đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - HIMALAYA MATHS (KANNADA

ENGLISH)

DIFFERENTIAL EQUATIONS

Question Bank

1. The ordr of the differential equation
$\left(\frac{d^{2} y}{d x^{2}}\right)^{3}=\left(1+\frac{d y}{d x}\right)^{\frac{1}{2}}$ is
A. 6
B. 3
C. 44228
D. 2

Answer: D

- Watch Video Solution

2. The degree of the differential equation
$\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)$ is
A. 1
B. 2
C. 3
D. none of these

Answer: B

- Watch Video Solution

3.1
A. $p<q$
B. $p=q$
C. $p / q=1 / 2$
D. $p>q$

Answer: B

D View Text Solution
4. The degree of the differential equation of which
$y^{2}=4 a(x+a)$ is a solution is
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

5. The differential equation obtained by eliminating the parameter m from $y=m x+a / m$ is of degree
A. 2
B. 1
C. 3
D. none

- Watch Video Solution

6. The differential equation representing the family
of curves $y^{2}=2 c(x+\sqrt{c})$, where $c>0$, is a parameter is of order and degree as follows :
A. order 1, degree 3
B. order 2, degree 2
C. degree 3, order 3
D. degree 4 , order 4

- Watch Video Solution

7. The differential equation of the family of lines passing through the origin is
A. $x d y / d x+y=0$
B. $x+d y / d x=0$
C. $d y / d x=y$
D. $x d y / d x-y=0$

8. The differential equation of all non-horizontal

lines in a plane is

$$
\text { A. } \frac{d^{2} y}{d x^{2}}=0
$$

B. $d x / d y=0$
C. $d y / d x=0$
D. $\frac{d^{2} x}{d y^{2}}=0$

Answer: D

9. The differential equation which represents the

family of plane curves $y=e^{c x}$ is
A. $d y / d x=c y$
B. $x d y / d x-\log y=0$
C. $x \log y=y d y / d x$
D. $y \log y=x d y / d x$

Answer: A
10. The differential equation of all circles passing through the origin and having their centres on the x-axis is :

$$
\begin{aligned}
& \text { A. } y^{2}=x^{2}+2 x y \frac{d y}{d x} \\
& \text { B. } y^{2}=x^{2}-2 x y \frac{d y}{d x} \\
& \text { C. } y^{2}=x^{2}+x y \frac{d y}{d x} \\
& \text { D. none of these }
\end{aligned}
$$

Answer: A
11. The differential equation of the family of concentric circles with centre at the origin is
A. $x+y d y / d x=0$
B. $x=y d y / d x$

$$
\text { C. } d y / d x=y / x
$$

D. none of these

Answer: A

D View Text Solution

12. The differential equation of family of parabolas

 with foci at the origin and axis is $\mathrm{y}=0$.$$
\begin{aligned}
& \text { A. } y\left(\frac{d y}{d x}\right)^{2}-2 x \frac{d y}{d x}+y=0 \\
& \text { B. } x\left(\frac{d y}{d x}\right)^{2}+2 y \frac{d y}{d x}-y=0 \\
& \text { C. } y\left(\frac{d y}{d x}\right)^{2}+2 x \frac{d y}{d x}+y=0 \\
& \text { D. } x\left(\frac{d y}{d x}\right)^{2}+2 y \frac{d y}{d x}+y=0
\end{aligned}
$$

Answer: A

D View Text Solution
13. The differential equation of the family of parabolas having their vertices at the origin and foci on x-axis is
A. $y=2 x d y / d x$
B. $x=2 y d y / d x$
C. $x y=d y / d x$
D. none of these

Answer: A
14. The differential equation of the family of parabolas having their vertex at the origin and focus on y-axis is
A. $x d y / d x=2 y$
B. $y d y / d x=x$
C. $x y d y / d x=c$
D. $2 x d y / d x=y$

Answer: A

D View Text Solution
15. The differential equation of all unit circles having their centres on the y-axis is
A. $\frac{d y}{d x}=\frac{x^{2}}{1-x^{2}}$
B. $\left(\frac{d y}{d x}\right)^{2}=\frac{x^{2}}{1-x^{2}}$
C. $\frac{d y}{d x}=\frac{x}{\sqrt{1-x^{2}}}$
D. $\left(\frac{d y}{d x}\right)^{2}=\frac{x}{1-x^{2}}$

Answer: B

D View Text Solution
16. $y=\sqrt{e^{2 \log _{e} x}}$ satisfies the equation
A. $d y / d x=x$
B. $d y / d x=1$
C. $d y / d x=-x$
D. $d y / d x=-1$

Answer: B

- View Text Solution

17. The solution of the equation $e^{\frac{d y}{d x}}=x+3$ is given by

$$
\begin{aligned}
& \text { A. } y=(x+3) \log (x+3)-x+c \\
& \text { B. } y=(x+3) \log (x+3)+x+c \\
& \text { C. } y=(x-3) \log (x+3)+x+c \\
& \text { D. } y=(x-3) \log (x+3)-x+c
\end{aligned}
$$

Answer: A
18. $\tan ^{-1} x+\tan ^{-1} y=c$ is the general solution of the differential equation

$$
\begin{aligned}
& \text { A. } \frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}} \\
& \text { B. } \frac{d y}{d x}=\frac{1+x^{2}}{1+y^{2}} \\
& \text { C. }\left(1+\mathrm{x}^{\wedge}(2)\right) \mathrm{dy}+\left(1+\mathrm{y}^{\wedge}(2)\right) \mathrm{d} \mathrm{x}=0 \\
& \text { D. } \frac{d y}{d x}=\frac{1-y^{2}}{1-x^{2}}
\end{aligned}
$$

Answer: C

19. The general solution of

$$
y d x-x d y-3 x^{2} y^{2} e^{x^{3}} d x=0 \text { is }
$$

A. $\frac{x}{y}=e^{x^{3}}+c$
B. $\frac{y}{x}=e^{x^{3}}+c$
C. $x y=e^{x^{3}}+c$
D. $x y=e^{x}+c$

Answer: A

20. Solution of the differential equation $x d y-y d x=0$

 representsA. a rectangular hyperbola
B. line passing through the origin
C. Parabola whose vertex is at the origin
D. circle whose centre is at origin

