$

Answer: C

136.

137. If the equation $x^2+y^2+2gx+2fy+1=0$ represents a pair of lines then

A.
$$f^2 - g^2 = 1$$

$$\mathsf{B.}\, f^2+g^2=1$$

$$\mathsf{C.}\,g^2-f^2=1$$

D.
$$f^2+g^2=rac{1}{2}$$

Answer: B

Watch Video Solution

138. A line makes zero intersects on x axis and y axis and it is prependicular to the line 3x + 4y + 6 = 0 then its equation is

$$A. y = x$$

$$B. 4x - 3y = 0$$

C.
$$4x - 3y + 8 = 0$$

D.
$$4x - 3y + 6 = 0$$

Answer: B

139. If p is the length of the perpendicular from the origin on the line whose intercepts on the axes are a and b, then

which

is

equidistant

from

A.
$$p^2=a^2+b^2$$

$$\mathsf{B.}\, p^2 = a^2 - b^2$$

C.
$$rac{1}{p^2} = rac{1}{a^2} + rac{1}{b^2}$$

D.
$$rac{1}{p^2} = rac{1}{a^2} - rac{1}{b^2}$$

Answer: C

Watch Video Solution

140. The locus of a point (a+b,a-b) and (a-b,a+b) is

A.
$$ax + by = 0$$

$$\mathsf{B.}\,x-y=0$$

$$C. x + y = 0$$

$$D. bx - ay = 0$$

Answer: B

Watch Video Solution

141. What is the equation of the locus of a point which moves such that 4 times its distance from the x axis is the square of its distance from the origin?

A.
$$x^2 + y^2 - 4y = 0$$

$$\mathsf{B.}\, x^2 + y^2 - 4|y| = 0$$

C.
$$x^2 + y^2 - 4x = 0$$

D.
$$x^2 + y^2 - 4|x| = 0$$

Answer: B

142. Equation of the straight line making equal intercepts on the axes and passing through the point (2,4) is

A.
$$4x - y - 4 = 0$$

B.
$$2x + y - 8 = 0$$

C.
$$x + y - 6 - 0$$

D.
$$x + 2y - 10 - 0$$

Answer: C

Watch Video Solution

143. Equation of the straight line making equal intercepts on the axes and passing through the point (2,4) is

A.
$$4x - y - 4 = 0$$

$$\mathsf{B.}\,2x+y-8=0$$

$$\mathsf{C.}\,x+y-6=0$$

D.
$$x + 2y - 10 = 0$$

Answer: C

Watch Video Solution

- 144. If the area of the triangle with vertices (x, 0). (1.1) and (0.2) is 4 square units then a value of
 - A. -2
 - $B.\cdots 4$
 - C. -6
 - D. 8

Answer: C

145. If (0,-1) and (0,3) are two vertices of a square, the other two vertices

are

A. (0,1),(0,-3)

B. (3,-1),(0,0)

C. (2,1),(-2,1)

D. (2,2),(1,1)

Answer: C

Watch Video Solution

146. The equation to the line bisecting the join of (3,-4) and (5,2) and having its intercepts on the x-axis and the y-axis in the ratio 2:1 is...

A.
$$x + y - 3 = 0$$

$$\mathsf{B.}\,2x-y=9$$

$$\mathsf{C.}\,x+2y=2$$

$$\mathsf{D.}\,2x+y=7$$

Answer: C

Watch Video Solution

- **147.** If the lines x+3y-9=0, 4x+by-2=0 and 2x-y-4=0 are concurrent, then b equals
 - A. 5
 - B. -5
 - C. 0
 - D. 1

Answer: B

148. The co-ordinates of the foot of the perpendicular drawn from the point (3, 4) on the line 2x+y-7=0 is

$$\mathsf{B.}\left(\frac{9}{5},\frac{17}{5}\right)$$

Answer: B

Watch Video Solution

149. The coordinates of the circumcentre of the triangle with vertices

(2,3),(4,-1) and (4,3) are

D. (3,2)

Answer: C

Watch Video Solution

- formed 150. The orthocentre of the triangle by A(1,2), B(-2,2), C(1,5) is

 - B. (-2,2)

A. (1,5)

- C.(0,3)
- D. (1,2)

Answer: D

151. The medians AD and BE of a triangle with vertices A (0, b), B(0, 0) and C(a, 0) are perpendicular ot each other if:

2x + 11y - 5 = 0, 4x - 3y - 2 = 0

and

A.
$$b=\sqrt{2}a$$

B.
$$a=\pm\sqrt{2}b$$

C.
$$b=-\sqrt{2}a$$

$$\mathsf{D}.\,b=a$$

Answer: B

152.

Watch Video Solution

24x + 7y - 20 = 0

The

lines

$$-20 = 0$$

A. form a triangle

B. are only concurrent

C. are concurrent with one line bisecting the angle between the other

two

D. none of these

Answer: C

Watch Video Solution

153. A st. line through the point (2, 2) intersects the lines $\sqrt{3}x+y=0$ and $\sqrt{3}x-y=0$ at the points A and B. The equation to

the line AB so that the triangle OAB is equilateral is :

A.
$$x - 2 = 0$$

$$\mathsf{B.}\,y-2=0$$

$$\mathsf{C.}\,x+y-4=0$$

D. none of these

Answer: B

154. A triangle with vertices (4, 0), (-1, -1), (3, 5) is:

A. isosceles and angled

B. isosceles but not angled

C. angled but not isosceles

D. neither angled nor isosceles

Answer: A

Watch Video Solution

155. If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in G.P. with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) :

A. lie on a line

B. lie on the ellipse

C. lie on a circle

D. are vertices of a triangle

Answer: A

Watch Video Solution

156. A square of side 4a lies above the x -axis and has one vertex at the origin. The side passing through the origin makes are angle alpha (0 < alpha < (pi)/(4))' with the positive direction of x -axis. The equation of its diagonal not passing through the origin is

A.
$$y(\cos lpha + \sin lpha) + x(\cos lpha - \sin lpha) = 4a$$

B.
$$y(\cos \alpha - \sin \alpha) - x \cdot (\sin \alpha - \cos \alpha) = 4a$$

C.
$$y(\cos \alpha + \sin \alpha) + x(\sin \alpha - \cos \alpha) = 4a$$

D.
$$y(\cos lpha + \sin lpha) + x^-(\sin lpha + \cos lpha) = 4a$$

Answer: A

157. If the equation of the locus of a point equidistant from the points

$$(a_1,\,b_1)$$
 and $(a_2,\,b_2)$ is :

$$(a_1 - a_2)x + (b_1 - b_2)y + c = 0$$
, then c =

A.
$$\sqrt{a_1^2+b_1^2-a_2^2-b_2^2}$$

B.
$$rac{1}{2}ig(a_2^2+b_2^2-a_1^2-b_1^2ig)$$

C.
$$a_1^2 - a_2^2 + b_1^2 - b_2^2$$

D.
$$rac{1}{2}ig(a_1^2+a_2^2+b_1^2+b_2^2ig)$$

Answer: B

Watch Video Solution

158. Locus of centroid of the triangle whose vertices are $(a\cos t, a\sin t), (b\sin t, -b\cos t)$ and (1, 0), where t is a parameter, is :