Answer: B

- Watch Video Solution

21. The solution of the differential equation $2 x$ $d y / d x-y=3$ represent
A. lines
B. circles
C. parabola
D. ellipses

Answer: C
22. The general solution of $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$ is

$$
\text { A. } \sin ^{-1} x \cdot \sin ^{-1} y=c
$$

B. $\sin ^{-1} x=c \cdot \sin ^{-1} y$
C. $\sin ^{-1} x-\sin ^{-1} y=c$
D. $\sin ^{-1} x+\sin ^{-1} y=c$

Answer: D

D Watch Video Solution
23. The solution of $\frac{d y}{d x}=x . e^{x-y}$ is
A. $e^{x-y}=c$
B. $e^{y}\left(x e^{x}+e^{x}\right)+c+1=0$
C. $e^{x-y}=e^{x y}$
D. $e^{y}=e^{x}(x-1)+c$

Answer: D

- Watch Video Solution

24. The general solution of $\frac{d y}{d x}=\frac{a x+h}{b y+k}$ represents a parabola when
A. $a=0, b=0$
B. $a=1, b=2$
C. $a=0, b \neq 0$
D. $a=2, b=1$

Answer: C

- Watch Video Solution

25. The solution of the differential equation
$y \sec ^{2} x d x+\tan x \cdot \sec ^{2} y d y=0$ is
A. $\tan x+\tan y=k$
B. $\tan x-\tan y=k$
C. $(\tan \mathrm{x}) /(\tan \mathrm{y})=\mathrm{k}$
D. $\tan x \cdot \tan y=k$

Answer: D

- Watch Video Solution

26. Solution of the differential equation $d y / d x+y / x$

$$
=\sin x \text { is }
$$

A. $x(y+\cos x)=\sin x+c$
B. $x(y-\cos x)=\sin x+c$
C. $x(y \cos x)=\sin x+c$
D. $x(y+\cos x)=\cos x+c$

Answer: A

- Watch Video Solution

27. The solution of the differential equation

$$
x \sqrt{1-y^{2}} d x+y \sqrt{1-x^{2}} d y=0
$$

A. $x \sqrt{1-x^{2}}+y \sqrt{1-y^{2}}=c$
B. $x \sqrt{1-y^{2}}+y \sqrt{1+x^{2}}=c$
C. $x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}=c$
D. $\sqrt{1-y^{2}}+\sqrt{1-x^{2}}=c$

- Watch Video Solution

28. Solution of $d y / d x+2 x y=y$ is
A. $y=c \cdot e^{x-x^{2}}$
B. $y=c . e^{x^{2}}-x$
C. $y=c . e^{x}$
D. $y=c . e^{x^{2}}+x$

Answer: A
29. The solution of the differential equation $\cos x$ $\sin y d x+\sin x \cos y d y=0$ is
A. $(\sin x) /(\sin y)=c$
B. $\cos x+\cos y=c$
C. $\sin x+\sin y=c$
D. $\sin x \cdot \sin y=c$

Answer: D

- Watch Video Solution

30. A curve passes through the point $(5,3)$ and at any point (x, y) on it, the product of its slope and the ordinate is equal to its abscissa. The curve is
A. parabola
B. ellipse
C. hyperbola
D. circle

Answer: C
31. A curve passes through the point (2a,a) and at any point the sum of cartesian subtangent and the abscissa is equal to the constant a. The equation of the curve is

$$
\begin{aligned}
& \text { A. } y(x-a)=a^{2} \\
& \text { B. } y(x+a)=\mathrm{a}^{\wedge}(2) \\
& \text { C. } x(y-a)=a^{2} \\
& \text { D. } x(y-a)=a^{2}
\end{aligned}
$$

Answer: A

32. If $2 f(x)=f^{\prime}(x)$ and $\mathrm{f}(0)=3$, then $\mathrm{f}(2)=$
A. $4 e^{3}$
B. $3 e^{4}$
C. $2 e^{3}$
D. $3 e^{2}$

Answer: B
33. The equation of a curve passing through
$(2,7 / 2)$ and having gradient $1-\frac{1}{x^{2}} a t(x, y)$ is
A. $y=x^{2}+x+1$
B. $x y=x^{2}+x+1$
C. $x y=x+1$
D. $x y=x^{2}+1$

Answer: B
34. The differential equation of the family of hyperbolas with asymptotes as the lines $x+y=1$ and $x-y=1$ is
A. $y y^{\prime}+x=1$
B. $y y^{\prime}=x-1$
C. $y y^{\prime}+y^{\prime}=0$
D. $y^{\prime}+x y=0$

Answer: B
35. A solution of $d y / d x=(x+y) / x$ is
A. $y=x(\log x+c)$
B. $x=y(\log y+c)$
C. $y=\log x+c$
D. $x=\log y+c$

Answer: A

- Watch Video Solution

36. Solution of $\frac{d y}{d x}=\frac{y}{x+y}$ is
A. $y=k e^{\frac{y}{x}}$
B. $y=k e^{\frac{x}{y}}$
C. $x=k \cdot e^{\frac{y}{x}}$
D. $x=k e^{\frac{x}{y}}$

Answer: B

- Watch Video Solution

37. Solution of $d y / d x=(x+Y) /(x-y)$ is
A. $\left(\tan ^{-1}\right) \frac{x}{y}-\frac{1}{2} \log \left(x^{2}+y^{2}\right)=c$
B. $\left(\tan ^{-1}\right) \frac{y}{x}-\log \left(x^{2}+y^{2}\right)=c$

$$
\begin{aligned}
& \text { C. }\left(\tan ^{-1}\right) \frac{y}{x}-\frac{1}{2} \log \left(x^{2}+y^{2}\right)=c \\
& \text { D. }\left(\tan ^{-1}\right) \frac{y}{x}-\frac{1}{2} \log \left(x^{2}+y^{2}\right)+c
\end{aligned}
$$

Answer: C

- Watch Video Solution

38. A population grows at the rate of 5% per year.

How long does it take for the population to double.
A. $10 . \log 2$ years
B. 20. $\log 2$ years
C. 30. $\log 2$ years
D. $40 . \log 2$ years

Answer: B

- Watch Video Solution

39. In a bank, principle p increases continuously at the rate of 5\% per year. Find the principal in terms of time t.
A. $10 \log 3$
B. $10 \log 2$
C. $20 \log _{e} 2$
D. $20 \log _{e} 3$

Answer: C

D Watch Video Solution

40. The rate of increase of bacteria in a culture proportional to the number of bacteria present and it found that the number doubles in 5 hours.

Calculate how many times the bacteria my be expected to grow at the end of 15 hours
A. 6 times
B. 7 times
C. 8 times
D. 9 times

Answer: C

D Watch Video Solution

41. The degree of the differential equation

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0 \text { is }
$$

A. 3
B. 2
C. 1
D. not defined

Answer: D

- Watch Video Solution

42. The order of the differential equation
$2 x^{2} \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+y=0$ is
A. 2
B. 1
C. 0

D. not defined

Answer: A

- Watch Video Solution

43. The number of arbitary constants in the general solution of a differential equation of fourth order are :
A. 0
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

44. The number of arbitary constants in the particular solution of a differential equation of third order are :
A. 3
B. 2
C. 1
D. 0

Answer: D

- Watch Video Solution

45. Which of the following differential equations has $y=x$ as one of its particular solution
A. $\frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=x$
B. $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x y=x$
C. $\frac{d^{2} y}{d x^{2}}-x^{2} \frac{d y}{d x}+x y=0$
D. $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+x y=0$

Answer: C

- Watch Video Solution

46. Which of the following differential equations
has $y=c_{1} e^{x}+c_{2} e^{-x}$ as the general solution?

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}+y=0 \\
& \text { B. } \frac{d^{2} y}{d x^{2}}-y=0 \\
& \text { C. } \frac{d^{2} y}{d x^{2}}+1=0 \\
& \text { D. } \frac{d^{2} y}{d x^{2}}-1=0
\end{aligned}
$$

- Watch Video Solution

47. The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is
A. $e^{x}+e^{-y}=c$
B. $e^{x}+e^{y}=c$
C. $e^{-x}+e^{y}=c$
D. $e^{-x}+e^{-y}=c$

Answer: A
48. A homogeneous differential equation of the from $\frac{d x}{d y}=h\left(\frac{x}{y}\right)$ can be solved by making the substitution.

$$
\begin{aligned}
& \text { A. } y=\nu x \\
& \text { B. } \nu=y x \\
& \text { C. } x=\nu y \\
& \text { D. } x=\nu
\end{aligned}
$$

Answer: C
49. Which of the following is a homogeneous differential equation?
A. $(4 x+6 y+5) d y-(3 y+2 x+4) d x=0$
B. $x y d x-\left(x^{3}+y^{3}\right) d y=0$
C. $\left(x^{3}+2 Y^{2}\right) d x+2 x y d y=0$
D. ${ }^{\prime}\left(y^{\wedge}(2) d x+\left(x^{\wedge}(2)-x y-y^{\wedge}(2)\right) d y\right)=0$

Answer: D

- View Text Solution

50. The integrating factor of the differential
equation $x \frac{d y}{d x}-y=2 x^{2}$ is
A. e^{-x}
B. e^{-y}
C. $1 / x$
D. x

Answer: C

- Watch Video Solution

51. The Integrating Factor of the differential equation $\left(1-y^{2}\right) \frac{d x}{d y}-y x=a y(-1<y<1)$ is

$$
\begin{aligned}
& \text { A. } \frac{1}{y^{2}-1} \\
& \text { B. } \frac{1}{\sqrt{y^{2}-1}} \\
& \text { C. } \frac{1}{1-y^{2}} \\
& \text { D. } \frac{1}{\sqrt{1-\left(y^{2}\right)}}
\end{aligned}
$$

Answer: D
52. The general solution of the differential equation $(y d x-x d y) / y=0$ is
A. $x y=c$
B. $x=c y^{2}$
C. $y=c x$
D. $y=c x^{2}$

Answer: C

- Watch Video Solution

53. The general solution of a differential equation of the type $\frac{d x}{d y}+P_{1} x=Q_{1}$ is
A. $y . e^{\int} p_{1} d y=\int\left(Q_{1} e^{\int} p_{1} d y\right) d y+c$
B. $y . e^{\int} p_{1} d x=\int\left(Q_{1} e^{\int} p_{1} d x\right) d x+c$
C. $x . e^{\int} p_{1} d y=\int\left(Q_{1} e^{\int} p_{1} d y\right) d y+c$
D. $x . e^{\int} p_{1} d x=\int\left(Q_{1} e^{\int} p_{1} d x\right) d x+c$

Answer: C

D Watch Video Solution

54. The general solution of the differential equation $e^{x} d y+\left(y e^{x}+2 x\right) d x=0$ is
A. $x e^{y}+x^{2}=c$
B. $x e^{y}+y^{2}=c$
C. $y e^{x}+x^{2}=c$
D. $y e^{y}+x^{2}=c$

Answer: C
55. The degree of the differential equation $\left(1+\frac{d y}{d x}\right)^{3}=\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$ is
A. 1
B. 2
C. 3
D. 4

Answer: B
56. The degree of the differential equation $\frac{d^{2} y}{d x^{2}}+3\left(\frac{d y}{d x}\right)^{2}=x^{2} \log \left(\frac{d^{2} y}{d x^{2}}\right)$ is
A. 1
B. 2
C. 3
D. not defined

Answer: D
57. The order and the degree of the equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=\frac{d^{2} y}{d x^{2}}$
A. 1,2
B. 2,2
C. 2,1
D. 4,2

Answer: C
58. The order of differential equation of all circles
of given radius "a" is \qquad
A. 1
B. 2
C. 3
D. 4

Answer: B
59. The solution of the differential equation $2 x$ $d y / d x-y=3$ represent
A. straight lines
B. circles
C. parabolas
D. ellipses

Answer: C
60. The integrating factor of the differential equation :
$\frac{d y}{d x}(x \log x)+y=2 \log x$ is :
A. e^{x}
B. $\log x$
C. $\log (\log x)$
D. x

Answer: B
61. Which of the following functions is a solution of

$$
\left(\frac{d y}{d x}\right)^{2}-x\left(\frac{d y}{d x}\right)+y=0 ?
$$

A. $y=2$
B. $y=2 x$
C. $y=2 x-4$
D. $y=2 x^{2}-4$

Answer: C
62. Which of the following is not a homogeneous
function of x and y
A. $x^{2}+2 x y$
B. $2 x-y$
C. $\cos ^{2}\left(\frac{y}{x}\right)+\frac{y}{x}$
D. $\sin x-\cos y$