A.
$$(3x+1)^2 + (3y)^2 = a^2 - b^2$$

B. $(3x-1)^2 + (3u)^2 \approx a^2 - b^2$

C. $(3x-1)^2 + (3y)^2 = a^2 + b^2$

D. $(3x + 1)^2 + (3u)^2 = a^2 + b^2$

Answer: C

Watch Video Solution

159. The equation of the straight line passing through the point (4, 3) and making intercepts on the co-ordinate axes whose sum is -1 is:

A.
$$\dfrac{x}{2}+\dfrac{y}{3}=1$$
 and $\dfrac{x}{2}+\dfrac{y}{1}=1$

B.
$$\frac{x}{2}-\frac{y}{3}=-1$$
 and $\frac{x}{-2}+\frac{y}{1}=-1$

C.
$$\dfrac{x}{2}+\dfrac{y}{3}={}-1$$
 and $\dfrac{x}{-2}+\dfrac{y}{1}={}-1$

D.
$$\frac{x}{2}-\frac{y}{3}=1$$
 and $\frac{x}{-2}+\frac{y}{1}=1$

Answer: D

160. $A(2,\,-3)$ and $B(\,-2,\,1)$ are the vertices of a triangle ABC. If the centroid of this triangle moves on the line 2x+3y=1, then the locus of the vertex C is the line

$$\mathsf{A.}\,3x+2y=5$$

$$\mathrm{B.}\,2x-3y=7$$

$$\mathsf{C.}\,2x + 3y = 9$$

D.
$$3x - 2y = 3$$

Answer: C

Watch Video Solution

161. If a vertex of a triangle is (1, 1) and the mid-points of two sides through this vertex are (-1, 2) and (3, 2), then the centroid of the triangle is:

A. (-1,-2)

 $A.\left(-\frac{1}{3},\frac{7}{3}\right)$

 $B.\left(-1,\frac{7}{3}\right)$

 $\mathsf{C.}\left(\frac{1}{3},\frac{7}{3}\right)$

D. $\left(1, \frac{7}{3}\right)$

Watch Video Solution

162. If non-zero numbers a, b, c are in H.P., then the straight line

 $\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$ always passes through a fixed point. That point is :

Answer: D

163. A straight line through the point A(3, 4) is such that its intercept between the axes is bisected at A. Its equation is :

A.
$$3x + 4y = 25$$

B.
$$x + y = 7$$

C.
$$3x - 4y + 7 = 0$$

D.
$$4x + 3y = 24$$

Answer: D

Watch Video Solution

164. If $\left(a,a^2\right)$ falls inside the angle made by the lines

$$y=rac{x}{2}, x>0 \,\, ext{and} \,\, y=3x, x>0$$
 , then a belongs to :

A.
$$(3,\infty)$$

D.
$$\left(0, \frac{1}{2}\right)$$

 $\mathsf{B.}\left(\frac{1}{2},3\right)$

 $\mathsf{C.}\left(\,-\,3,\;-\,\frac{1}{2}\,\right)$

Watch Video Solution

R(7, 3). The equation of the line passing through (1, -1) and parallel to PS is

165. Let PS be the median of the triangle with vertices P(2, 2), Q(6, -1) and

A.
$$2x-9y-7=0$$

B.
$$2x - 9y - 11 = 0$$

C.
$$2x + 9y - 11 = 0$$

D. 2x + 9y + 7 = 0

Answer: D

166. Area of the parallelogram formed by the lines

$$y=mx,y=mx+1,y=nx \ ext{ and } \ y=nx+1 \ ext{ equals}$$
 :

A.
$$\frac{|m+n|}{\left(m-n\right)^2}$$

B.
$$\dfrac{2}{|m+n|}$$

$$\mathsf{C.}\,\frac{1}{|m+n|}$$

D.
$$\frac{1}{|m-n|}$$

Answer: D

Watch Video Solution

167. The number of integer values of m for which the x-co-ordinates of the point of intersection of the lines 3x+4y=9 and y=mx+1 is also an integer is :

- A. 2
- B. 0
 - C. 4
- D. 1

Answer: A

Watch Video Solution

168. The incentre of the triangle with vertices $(1, \sqrt{3}), (0, 0)$ and (2, 0)is:

A.
$$\left(1, \frac{\sqrt{3}}{2}\right)$$

$$\text{A.}\left(1,\frac{\sqrt{3}}{2}\right)$$

$$\text{B.}\left(\frac{2}{3},\frac{1}{\sqrt{3}}\right)$$

C. `((2)/(3), (sqrt(3))/(2))

D. (1, (1)/(sqrt(3)))`

Answer: D

169. A straight line through the origin O meets the parallel lines 4x+2y=9 and 2x+y+6=0 at points P and Q respectively. Then the point O divides the segment PQ in the ratio :

- A. 0.04305555555556
- B. 0.127777777778
- C. 0.08402777777778
- D. 0.16875

Answer: B

Watch Video Solution

170. Let P(-1, 0), Q(0, 0) and $R(3, 3\sqrt{3})$ be three points. Then the equation of the bisector of the angle PQR is :

D.
$$x+rac{\sqrt{3}}{2}y=0$$

A. $\frac{\sqrt{3}}{2}x+y=0$

B. $x + \sqrt{3}y = 0$

C. $\sqrt{3}x + y = 0$

Answer: D

Watch Video Solution

A.
$$\left(\frac{3}{4},3\right)$$

$$\mathsf{B.}\left(\frac{5}{4},3\right)$$

D. $\left(3, \frac{3}{4}\right)$

C.