Answer: D
63. Solution of the differential equation $\frac{d x}{x}+\frac{d y}{y}=0$ is
A. $1 / x+1 / y=c$
B. $\log x \cdot \log y=c$
C. $x y=c$
D. $x+y=c$

Answer: C
(Watch Video Solution
64. Find the general solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2}(x \neq 0)$
A. $y=\frac{x^{2}+c}{4 x^{2}}$
B. $y=\frac{x^{2}}{4}+c$
C. $y=\frac{x^{4}+c}{x^{2}}$
D. $y=\frac{x^{4}+c}{4 x^{2}}$

Answer: D
65. The degree of the differential equation

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=x \sin \left(\frac{d y}{d x}\right) \text { is }
$$

A. 1
B. 2
C. 3
D. not defined

Answer: D
66. The degree of the equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}=\left(\frac{d^{2} y}{d x^{2}}\right)$ is
A. 4
B. 44230
C. not defined
D. 2

Answer: D

- Watch Video Solution

67. The order and degree of the differential
equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{\frac{1}{4}}+x^{\frac{1}{5}}=0$ is
A. 2 and not defined
B. 2 and 2
C. 2 and 3
D. 3 and 3

Answer: A

- Watch Video Solution

68. If $y=e^{-x}(A \cos x+B \sin x)$, then y satisfies :

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=0 \\
& \text { B. } \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0 \\
& \text { C. } \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=0 \\
& \text { D. } \frac{d^{2} y}{d x^{2}}+2 y=0
\end{aligned}
$$

Answer: C
69. The differential equation for $y=A \cos \alpha x+B \sin \alpha x$ Where A and B are arbitary constants is

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}-\alpha^{2} y=0 \\
& \text { B. } \frac{d^{2} y}{d x^{2}}+\alpha^{2} y=0 \\
& \text { C. } \frac{d^{2} y}{d x^{2}}+\alpha y=0 \\
& \text { D. } \frac{d^{2} y}{d x^{2}}-\alpha y=0
\end{aligned}
$$

Answer: B
70. Solution of the differential equation $x d y-y d x=0$ represents
A. a rectangular hyperbola
B. parabola whose vertex is origin
C. straight line passing through origin
D. a circle whose centre is at origin

Answer: C

D Watch Video Solution
71. Integrating factor of the differential equation $\cos x d y / d x+y \sin x=1$ is
A. $\cos x$
B. $\tan x$
C. $\sec x$
D. $\sin x$

Answer: C
72. The solution of the differential equation $y \sec ^{2} x d x+\tan x \cdot \sec ^{2} y d y=0$ is
A. $\tan x+\tan y=k$
B. $\tan x-\tan y=k$
C. $(\tan \mathrm{x}) /(\tan \mathrm{y})=\mathrm{k}$
D. $\tan \mathrm{x} \cdot \tan \mathrm{y}=\mathrm{k}$

Answer: D
73. The family $y=a x+a^{3}$ of curves is represented by the differential equation of degree
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

74. Integrating factor of $x \frac{d y}{d x}-y=x^{4}-3 x$ is
A. x
B. $\log x$
C. $1 / x$
D. minus x

Answer: C

- Watch Video Solution

75. Solution of $d y / d x-y=1, y(0)=1$ is given by
A. $x y=-e^{-y}$
B. $x y=-e^{-x}$
C. $x y=-1$
D. $y=2 e^{x}-1$

Answer: D

D Watch Video Solution

76. The number of solutions of $d y / d x=(y+1) /(x-1)$
when $\mathrm{y}(1)=2$ is
A. none
B. one
C. two
D. infinite

Answer: B

- Watch Video Solution

77. Which of the following is a second order differential equation?
A. $\left(y^{\prime}\right)^{2}+x=y^{2}$
B. $y^{\prime} y^{\prime \prime}+y=\sin x$
C. $y^{\prime \prime \prime}+\left(y^{\prime \prime}\right)^{2}+y=0$
D. $y^{\prime}=Y^{2}$

Answer: B

- Watch Video Solution

78. Integrating factor of the differential equation $\left(1-x^{2}\right) \frac{d y}{d x}-x y=1$ is
A. minus x
B. $\frac{x}{1+x^{2}}$
C. $\sqrt{1-x^{2}}$

$$
\text { D. } \frac{1}{2} \log \left(1-x^{2}\right)
$$

Answer: C

- Watch Video Solution

79. $\tan ^{-1} x+\tan ^{-1} y=c$ is the general solution of the differential equation
A. $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$
B. $\frac{d y}{d x}=\frac{1+x^{2}}{1+y^{2}}$
C. $\left(1+x^{2}\right) d y+\left(1+y^{2}\right) d x=0$
D. $\left(1+x^{2}\right) d x+\left(1+y^{2}\right) d y=0$

Answer: C

- Watch Video Solution

80. The differential equation $y \frac{d y}{d x}+x=c$ represents
A. family of hyperbolas
B. family of parabolas
C. family of ellipse
D. family of circles

- Watch Video Solution

> 81. The general solution of
> $e^{x} \cos y d x-e^{x} \sin y d y=0$ is :
A. $e^{x} \cos y=k$
B. $e^{x} \sin y=k$
C. $e^{x}=k \cos y$
D. $e^{x}=k \sin y$

Answer: A

- Watch Video Solution

82. The degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}+6 y^{5}=0$ is
A. 1
B. 2
C. 3
D. 5

Answer: A

- Watch Video Solution

83. The solution of $\frac{d y}{d x}+y=e^{-x}, y(0)=0$ is:

$$
\begin{aligned}
& \text { A. } y=e^{x}(x-1) \\
& \text { B. } y=x e^{-x} \\
& \text { C. } y=x e^{-x}+1 \\
& \text { D. } y=(x+1) e^{-x}
\end{aligned}
$$

Answer: B

- Watch Video Solution

84. Find the general solution of the differential
equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$.
A. $y=\tan ^{-1} x$
B. $y-x=k(1+x y)$
C. $x=\tan ^{-1} y$
D. $\tan (x y)=k$

Answer: B

- Watch Video Solution

85. The integrating factor of $\frac{d y}{d x}+y=\frac{1+y}{x}$ is
A. $\frac{x}{e^{x}}$
B. $\frac{e^{x}}{x}$
C. $x e^{x}$
D. e^{x}