Answer: C

172. Triangle is formed by the co-ordinates (0, 0), (0, 21) and (21, 0). Find the number of integral co-ordinates strictly inside the triangle (integral co-ordinates has both x and y):

- A. 190
- B. 305
- C. 181
- D. 206

Answer: A

Watch Video Solution

173. The lines y=mx, y+2x=0, y=2x+k and y+mx=k form a rhombus if m is equal to :

A. -1

A. |a|=2B. 0 < a < 1

C. -1 < a < 0

B. $\frac{1}{2}$

C. 1

D. 2

Answer: D

174. The

perpendicular if

Watch Video Solution

lines x+(a-1)y+1=0 and $2x+a^2y-1=0$

D. a = -1

O W

Answer: D

175. A line passes through (2,2) and is perpendicular to the line

$$3x+y=3$$
 Its y - intercept is $___$

- A. $\frac{1}{3}$
- $\mathsf{B.}\;\frac{2}{3}$
- C. 1
- D. $\frac{4}{3}$

Answer: D

Watch Video Solution

176. If P=(1,0), Q=(-1,0) and R=(2,0) are three given points,

then the locus of S satisfying the relation $SQ^2+SR^2=2SP^2$ is

- A. a line parallel to x -axis
- B. a circle through the origin

C. a circle with centre at the origin

D. a line parallel to y -axis

Answer: D

Watch Video Solution

177. If P(1,2), Q(4,6), R(5,7) and S(a,b) are the vertices of a parallelogram PQRS, then

A.
$$a = 2, b = 4$$

B.
$$a = 3, b = 4$$

$$\mathsf{C.}\,a=2,b=3$$

$$\mathsf{D.}\,a=3,b=5$$

Answer: C

178. The diagonals of a parallelogram PQRS are along the lines

x+3y=4 and 6x-2y=7. Then \it{PQRS} must be

A. rectangle

B. square

C. cyclic quadrilateral

D. rhombus

Answer: D

Watch Video Solution

179. If the vertices P,Q,R are rational points which of the following points of the triangle PQR is (are) always rational point(s)?

A. centroid

B. incentre

C. circumcentre

D. orthocentre

Answer: A

Watch Video Solution

- **180.** If the lines x-y-1=0, 4x+3y=k and 2x-3y+1=0 are concurrent then k=
 - A. 1
 - B. -1
 - C. 25
 - D. 5

Answer: C

181. The centroid of a triangle formed by the points (0, 0),

$$(\cos heta, \sin heta)$$
 and $(\sin heta, -\cos heta)$ lies on the line $y=2x$. Then $heta$ is :

A.
$$\tan^{-1} 2$$

B.
$$\frac{\tan^{-1}(1)}{3}$$

C.
$$\tan^{-1}(-3)$$

D.
$$\tan^{-1}(-2)$$

Answer: C

Watch Video Solution

182. The orthocentre of the triangle formed by (8,0), (4,6) with the origin is

A.
$$\left(4, \frac{8}{3}\right)$$

D. (3,4)

Answer: A

Watch Video Solution

- **183.** The foot of the perpendicular from (-2,3) to the line 2x-y-3=0 is
 - A. (-2,3)
 - B. (2,1)
 - C. (3,2)
 - D. (1,2)

Answer: B

184. The locus of the point of the portion of the line $x\cos lpha - y\sin lpha = p$ which is intercepted between the axes is

A.
$$p^2ig(x^2+y^2ig)=4xy$$

$$\mathsf{B.}\, p\big(x^2+y^2\big)=4x^2y^2$$

C.
$$p^2(x+y) - x^2y^2$$

D.
$$p^2(x^2+y^2)=4x^2y^2$$

Answer: D

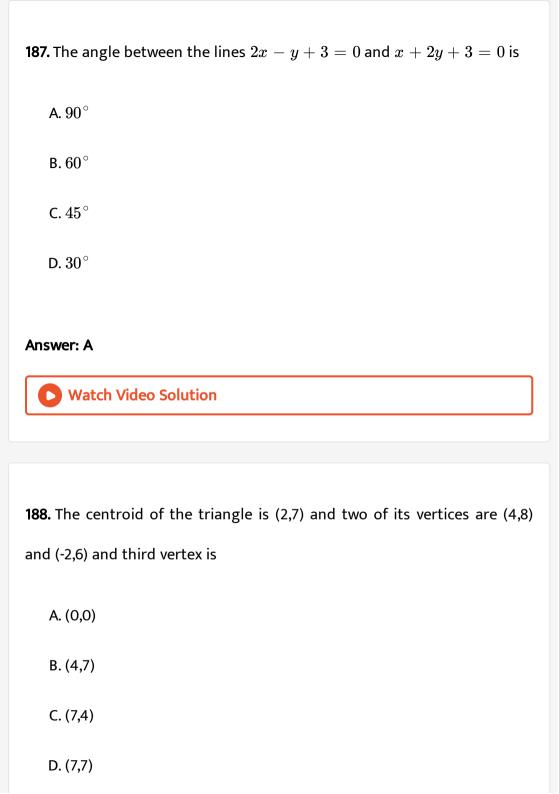
Watch Video Solution

185. The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and

$$\lambda x + 4y = 6$$
 meet at a point is

- A. 2
- B. <u>1</u>
- C. 4

Answer: A



Watch Video Solution

- **186.** Three vertices of a parallelogram taken in order are (-1,-6),(2,-5) and (7,2), The fourth vertex is
 - A. (1,4)
 - B. (1,1)
 - C. (4,4)
 - D. (4,1)

Answer: D

Answer: B

Watch Video Solution

189. The inclination of the line through (-3,6) and the midpoint of the line joining the point (4,-5) and (-2,9) is

- A. $\frac{\pi}{4}$
- B. $\frac{\pi}{6}$
- $\operatorname{C.}\frac{\pi}{3}$
- D. $\frac{3\pi}{4}$

Answer: D

Watch Video Solution

190. A point moves such that the area of the triangle formed by it with the points (1,5) and (3,-7) is +21 sq. units. The locus of the point is

A.
$$6x + y + 32 = 0$$

B. 6x - y + 32 = 0

C.
$$x + 6y - 32 = 0$$

D. 6x - y - 32 = 0

Answer: A

Watch Video Solution

191. The area bounded by the curves x+2|y|=1 and x=0 is

- A. $\frac{1}{4}$
- $\mathsf{B.}\;\frac{1}{2}$
- C. 1
- D. 2

Answer: B

192. The foot of the perpendicular from the point (2,4) upon x+y=4 is

$$A.\left(\frac{1}{2},\frac{3}{2}\right)$$

$$\mathsf{B.}\left(-\frac{1}{2},\frac{3}{2}\right)$$

$$\mathsf{C.}\left(\frac{4}{3},\frac{1}{2}\right)$$

D.
$$\left(\frac{3}{4}, -\frac{1}{2}\right)$$

Answer: B

Watch Video Solution

193. A (1, 3) and C(7, 5) are two opposite vertices of a square. The equation of a side thro' A is:

A.
$$x + 2y - 7 = 0$$
 or $2x - y + 1 = 0$

$$\mathsf{B.}\,x-2y+5=0$$

C.
$$2x + y - 5 = 0$$

D. none of these

Answer: A

Watch Video Solution

194. Distance between the parallel lines y=2x+7 and y=2x+5 is

A.
$$\frac{\sqrt{5}}{2}$$

$$\mathsf{B.}\;\frac{2}{5}$$

C.
$$\frac{2}{\sqrt{5}}$$
 D. $\frac{1}{\sqrt{5}}$

D.
$$\frac{1}{\sqrt{5}}$$

Answer: C

195. Orthocentre of the triangle formed by the lines x+y=1 and xy=0 is $\hbox{A. (0,0)}$ $\hbox{B. (0,1)}$

C. (1,0)

D. (-1,1)

Answer: A

196. The area of the triangle with vertices at (-4,1), (1,2),(4,-3) is

A. 17

B. 16

В. 16

C. 15

D. none of these

Answer: D

Watch Video Solution

197. Find the area of the triangle Δ ABC with A(a,b+c), B(b,c+a), and C(c, a+b).

A. 0

B.a+b+c

 $\mathsf{C}.\,ab+bc+ca$

D. none of these

Answer: A

Watch Video Solution

198. $A(\,-1,1),\,B(5,3)$ are opposite vertices of a square in the xy plane.