Answer: B

D Watch Video Solution
86. $y=a e^{m x}+b e^{-m x}$ satisfies which of the following differential equations?
A. $d y / d x+m y=0$
B. $d y / d x-m y=0$
C. $\frac{d^{2} y}{d x^{2}}-m^{2} y=0$
D. $\frac{d^{2} y}{d x^{2}}+m^{2} y=0$

Answer: C
87. The solution of the differential equation $\cos x$
$\sin y d x+\sin x \cos y d y=0$ is
A. $(\sin x) /(\sin y)=c$
B. $\sin x \sin y=c$
C. $\sin x+\sin y=c$
D. $\cos x \cos y=c$

Answer: B
88. The solution of $x \frac{d y}{d x}+y=e^{x}$ is

$$
\begin{aligned}
& \text { A. } y=\frac{e^{x}}{x}+\frac{k}{x} \\
& \text { B. } y=x e^{x}+c x
\end{aligned}
$$

C. $y=x e+k$
D. $x=\frac{e^{y}}{y}+\frac{k}{y}$

Answer: A

- Watch Video Solution

89. The differential equation for the family of curves $x^{2}+y^{2}-2 a y=0$, where a is an arbitrary constant , is :

$$
\begin{aligned}
& \text { A. }\left(x^{2}-y^{2}\right) \frac{d y}{d x}=2 x y \\
& \text { B. } 2\left(x^{2}+y^{2}\right) \frac{d y}{d x}=x y \\
& \text { C. } 2\left(x^{2}-y^{2}\right) \frac{d y}{d x}=x y \\
& \text { D. }\left(x^{2}+y^{2}\right) \frac{d y}{d x}=2 x y
\end{aligned}
$$

Answer: A
90. Family $y=A x+A^{3}$ of curves will correspond to a differential equation of order :
A. 3
B. 2
C. 1
D. not defined

Answer: C

- Watch Video Solution

91. The general solution of $\frac{d y}{d x}=2 x e^{x^{2}-y}$ is
A. $e^{x^{2}-y}=c$
B. $e^{-y}+e^{x^{2}=c}$
C. $e^{y}=e^{x^{2}+c}$
D. $e^{x^{2}+y}+c$

Answer: C

- Watch Video Solution

92. The curve for which the slope of the tangent at any point equals the ratio of the abscissa to the ordinate of the point is :
A. an ellipse
B. a parabola
C. a circle
D. a rectangular hyperbola

Answer: D

- Watch Video Solution

93. The general solution of the differential equation $\frac{d y}{d x}=e^{\frac{x^{2}}{2}}+x y$ is

$$
\text { A. } y=c e^{-\frac{x^{2}}{2}}
$$

B. $y=c e^{\frac{x^{2}}{2}}$
C. $y=(x+c) e^{\frac{x^{2}}{2}}$
D. $y=(c-x) e^{\frac{x^{2}}{2}}$

Answer: C

- Watch Video Solution

94. The solution of the equation $(2 y-1) d x-(2 x+3) d y$
$=0$ is
A. $(2 x-1) /(2 y+3)=k$
B. $(2 y+1) /(2 x-3)=k$

C. $(2 x+3) /(2 y-1)=k$

D. $(2 x-1) /(2 y-1)=k$

Answer: C

- Watch Video Solution

95. The differential equation for which $y=a \cos x+$ $b \sin x$ is

$$
\begin{aligned}
& \text { A. } \frac{d^{2} y}{d x^{2}}+y=0 \\
& \text { B. } \frac{d^{2} y}{d x^{2}}-y=0 \\
& \text { C. } \frac{d^{2} y}{d x^{2}}+(a+b) y=0
\end{aligned}
$$

D. ${ }^{`}\left(d^{\wedge}(2) y\right) / d x^{\wedge}(2)+(a-b) y=0$

Answer: A

- Watch Video Solution

96. The order and the degree of the equation

$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=\frac{d^{2} y}{d x^{2}}
$$

A. $2,2 / 3$
B. 2,3
C. 2,1
D. 3,4

Answer: C

- Watch Video Solution

97. Which of the following is the general solution
of $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0$?
A. $y=(A x+B) e^{x}$
B. $y=(A x+B) e^{-x}$
C. $y=A e^{x}+B e^{-x}$
D. $y=A \cos x+B \sin x$

- Watch Video Solution

98. The differential equation of the family of curves
$y^{2}=4 a(x+a)$ is

$$
\begin{aligned}
& \text { A. } \mathrm{y}^{\wedge}(2)=4 \mathrm{dy} / \mathrm{dx}(\mathrm{x}+\mathrm{dy} / \mathrm{dx}) \\
& \text { B. } 2 y \frac{d y}{d x}=4 a \\
& \text { C. } y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0 \\
& \text { D. } y=2 x \frac{d y}{d x}+y\left(\frac{d y}{d x}\right)^{2}
\end{aligned}
$$

Answer: D

99. General solution of $\frac{d y}{d x}+y \tan x=\sec x$ is :
A. $y \sec x=\tan x+c$
B. $y \tan x=\sec x+c$
C. $\tan x=y \tan x+c$
D. $x \sec x=\tan y+c$

Answer: A

- Watch Video Solution

100. Solution of the differential equation $d y / d x$ $+y / x=\sin x$ is
A. $x(y+\cos x)=\sin x+c$
B. $x(y-\cos x)=\sin x+c$
C. $x y \cos x=\sin x+c$
D. $x(y+\cos x)=\cos x+c$

Answer: A
101. The general solution of the differential equation $\left(e^{x}+1\right) y d y=(y+1) e^{x} d x$ is

$$
\begin{aligned}
& \text { A. }(y+1)=k\left(e^{x}+1\right) \\
& \text { B. }(y+1)=e^{x}+1+k \\
& \text { C. } y=\log \left\{k(y+1)\left(e^{x}+1\right)\right\} \\
& \text { D. } y=\log \left\{\frac{e^{x}+1}{y+1}\right\}+k
\end{aligned}
$$

Answer: C
102. The solution of the differential equation $\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}$ is
A. $y=e^{\wedge}(x-y)-x^{\wedge}(2) e^{\wedge}(-y)+c$
B. $e^{y}-e^{x}=\frac{x^{3}}{3}+c$
C. $e^{x}+e^{y}=\frac{x^{3}}{3}+c$
D. $e^{x}-e^{y}=\frac{x^{3}}{3}+c$

Answer: B

- Watch Video Solution

103. The solution of the differential equation $\frac{d y}{d x}+\frac{2 x}{1+x^{2}} y=\frac{1}{\left(1+x^{2}\right)^{2}}$ is
A. $y\left(1+x^{2}\right)=c+\tan ^{-1} x$
B. $\frac{y}{1+x^{2}}=c+\tan ^{-1} x$
C. $y \log \left(1+x^{2}\right)=c+\tan ^{-1} x$
D. $y\left(1+x^{2}\right)=c+\sin ^{-1} x$

Answer: A

104. The solution of the differential equation cosy.

 $\cos x d x+\sin x . \sin y d y=0$ isA. $\sin x=c \cos y$
B. $\cos x=c \cdot \sin y$
C. $\tan x=c$
D. $\sec x-\sec y=c$

Answer: A

- Watch Video Solution

105. The degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}=0$
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

106. 19. The elimination of A and B from the equation $y^{2}=A x+B$ gives differential equation of order
A. second
B. first
C. zero
D. third

Answer: A
107. The solution of the differential equation $y \sec ^{2} x d x+\tan x \cdot \sec ^{2} y d y=0$ is
A. $\tan x \cdot \tan y=k$
B. $\tan x+\tan y=k$
C. $\tan x-\tan y=k$
D. $(\tan \mathrm{x}) /(\tan \mathrm{y})=\mathrm{k}$

Answer: A

- Watch Video Solution

108. If m and n are order and degree of the

differential

 equation$\left(\frac{d^{2} y}{d x^{2}}\right)^{5}+\frac{\left(\frac{d^{2} y}{d x^{2}}\right)^{3}}{\left(\frac{d^{3} y}{d x^{3}}\right)}+\frac{d^{3} y}{d x^{3}}=x^{2}-1$ then
A. $m=3, n=1$
B. $m=3, n=3$
C. $m=3, n=2$
D. $m=3, n=5$

Answer: C
109. The solution of $\frac{d y}{d x}=2^{y-x}$ is
A. $2^{y}+2^{x}=k$
B. $2^{x}-2.2^{y}=k$
C. $\frac{1}{2^{x}}-\frac{1}{2^{y}}=k$
D. $\frac{1}{2^{x}}+\frac{1}{2^{y}}=k$

Answer: C

- Watch Video Solution

110. The differential equation obtained by
eliminating A and B from $y=A \cos \omega t+B \sin \omega t$ is

$$
\begin{aligned}
& \text { A. } Y^{\prime \prime}+y^{\prime}=0 \\
& \text { B. } y^{\prime \prime}-\omega^{2} y=0 \\
& \text { C. } y^{\prime \prime}=-\omega^{2} y \\
& \text { D. } y^{\prime \prime}+y=0
\end{aligned}
$$

Answer: C
111. The order and degree of the differential equation $\quad x \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+y^{2}=0 \quad$ are respectively
A. 1 and 2
B. 2 and 1
C. 1 and 1
D. 2 and 2

Answer: B
112. $y=a e^{m x}+b e^{-m x}$ satisfies which of the following differential equations?
A. $d y / d x-m y=0$
B. $d y / d x+m y=0$
C. $\frac{d^{2} y}{d x^{2}}+m^{2} y=0$
D. $\frac{d^{2} y}{d x^{2}}-m^{2} y=0$

Answer: D
113. Which of the following functions is a solution of the differential equation

$$
\left(\frac{d y}{d x}\right)^{2}-x\left(\frac{d y}{d x}\right)+y=0 ?
$$

A. $y=2 x^{2}-4$
B. $y=2 x-4$
C. $y=2 x$
D. $y=2$

Answer: B
114. The solution for the differential equation $\frac{d y}{y}+\frac{d x}{x}=0$ is
A. $\log x \cdot \log y=c$
B. $1 / x+1 / y=c$
C. $x+y=c$
D. $x y=c$

Answer: D

- Watch Video Solution

115. The differential equation for which $\sin ^{-1} x+\sin ^{-1} y=C$ is given by

$$
\begin{aligned}
& \text { A. } \sqrt{1-x^{2}} d y-\sqrt{1-y^{2}} d x=0 \\
& \text { B. } \sqrt{1-x^{2}} d x-\sqrt{1-y^{2}} d y=0 \\
& \text { C. } \sqrt{1-x^{2}} d x+\sqrt{1-y^{2}} d y=0 \\
& \text { D. } \sqrt{1-x^{2}} d y+\sqrt{1-y^{2}} d x=0
\end{aligned}
$$

Answer: A
116. The general solution of the differential equation $\mathrm{dy} / \mathrm{dx}+(1+\cos 2 \mathrm{y}) /(1-\cos 2 \mathrm{x})=0$ is given by
A. $\tan y+\cot x=c$
B. $\tan y-\cot x=c$
C. $\tan x-\cot y=c$
D. $\tan x+\cot y=c$

Answer: B
117. The degree of the differential Equation

$$
\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{3 / 4}=\left(\frac{d^{2} y}{d x^{2}}\right)^{1 / 3}
$$

A. 44256
B. 4
C. 9
D. 44289

Answer: B

- Watch Video Solution

118. Form the differential equation of the family of
circles touching the y - axis at origin.

$$
\begin{aligned}
& \text { A. } x^{2}-y^{2}-2 x y \frac{d y}{d x}=0 \\
& \text { B. } x^{2}-y^{2}+2 x y \frac{d y}{d x}=0 \\
& \text { C. } x^{2}+y^{2}-2 x y \frac{d y}{d x}=0 \\
& \text { D. } x^{2}+y^{2}+2 x y \frac{d y}{d x}=0
\end{aligned}
$$

Answer: B
119. The general solution of the differential equation
$(2 x-y+1) d x+(2 y-x+1) d y=0$ is...
A. $x^{2}-y^{2}+2 x y-x+y=c$
B. $x^{2}-y^{2}-2 x y+x-y=c$
C. $x^{2}+y^{2}+x y-x+y=c$
D. $x^{2}+y^{2}-x y+x+y=c$