The equation of the other diagonal (not passing through $A,\,B$) of the

square is given by

A.
$$x - 3y + 4 = 0$$

$$\mathsf{B.}\,2x-y+3=0$$

C.
$$y + 3x - 8 = 0$$

D.
$$x + 2y - 1 = 0$$

Answer: C

Watch Video Solution

199. A straight line through P(1,2) is such that the intercept between the axes is bisected at p then the equation of the straight line is

A.
$$x+2y=5$$

$$\operatorname{B.} x - y + 1 = 0$$

$$\mathsf{C.}\,x+y-3=0$$

$$\mathsf{D.}\,2x+y-4=0$$

Answer: D

Watch Video Solution

200. The equations to the sides of a triangle are $x+2y=0,\,4x+3y=5$ and 3x+y=0. The line 3x-4y=0 passes through

- A. the incentre
- B. the centroid
- C. the circumcentre
- D. the orthocentre of the triangle

Answer: D

201. The diagonals of the parallelogram whose sides are

$$lx+my+n=0, lx+my+n'=0$$

 $mx+ly+n=0, mx+ly+n^\prime=0$ include an angle

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{2}$$

$$\mathsf{C.}\tan^{-1}\!\left(\frac{l^2-m^2}{l^2+m^2}\right)$$

D.
$$rac{ an^{-1}\left(\left(rac{2}{m}
ight)
ight)}{l^2+m^2}$$

Answer: A

Watch Video Solution

202. The lines 2x + y - 1 = 0, ax + 3y - 3 = 0 and 3x + 2y - 2 = 0

A. for all ' a '

are concurrent

B. for $a^s=4$ only

C. for
$$-1 \leq a \leq 3$$

D. for a>0 only

Answer: A

Watch Video Solution

point equidistant from the **203.** A lines

4x + 3y + 10 = 0, 5x - 12y + 26 = 0 and 7x + 24y - 50 = 0 is:

C.(0,0)

B. (1,1)

D. (0,1)

Answer: C

204. The area of the triangle formed by the coordinate axes and the line

4x + 5y = 20 is (in square units)

- A. 5
- B. 10
- C. 15
- D. 20

Answer: B

Watch Video Solution

205. The angle between the lines formed by joining the points (2,-3),(-5,1) and (7,-1),(0,3) is

- A. $\frac{\pi}{2}$
- B. $\frac{\pi}{4}$
- C. 0

D.
$$\frac{\pi}{6}$$

Answer: C

Watch Video Solution

206. The variable line $\frac{x}{a} + \frac{y}{b} = 1$ is such that a + b = 10. The locus of the midpoint of the portion of the intercepted between the axes is

A.
$$x + y = 10$$

B.
$$10x + 5y = 1$$

$$C. x + y = 5$$

D.
$$5x + 10y = 1$$

Answer: C

207. If $A=(-3,4), B=(-1,-2), C=(5,6), \ D=(x,-4)$ are vertices of a quadrilateral such that $\triangle ABD=2\Delta ACD$, then x=

the

lines $x \cos \alpha + y \sin \alpha = a$

and

- A. 6
- B. 9
- C. 69 D. 96

Answer: C

- **208.** The angle between $x \sin \beta y \cos \alpha = a$ is
 - A. $\alpha+\beta$
 - B. $\alpha \beta$
 - $\mathsf{C}.\,lphaeta$

D.
$$2\alpha - \beta$$

Answer: B

Watch Video Solution

209. The coordinates of the foot of the perpendicular from the point (2,3) on the line x+y-11=0 is

$$A.\left(\frac{81}{25}, \frac{92}{25}\right)$$

$$\mathsf{B.}\left(\frac{92}{25},\,\frac{81}{25}\right)$$

$$\mathsf{C.}\left(\frac{46}{25},\frac{54}{25}\right)$$

$$\mathsf{D.}\left(-\,\frac{81}{25},\,\frac{92}{25}\right)$$

Answer: A

210. If 2x+3y+4=0 is the perpendicular bisector of the segment joining the points A(1,2) and $B(\alpha,\beta)$ then the value of $\alpha+\beta$ is

A.
$$-\frac{81}{13}$$
B. $-\frac{136}{13}$

13 C.
$$-\frac{135}{13}$$

D.
$$-\frac{134}{13}$$

Answer: A

211. The point of intersection of the lines
$$\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$$
 and $\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}$ is

Answer: B

Watch Video Solution

212. If non-zero numbers a, b, c are in H.P., then the straight line

$$rac{x}{a}+rac{y}{b}+rac{1}{c}=0$$
 always passes through a fixed point. That point is :

A.(k,k)

 $\operatorname{B.}\left(\frac{1}{k},\frac{1}{k}\right)$

C. (1,1)

D. $\left(k, \frac{1}{k}\right)$

Answer: B

213. A=(-9,0) and B=(-1,0) are two points. If P(x,y) is a point such that 3PB=PA, then the locus of P is

A. 1)
$$x^2 - y^2 = 9$$

B. 2)
$$x^2 - y^2 = -9$$

C. 3)
$$x^2 + y^2 = 9$$

D. 4)
$$x^2 + y^2 = 3$$

Answer: C

Watch Video Solution

214. Let a and b non zero reals such that $a \neq b$ then the equation of the line passing through the origin and the point of intersection of $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{b} + \frac{y}{a} = 1$ is

$$\mathbf{A.}\,ax+by=0$$

$$B. bx + ay = 0$$

C.
$$y - x = 0$$

D.
$$x + y = 0$$

Answer: C

Watch Video Solution

215. The reflection of the point (6,8) in the line x=y is

A. (4,2)

B. (-6,-8)

C. (-8,-10)

D. (8,6)

Answer: D

216. The equation of the line passing through the intersection of the lines

$$x+2y+3=0$$
 and $3x+4y+7=0$ and parallel to $y-x=8$ is

A.
$$x-y=0$$

$$\mathtt{B.}\,x^{\,\prime}\,+y=2$$

C.
$$x + y + 2 = 0$$

D.
$$x + y + 1 = 0$$

Answer: C

Watch Video Solution

217. If the lines y = 4 - 3x, ay = x + 10 and 2y + bx + 9 = 0 represent the three consecutive sides of a rectangle, then ab =

- A. 18
- B. -3
- c. $\frac{1}{2}$

D.
$$-\frac{1}{3}$$

Answer: A

Watch Video Solution

218. The equation of the line making an intercept of 3 units on Y -axis and inclined at $45\,^\circ$ to the X -axis is

A.
$$y = x - 1$$

B.
$$y = x + 3$$

$$\mathsf{C.}\,y = 45x + 3$$

D.
$$y = x + 45$$

Answer: B

219. The ratio in which the line y=x divides the segment joining (2,3) and (8,6) is

C. 0.04375

D. 1:2

B. 2:1

Answer: A

Watch Video Solution

220. If the points (1, 2) and (3, 4) were to be on the same side of the line

3x - 5y + a = 0, then :

A. (a)
$$7 < a < 11$$

B. (b) a = 7

C. (c)
$$a=1$$

D. (d) a < 7 or a > 11

Answer: D

Watch Video Solution

221. The vertices of a triangle are (6, 0), (0, 6) and (6, 6). The distance between its circumcentre and centroid is :

- A. $2\sqrt{2}$
- B. 2
- $\mathsf{C.}\,\sqrt{2}$
- D. 1

Answer: C

222. If the point
$$x_1+t(x_2-x_1),\,y_1+t(y_2-y_1)$$
 divides the join of (x_1,y_1) and (x_2,y_2) internally then

A.
$$t < 0$$

B.
$$0 < t < 1$$

$$\mathsf{C}.\, t > 1$$

$$\mathsf{D}.\,t=1$$

Answer: B

Watch Video Solution

223. The co-ordinates of the image of the origin O. w.r.t. st. line x + y + 1 = 0 are :

$$A.\left(-\frac{1}{2}, -\frac{1}{2}\right)$$

Answer: D

Watch Video Solution

224. A straight rod of length 9 units slides with its ends A, B always on the

X and Y-axis respectively . Then the locus of the centroid of ΔOAB is :

A.
$$x^2+y^2=3$$

$$\mathsf{B.}\,x^2+y^2=9$$

C.
$$x^2 + y^2 = 1$$

D.
$$x^2 + y^2 = 81$$

Answer: B

225. The area of the triangle formed by the axes and the lines

$$(\cosh lpha - \sinh lpha)x + (\cosh lpha + \sinh lpha)y = 2$$
 in square units is

A. 4

B. 3

C. 2

D. 1

Answer: C

Watch Video Solution

226. The incentre of the triangle formed by the lines

$$x + y = 1, x = 1, y = 1$$
 is

A.
$$\left(1-\frac{1}{\sqrt{2}},1-\frac{1}{\sqrt{2}}\right)$$

$$\mathsf{B.}\left(1-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$$

C.
$$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
D. $\left(\frac{1}{\sqrt{2}}, 1 - \frac{1}{\sqrt{2}}\right)$

Answer: C

Watch Video Solution

respectively. A line '
$$P$$
 drawn through the point (2,2) meets the $x-$ axis at C , in such a way that abscissa of A,B and C are in A.P. Then the

227. The lines 2x+3y=6, 2x+3y=8 cut the x -axis at A,B

equation of the line '
$$P$$
 is

B. 3x + 2y = 10

$$\mathsf{A.}\,2x+3y=10$$

$$\mathsf{C.}\,2x-3y=10$$

$$D. 3x - 2y = 10$$

228. For all value of
$$a$$
 and b the line

$$(a+2b)x+(a-b)y+(a+5b)=0$$
 passes through the point,

Answer: C

Watch Video Solution

229. If a line perpendicular to 2x-3y+7=0 forms a triangle with the coordinate axes whose area is 3 sq. units, then the equation of the line(s) is

A.
$$3x+2y=~\pm~7$$

$$\mathsf{B.}\,3x+2y=\ \pm\ 6$$

$$\mathsf{C.}\,3x+2y=\ \pm\ 8$$

$$\mathsf{D.}\,3x+2y=\ \pm\ 4$$

Answer: B

Watch Video Solution

230. If (-2,6) is the image of the point (4,2) with respect to the line $L=0,\,$

then
$$L=$$

A.
$$6x-4y-7$$

C.
$$3x-2y+5$$

 $\mathsf{B.}\,2x+3y-5$

D.
$$3x-2y+10$$

Answer: C

231. If the lines
$$4x+3y-1=0, x-y+5=0$$
 and $kx+5y-3=0$ are concurrent, then $k=$

B. 5

C. 6

D. 7

Answer: C

Watch Video Solution

232. The point P is equidistant from A(1,3) $B(\,-3,5)$ and $C(5,\,-1)$.

Then PA=

A. 5

B.
$$5\sqrt{5}$$

C. 25

D. $5\sqrt{10}$

Answer: C

Watch Video Solution

233. Suppose A,B are two points on 2x-y+3=0 and P(1,2) is such that PA = PB, then the mid point of AB is

A.
$$\left(-\frac{1}{5}, \frac{13}{5}\right)$$

$$\mathsf{B.}\left(-\frac{7}{5},\frac{9}{5}\right)$$

$$\mathsf{C.}\left(\frac{7}{5},\;-\frac{9}{5}\right)$$

$$D.\left(-\frac{7}{5}, -\frac{9}{5}\right)$$

Answer: A

234. The distance between the points $(a\cos\theta, a\sin\theta)$ and $(a\cos\varphi, a\sin\varphi)$ is 2a, then $\theta=$

A.
$$2n\pi\pm\pi+arphi, n\in z$$

B.
$$n\pi+rac{\pi}{2}+arphi, n\in z$$

C.
$$n\pi-arphi\ n\in z$$

D.
$$2n\pi+arphi,\,n\in z$$

Answer: A

Watch Video Solution

235. If a point P moves such that its distance from the point $A(1,\,1)$ and the line x+y+2 are equal then the locus is

A. a straight line

B. a pair of straight line

C. a parabola

D. an ellipse

Answer: C

Watch Video Solution

236. The area of the triangle formed by the lines $x=0,\,y=0$ and

3x + 4y = 12 is (in square units)