Answer: D
120. The solution of the differential equation
$e^{-x}(y+1) d y+\left(\cos ^{2} x-\sin 2 x\right) y(d x)=0$
subjected to the condition that $\mathrm{y}=1$ when $\mathrm{x}=0$ is
A. $\log (y+1)+e^{x} \cos ^{x}=1$
B. $y+\log y+e^{x} \cos ^{2} x=2$
C. $(y+1)+e^{x} \cos ^{x}=2$
D. $y+\log y=e^{x} \cos ^{x}$

Answer: B
121. The general solution of the differential equation $\left(e^{x}+1\right) y d y=(y+1) e^{x} d x$ is

$$
\begin{aligned}
& \text { A. }(y+1)=k\left(e^{x}+1\right) \\
& \text { B. } y+1=e^{x}+1+k \\
& \text { C. } y=\log (k(y+1))\left(e^{x}+1\right) \\
& \text { D. } y=\log \left(\frac{e^{x}+1}{y+1}\right)+k
\end{aligned}
$$

Answer: C
122. The differential equation of the family of straight lines whose slope is equal to y-intercept is

$$
\begin{aligned}
& \text { A. }(x+1) d y / d x+y=0 \\
& \text { B. }(x+1) d y / d x-y=0 \\
& \text { C. } d y / d x=(x-1) /(y+1) \\
& \text { D. } d y / d x-(x-1) /(y-1)
\end{aligned}
$$

Answer: B
123. The order and degree of the differential equation $\left[1+\left(\frac{d y}{d x}\right)^{5}\right]^{\frac{1}{3}}=\frac{d^{2} y}{d x^{2}}$ are respectively
A. 2,1
B. 1,5
C. 2,3
D. 2,5

Answer: C
124. A particular solution of $\frac{d y}{d x}=(x+9 y)^{2}$ when $x=0, y=1 / 27$ is
A. $3 x+27 y=\tan 3\left(x+\frac{\pi}{12}\right)$
B. $3 x+27 y=\tan ^{-1} 3\left(x+\frac{\pi}{12}\right)$
C. $3 x+27 y=\tan 9\left(x+\frac{\pi}{12}\right)$
D. $3 x+27 y=\tan \left(x+\frac{\pi}{12}\right)$

Answer: A

D Watch Video Solution
125. The order and degree of the differential equation $\left(1+3 \frac{d y}{d x}\right)^{2 / 3}=4 \frac{d^{3} y}{d x^{3}}$ are :
A. $(1,2 / 3)$
B. $(3,4)$
C. $(3,3)$
D. $(1,2)$

Answer: C
126. The differential equation of all non - vertical lines in a plane is:
A. $\frac{d^{2} y}{d x^{2}}=0$
B. $d x / d y=0$
C. $d y / d x=0$
D. $\frac{d^{2} x}{d y^{2}}=0$

Answer: A

- Watch Video Solution

127. The solution of the equation $\frac{d^{2} y}{d x^{2}}=e^{-2 x}$ is :

$$
\begin{aligned}
& \text { A. } \frac{e^{-2 x}}{4} \\
& \text { B. } \frac{e^{-2 x}}{4}+c x+d \\
& \text { C. } \frac{1}{4} e^{-2 x}+c x^{2}+d \\
& \text { D. } \frac{1}{4} e^{-2 x}+c+d
\end{aligned}
$$

Answer: B
128. The degree and order of the differential equation of the family of all parabolas whose axis is x - axis, are respectively :
A. 2,1
B. 1,2
C. 3,2
D. 2,3

Answer: B
129. The solution of the differential equation:
$y d x+\left(x+x^{2} y\right) d y=0$ is :
A. $1 / x y+\log y=c$
B. $1 / x y+\log y=c$
C. $1 / x y=c$
D. $\log y=c x$

Answer: B

- Watch Video Solution

130. The differential equation for the family of curves $x^{2}+y^{2}-2 a y=0$, where a is an arbitrary constant, is :

$$
\begin{aligned}
& \text { A. }\left(x^{2}-y^{2}\right) y^{\prime}=2 x y \\
& \text { B. } 2\left(x^{2}+y^{2}\right) y^{\prime}=x y \\
& \text { C. } 2\left(x^{2}-y^{2}\right) y^{\prime}=x y \\
& \text { D. }\left(x^{2}+y^{2}\right) y^{\prime}=2 x y
\end{aligned}
$$

Answer: A
131. The differential equation representing the
family of curves $y^{2}=2 c(x+\sqrt{c})$, where $c>0$, is a parameter is of order and degree as follows :
A. order 1, degree 3
B. order 2, degree 3
C. order 3, degree 3
D. degree 4, order 4

Answer: A
132.
$y=y(x)$ and $\frac{2+\sin x}{y+1}\left(\frac{d y}{d x}\right)=-\cos x, y(0)=1$
then $y\left(\frac{\pi}{2}\right)$ equals :
A. 44230
B. 44232
C. 44256
D. 1

Answer: C
133. The solution of $2 x y \frac{d y}{d x}=1+y^{2}$ is
A. $1-y^{2}=c x$
B. $1+y^{2}=c x$
C. $1-x^{2}=c y$
D. $1+x^{2}=c y$

Answer: B

- Watch Video Solution

134. If c is a parameter, then the differential equation whose solution is $y=c^{2}+\frac{c}{x}$ is
A. $y=x^{4}\left(\frac{d y}{d x}\right)-x\left(\frac{d y}{d x}\right)^{2}$
B. $y=x^{4}\left(\frac{d y}{d x}\right)^{2}+x\left(\frac{d y}{d x}\right)$
C. $y=x^{4}\left(\frac{d y}{d x}\right)^{2}-x\left(\frac{d y}{d x}\right)$
D. $y=x^{4}\left(\frac{d^{2} y}{d x^{2}}\right)-x\left(\frac{d y}{d x}\right)$

Answer: C

- Watch Video Solution

135. Solution of $x^{2}+y^{2} \frac{d y}{d x}=4$ is
A. $x^{2}+y^{2}=12 x+c$
B. $x^{2}+y^{2}=3 x+c$
C. $x^{3}+y^{3}=3 x+c$
D. $x^{3}+y^{3}=12 x+c$