A. 3

B. 4

C. 6

D. 12

Answer: C

237. If PM is the perpendicular from P(2,3) onto the line x+y=3, then the coordinates of M are

A. (2,1)

B. (-1,4)

C. (1,2)

D. (4,-1)

Answer: C

Watch Video Solution

238. The equation of the line perpendicular to 5x-2y=7 and passing through the point of intersection of the lines 2x+3y=1 and 3x+4y=6 is

$$\mathsf{A.}\,2x+5y+17=0$$

B.
$$2x + 5y - 17 = 0$$

$$\mathsf{C.}\,2x-5y+17=0$$

D.
$$2x - 5y = 17$$

Answer: A

Watch Video Solution

239. The lines x-y-2=0 and x+y-4=0 and x+3y=6 meet in

the common point

A. (1,2)

B. (2,2)

C.(3,1)

D. (1,1)

Answer: C

240. The consecutive sides of a parallelogram are 4x+5y=0 and

7x+2y=0. One diagonal of the parallelogram is 11x+7y=9. If the other diagonal is $ax+by+c=0,\,$ then

A.
$$a = -1, b = -1, c = 2$$

B.
$$a = 1, b = -1, c = 0$$

C.
$$a = -1, b = -1, c = 0$$

D.
$$a = 1, b = 1, c = 1$$

Answer: B

Watch Video Solution

241. A point (-4,5) is the vertex of a square and one of its diagonals is

7x - y + 8 = 0. The equation of the other diagonals is

A.
$$x + 3y - 21$$

B.
$$2x3y - 7$$

$$\mathsf{C.}\,x+7y=31$$

D.
$$2x | 3y = 21$$

Answer: C

Watch Video Solution

242. The centroid of the triangle ABC where A= (2,3), B= (8,10) and C= (5,5)

is

A. (6,5)

B. (5,6)

C. (15,18)

D. (6,6)

Answer: B

243. A variable line $\frac{x}{a} + \frac{y}{b} = 1$ is such that a+b=4. The locus of the midpoint of the portion of the line intercepted between the axes is

A.
$$x + y = 8$$

$$\mathsf{B.}\,x+y=4$$

C.
$$x + y = 2$$

D.
$$x + y = 1$$

Answer: C

Watch Video Solution

244. The foot of the perpendicular from the point (2,4) upon x+y=4 is

Answer: A

Watch Video Solution

245. The vertices of triangle ar (6,0),(0,6) and (6,6). The distance between its circumcentre and cenroid is

- A. 1
- B. $2\sqrt{2}$
- C. 2
- D. $\sqrt{2}$

Answer: D

Watch Video Solution

246. The line joining $A(2,\,-7)$ dand $B(6,\,5)$ is divided into 4 equal parts by the points P,Q and R such that AQ=RP=QB. The midpoint of PR

A. (8,-2)

B. (4,-1)

C. (-8,1)

D. (4,12)

Answer: B

Watch Video Solution

247. Locus of a point which moves such that its distance from the X-axis is twice its distance from the line x-y=0 is

A.
$$x^2+4xy-y^2=25$$

$$\mathrm{B.}\, 2x^2 - 4xy + y^2 = 0$$

C.
$$x^2 - 4xy + y^2 = 0$$

D.
$$x^2 - 4xy - y^2 = 0$$

Answer: B

Watch Video Solution

248. The points A(1,2),B(2,4) and C(4,8) form a/an

A. isosceles triangle

B. equilateral triangle

C. straight line

D. angled triangle

Answer: C

Watch Video Solution

249. If the line through $A\equiv (4,\ -5)$ is inclined at an angle 45° with the positive direction of the x-axis, then the co-ordinates of the two points on opposite sides of A at a distance $3\sqrt{2}$ are :

A. (7,2),(1,8) B. (7,2),(1,-8) C. (7,-2),(1,-8) D. (7,2),(-1,8) **Answer: C** Watch Video Solution **250.** If the straight line ax+by+c=0 always passes through (1, -2), then a, b, c are in: A. H.P B. A.P C. G.P D. none of these **Answer: B**

251. The incentre of the triangle with vertices $(1, \sqrt{3}), (0, 0)$ and (2, 0) is :

A.
$$\left(1, \frac{\sqrt{3}}{2}\right)$$

B.
$$\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$$
C. $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$
D. $\left(1, \frac{1}{\sqrt{3}}\right)$

Answer: D

Watch Video Solution

252. Let $0<\alpha<\pi/4$ be a fixed angle. If $P=(\cos\theta,\sin\theta)$ and $Q=(\cos(\alpha-\theta),\sin(\alpha-\theta))$, then Q is obtained from P by:

A. clockwise rotation around origin through an angle lpha

B. anticlockwise rotation around origin through angle $\boldsymbol{\alpha}$

C. reflection in the line through origin with slope $\tan \alpha$

D. reflection in the line through origin with slope $an\!\left(\frac{lpha}{2}\right)$

Answer: D

Watch Video Solution

253. If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in G.P. with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) :

A. (a) lie on a line

B. (b) lie on an ellipse

C. (c) lie on a circle

D. (d) are vertices of a triangle

Answer: A

254. The number of integral points (integral points means both the coordinates of the point should be integer) exactly in the interior of the triangle with vertices (0,0),(0,21) and (21,0) is

- A. 133
- B. 190
- C. 233
- D. 105

Answer: B

Watch Video Solution

255. Orthocentre of triangle whose vertices are (0, 0), (3, 4), (4, 0) is:

A.
$$\left(3, \frac{5}{2}\right)$$

$$\mathsf{C.}\left(3,\frac{3}{4}\right)$$

D. (3,9)

Answer: C

Watch Video Solution

256. Let O(0,0), P(3,4), Q(6,0) be the vertices of the triangle OPQ.

The point R inside the triangle OPQ is such that the triangle OPR, PQR and OQR are of equal area. The coordinates of R are

A.
$$\left(\frac{4}{3},3\right)$$

B.
$$\left(3, \frac{2}{3}\right)$$

$$\mathsf{C.}\left(3,\frac{4}{3}\right)$$

D.
$$\left(\frac{4}{3}, \frac{2}{3}\right)$$

Answer: C

 $P \equiv (-\sin(\beta - \alpha), -\cos\beta), Q \equiv (\cos(\beta - \alpha), \sin\beta) \text{ and } R \equiv (\cos\beta)$

, where
$$0 Then:$$

A.
$$P$$
 lies on the line segment RQ

C.
$$R$$
 lies on the line segment QR

B. Q lies on the line segment PR

D.
$$P,\,Q,\,R$$
 are non collinear

Answer: D

258. A straight line L through the point (3, -2) is inclined at an angle
$$60^\circ$$
 to the line $\sqrt{3}x+y=1$. If L also intersects the x-axis, then the equation of L is :

A.
$$y + \sqrt{3}x + 2 - 3\sqrt{3} = 0$$

B.
$$y - \sqrt{3}x + 2 + 3\sqrt{3} = 0$$

C.
$$\sqrt{3}y - x + 3 + 2\sqrt{3} = 0$$

D.
$$\sqrt{3}y+x-3+2\sqrt{3}=0$$

Answer: B

Watch Video Solution

locus of the mid-point of the portion of the $x\cos\alpha + y\sin\alpha = p$, which is intercepted between the axes is :

A.
$$x^2+y^2=4p^2$$

B.
$$rac{1}{x^2} + rac{1}{y^2} = rac{4}{p^2}$$

C.
$$x^2 + y^2 = \frac{4}{p^2}$$

D.
$$rac{1}{x^2} + rac{1}{y^2} = rac{2}{p^2}$$

Answer: B

260. A line L has intercepts a and b on the coordinate axes, when the axes are rotated through an angle θ keeping the origin fixed, the same line L has intercept p and q

A.
$$a^2 + b^2 = p^2 + q^2$$

$$\text{B.} \ \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$$

C.
$$a^2 + p^2 = \ddot{b}^2 + q^2$$

D.
$$\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{a^2}$$

Answer: B

Watch Video Solution

261. A straight line through the point A(3, 4) is such that its intercept between the axes is bisected at A. Its equation is :

A.
$$x + y = 7$$

B.
$$3x - 4y + 7 = 0$$

$$\mathsf{C.}\,4x + 3y = 24$$

D.
$$3x + 4y = 25$$

Answer: C

Watch Video Solution

262. The perpendicular bisector of the line segment joining P(1, 4) and

Then a possible value of k is:

Q(k, 3) has y-intercept -4.

A. -2

B. -4

C. 1

D. 2

Watch Video Solution

263. The line L given by $\frac{x}{5} + \frac{y}{b} = 1$ passes through the point (13, 32).

The line K is parallel to L and has the equation $\frac{x}{c}+\frac{y}{3}=1.$ Then the distance between L and K is :

$$\text{A.}\ \frac{17}{\sqrt{15}}$$

$$\text{B.}\ \frac{23}{\sqrt{17}}$$

c.
$$\frac{23}{\sqrt{15}}$$

D.
$$\sqrt{17}$$

Answer: B

264. Angles made with the x -axis by two lines drawn through the point (1,2) and cutting the line x+y=4 at a distance $\frac{\sqrt{6}}{3}$ from the point (1,2) are

A.
$$\frac{\pi}{6}$$
 and $\frac{\pi}{3}$

B.
$$\frac{\pi}{8}$$
 and $\frac{3\pi}{8}$

C.
$$\frac{\pi}{12}$$
 and $\frac{5\pi}{12}$

D. none of these

Answer: C

Watch Video Solution

265. If a,b,c be in A.P, then ax+by+c=0 represents

A. a single line

B. a family of concurrent lines

C. a family of parallel lines

D. none of these	
Answer: B	
Watch Video Solution	

266. The circumcentre and the centroid of a triangle are (6,2) and (3,3) then orthocentre is

- A. (-3,5)
- B. (-3,1)
- C. (3,-1)
- D. (9,5)

Answer: A

267. If the sum of the distances of a point from two perpendicular lines in the plane is 1, then its locus is

- A. a circle
- B. an ellipse
- C. a hyperbola
- D. none of these

Answer: D

Watch Video Solution

268. Let p,q,r be distinct positive numbers. Three lines px+qy+r=0, qx+ry+p=0 and rx+py+q=0 are concurrent, if

A.
$$p+q+r=0$$

$$\mathsf{B.}\, p^2 + q^2 + r^2 = pq + qr + rp$$

C.
$$p^3 + q^3 + r^3 = 3pqr$$

D. none of these

Answer: C

Watch Video Solution

269. Let $0 \leq \theta \leq \frac{\pi}{2}$ and $x = X \cos \theta + Y \sin \theta$ $y = X \sin \theta - Y \cos \theta$ such that $x^2+4xy+y^2=aX^2+bY^2$ where a,b are constants, then

A.
$$a = -1, b = 3, heta = \frac{\pi}{4}$$

B.
$$a = 1, b = -3, \theta = \frac{\pi}{3}$$

C.
$$a=3,b=-1, heta=rac{\pi}{4}$$

D.
$$a = 3, b = -1, \theta = \frac{\pi}{3}$$

Answer: C

270. The equation of a line passing through the point of intersection of

$$x-y+1=0$$
 and $3x+y-5=0$ and perpendicular to one of them is

A.
$$x + y + 3 = 0$$

B.
$$x - y - 3 = 0$$

C.
$$x - 3y - 5 = 0$$

D.
$$x - 3y + 5 = 0$$

Answer: D

Watch Video Solution

271. The equation of one side of a rectangle is 3x-4y-10=0 and the coordinates of two of its vertices are (-2,1) and (2,4). Then the area of the rectangle is

A. 20 sq. units

B. '40 sq. units

C. 10 sq. units

D. 30 sq. units

Answer: A

Watch Video Solution

272. A line passes through (2,2) and is perpendicular to the line

$$3x+y=3$$
 Its y - intercept is _____

$$\mathrm{A.}\ \frac{1}{3}$$

$$\mathsf{B.}\;\frac{2}{3}$$

D.
$$\frac{4}{3}$$

Answer: D

273. The range of values of θ in the interval $(0,\pi)$ such that the points

(3,2) and $(\cos heta, \sin heta)$ lie on the same side of the line x+y-1=0 is

A.
$$\left(0, \frac{\pi}{2}\right)$$

B.
$$\left(0, \frac{\pi}{4}\right)$$

$$\mathsf{C.}\left(\frac{\pi}{4},\frac{\pi}{2}\right)$$

D. none of these

Answer: A

Watch Video Solution

274. If the point (a, a) falls between the lines |x+y|=2, then :

A.
$$|a|=2$$

B.
$$|a| = 1$$

D.
$$|a|<rac{1}{2}$$

Answer: C

Watch Video Solution

275. If the point P(a,b) lies on the line 3x+2y=13 and the point Q(b,a) lies on the line 4x-y=5, then the equation of the line PQ is

A.
$$x - y = 5$$

B.
$$x + y = 5$$

C.
$$x + y = -5$$

D.
$$x - y = -5$$

Answer: B

Watch Video Solution

276. The bisector of the acute angle formed between the linex 4x-3y+7=0 and 3x-4y+14=0 has the equation

A.
$$x + y + 3 = 0$$

$$\mathsf{B.}\,x-y-3=0$$

$$\mathsf{C.}\,x-y+3=0$$

$$\mathsf{D.}\,3x+y-7=0$$

Answer: C

Watch Video Solution

277. Circumcentre of the triangle formed by the lines xy+2x+2y+4=0 and

x+y+2=0 is

A. (-1,-1)

B. (0,-1)

C. (1,1)

D. (-1,0)

Answer: A

278. Point Q is symmetric to P(4, -1) with respect to the bisector of the first quadrant. Then, length of PQ is

A.
$$3\sqrt{2}$$

B.
$$5\sqrt{2}$$

C.
$$7\sqrt{2}$$

D.
$$9\sqrt{2}$$

Answer: B

Watch Video Solution

279. The coordinate axes are rotated about the origin O in the counter clockwise direction through an angle 60° . If p and q are the intercepts made on the new axes by a line whose equation referred to the original axes is x+y=1 then $\frac{1}{p^2}+\frac{1}{q^2}=$

B. 4

C. 6

D. 8

Answer: A

Watch Video Solution

280. The area of the quadrilateral formed by two pairs of lines $l^2x^2-m^2y^2-n(lx+my)=0$ and $l^2x^2-m^2y^2-n(Lx-my)=0$ is

A.
$$rac{n^2}{2|bm|}$$

B. $\frac{n^2}{|m|}$

C. $\frac{n}{2|lm|}$

D. $\frac{n^2}{4|m|}$

Answer: A

281. The transformed equation of $x^2+6xy+8y^2=10$ when the axes are rotated through an angle $\frac{\pi}{4}$ is

$$\mathsf{A.}\,15x^2-14xy+3y^2=20$$

$$\mathsf{B.}\,15x^2 + 14xy - 3y^2 = 20$$

$$\mathsf{C.}\,15x^2+14xy+3y^2=20$$

$$\mathsf{D.}\,15x^2 - 14xy - 3y^2 = 20$$

Answer: C

is

Watch Video Solution

282. The value of k for which the lines

$$2x - 3y + k = 0, 3x - 4y - 13 = 0, 8x - 11y - 33 = 0$$
 are concurrent

B. -7

C. 7

D. -20

Answer: B

Watch Video Solution

283. The transformed equation of $3x^2 + 3y^2 + 2xy - 2 = 0$ when the coordinate axes are rotated through an angle of 45° is

A.
$$X^2+2y^2=1$$

$$\mathsf{B.}\,2X^2+Y^2=1$$

$$\mathsf{C.}\,X^2+r^2=1$$

$$\mathsf{D}.\,X^2+3Y^2=1$$

Answer: B

284. The distance of the line 2x-3y=4 from the point (1,1) measured parallel to the line x + y = 1 is

A.
$$\sqrt{2}$$

B.
$$\frac{5}{\sqrt{2}}$$
 C. $\frac{1}{\sqrt{2}}$

$$\mathsf{C.} \frac{1}{\sqrt{2}}$$

D. 6

Answer: A

Watch Video Solution

285. The base vertices of an isosceles triangle PQR are $Q=\left(1,3\right)$ and

 $R=(\,-2,7).$ The vertex P can be

A. (1,6)

B.
$$\left(\frac{1}{2}, 5\right)$$
C. $\left(\frac{5}{6}, 6\right)$

D. none of these

Answer: C

Watch Video Solution

286. A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A are:

$$A.\left(\frac{13}{5},0\right)$$

$$\mathsf{B.}\left(\frac{5}{13},0\right)$$

D. none of these

Answer: A

287. The equation of the bisectors of the angles between the linex

288. Orthocentre of the triangle formed by the lines x+y=1 and

$$|x|=|y|$$
 are

A.
$$y=~\pm~x, x=0$$

$$\mathtt{B.}\,x=\frac{1}{2},y=\frac{1}{2}$$

C.
$$y = 0, x = 0$$

D. none of these

Answer: C

Watch Video Solution

xy=0 is

$$A.\left(\frac{1}{2},\frac{1}{2}\right)$$

$$\mathsf{D.}\left(\frac{1}{4},\,\frac{1}{4}\right)$$

 $\mathsf{B.}\left(\frac{1}{3},\frac{1}{3}\right)$

C. (0,0)

Answer: C

Watch Video Solution

vertices of a triangle, then the triangle is

289. If the points $A(1,1),B(-1,-1),C=\left(-\sqrt{3},\sqrt{3}\right)$ are the

A. angled

B. isosceles

C. equilateral

D. none of these

Answer: C

290. The straight lines x + y = 0, 3x + y - 4 = 0 and x + 3y - 4 = 0form a triangle, which is:

A. angled

B. equilateral

C. isosceles

D. none of these

Answer: C

Watch Video Solution

291. The lines ax+by=c, bx+cy=a and cx+ay=b are concurrent, if

A. a + b = c

 $B. \, b + c = a$

$$\mathsf{C}.\,c+a=b$$

D.
$$a + b + c = 0$$

Answer: D

Watch Video Solution

292. The area enclosed within the curve $\left|x\right|+\left|y\right|=1$ is

- A. 1 sq. unit
- B. 2 sq. unit
- C. 3 sq. unit
- D. '4 sq, unit

Answer: B

293. The equation of the bisector of the acute angle between the lines

$$3x - 4y + 7 = 0$$
 and $12x + 5y - 2 = 0$ is

A.
$$99x - 27y - 81 = 0$$

B.
$$11x - 3y + 9 = 0$$

$$\mathsf{C.}\ 21x + 77y - 101 = 0$$

$$D. 21x + 77y + 101 = 0$$

Answer: B

Watch Video Solution

294. Locus of centroid of the triangle whose vertices are $(a\cos t, a\sin t), (b\sin t, -b\cos t)$ and (1, 0), where t is a parameter, is :

A.
$$(3x-1)^2 + (3u)^2 = a^2 - b^2$$

$${\tt B.} \left(3x-1\right)^2 + \left(3y\right)^2 = a^2 + b^2$$

C.
$$(3x+1)^2 + (3y)^2 = a^2 + b^2$$

D.
$$(3x + 1)^2 + (3y)^2 = a^2 - b^2$$

Answer: B

Watch Video Solution

295. If the foot of the perpendicular from the origin to a line is at the point (3,-4), then the equation of the line is

$$\mathsf{A.}\,3x-4y=25$$

B.
$$3x - 4y + 25 = 0$$

C.
$$4x + 3y - 25 = 0$$

D.
$$4x - 3y + 25 = 0$$

Answer: A

296. The distance between the lines 5x - 12y + 65 = 0and 5x - 12y - 39 = 0 is

297. One of the possible condition for the three points (a, b), (b, a) and

A. 4

B. 16

C. 2

D. 8

Answer: D

Watch Video Solution

 $\left(a^2,\;-b^2
ight)$ to be collinear is

A. a - b = 2

B. a + b = 2

C. a = 1 + b

D.
$$a = 1 - b$$

Answer: C