Answer: D

- Watch Video Solution

136. The family of curves in which the subtangent at any point to any curve is double the abscissa is given by

$$
\text { A. } x=c y^{2}
$$

$$
\text { B. } y=c x^{2}
$$

C. $x^{2}=c y^{2}$
D. $y=c x$

Answer: A

- Watch Video Solution

137. The solution of $x d x+y d y=x^{2} y d y-x y^{2} d x$
is
A. $x^{2}-1=c\left(1+y^{2}\right)$
B. $x^{2}+1=c\left(1-y^{2}\right)$
C. $x^{3}-1=c\left(1+y^{3}\right)$
D. $x^{3}+1=c\left(1-y^{3}\right)$

Answer: A

- Watch Video Solution

138. The solution of $\mathrm{dy} / \mathrm{dx}=\left(\frac{y}{x}\right)^{\frac{1}{3}}$ is

$$
\begin{aligned}
& \text { A. } x^{\frac{2}{3}}+y^{\frac{2}{3}}=c \\
& \text { B. } x^{\frac{1}{3}}+y^{\frac{1}{3}}=c \\
& \text { C. } y^{\frac{2}{3}}-x^{\frac{2}{3}}=c \\
& \text { D. } y^{\frac{1}{3}}-x^{\frac{1}{3}}=c
\end{aligned}
$$

Answer: C

D View Text Solution

139. Order of the differential equation of the family of all concentric circles centred at (h, k) is
A. 1
B. 2
C. 3
D. 4
140. Solution of $\frac{d y}{d x}=\frac{x \log x^{2}+x}{\sin y+y \cos y}$ is
A. $y \cdot \sin y=x^{2} \log x+c$
B. $y \cdot \sin y=x^{2}+c$
C. $y \cdot \sin y=x^{2}+\log x+c$
D. $y . \operatorname{Sin} y=x \log x+c$

Answer: A
141.
$d x+d y=(x+y)(d x-d y) \Rightarrow \log (x+y)=$
A. $x+y+c$
B. $x+2 y+c$
C. $x-y+c$
D. $2 x+y+c$

Answer: C
142. The equation of a curve passing through the origin and satisfying the differential equation $\frac{d y}{d x}=(x-y)^{2}$ is

$$
\begin{aligned}
& \text { A. } e^{2 x}(1-x+y)=(1+x-y) \\
& \text { B. } e^{2 x}(1+x-y)=(1-x+y) \\
& \text { C. } e^{2 x}(1-x+y)=(1+x-y)=0 \\
& \text { D. } e^{2 x}(1+x+y)=1-x+y
\end{aligned}
$$

Answer: A
$e^{x} \cos y d x-e^{x} \sin y d y=0$ is :
A. $e^{x}(\sin y+\cos y)=c$
B. $e^{x} \sin y=c$
C. $e^{x}=c \cos y$
D. $e^{x} \cdot \cos y=c$

Answer: D

- Watch Video Solution

144. The differential equation $y \frac{d y}{d x}+x=c$ represents
A. a family of hyperbolas
B. a family of circles whose centres are on y-axis
C. a family of ellipse
D. a family of circles whose centres are on x-axis

Answer: D

D Watch Video Solution

145. The general

$$
y d x-x d y-3 x^{2} y^{2} e^{x^{3}} d x=0 \text { is }
$$

A. $\frac{x}{y}=e^{x^{3}}+c$
B. $\frac{y}{x}=e^{x^{3}}+c$
C. $x y=e^{x^{3}}+c$
D. $x y e^{x^{3}}+c$

Answer: A
146. $\tan ^{-1} x+\tan ^{-1} y=c$ is the general solution of the differential equation

$$
\begin{aligned}
& \text { A. } \frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}} \\
& \text { B. } \frac{d y}{d x}=\frac{1+x^{2}}{1+y^{2}} \\
& \text { C. }\left(1+x^{\wedge}(2)\right) \mathrm{dy}+\left(1+\mathrm{y}^{\wedge}(2)\right) \mathrm{dx}=0 \\
& \text { D. } \mathrm{dy} / \mathrm{dx}=\left(1-\mathrm{y}^{\wedge}(2) /\left(1-\mathrm{x}^{\wedge}(2)\right)\right.
\end{aligned}
$$

Answer: C

147. The differential equation of the family of lines

 passing through the origin isA. $x d y / d x+y=0$
B. $x+d y / d x=0$
C. $d y / d x=y$
D. $x d y / d x-y=0$

Answer: D
148. The degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}+6 y=0$ is
A. 1
B. 3
C. 2
D. 5

Answer: A
149. The solution of the equation $(2 y-1) d x-(2 x+3) d y$
$=0$ is

$$
\begin{aligned}
& \text { A. }(2 x-1) /(2 y+3)=\text { C } \\
& \text { B. }(2 x+3) /(2 y-1)=\text { C } \\
& \text { C. }(2 x-1) /(2 y-1)=\text { c } \\
& \text { D. }(2 y+1) /(2 x-3)=\text { C }
\end{aligned}
$$

Answer: B

150. The solution of the differential equation $\cos x$

 $\sin y d x+\sin x \cos y d y=0$ isA. $(\sin x) /(\sin y)=c$
B. $\cos x+\cos y=c$
C. $\sin x+\sin y=c$
D. $\sin x . \operatorname{Sin} y=c$

Answer: D
151. Find the general solution of the differential
equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$.
A. $y=\tan ^{-1} x$
B. $y-x=C(1+x y)$
C. $x=\tan ^{-1} y$
D. $\tan (x y)=C$

Answer: B

- Watch Video Solution

152. The differential equation of the family of
curves $y^{2}=4 a(x+a)$ is

$$
\begin{aligned}
& \text { A. } y^{2}=4 \frac{d y}{d x}\left(x+\frac{d y}{d x}\right) \\
& \text { B. } y^{2}\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}-y^{2}=0 \\
& \text { C. } 2 y \frac{d y}{d x}=4 a \\
& \text { D. } y^{2} \frac{d y}{d x}+4 y=0
\end{aligned}
$$

Answer: B
153. Solution of $d y / d x+2 x y=y$ is

$$
\begin{aligned}
& \text { A. } y=c \cdot e^{x-x^{2}} \\
& \text { B. } y=c \cdot e^{x^{2}}-x \\
& \text { C. } y=c e^{x} \\
& \text { D. } y=c \cdot e^{-x^{2}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

154. The solution of the differential equation

$$
x \sqrt{1-y^{2}} d x+y \sqrt{1-x^{2}} d y=0
$$

A. $V=x+2 y$
B. $V=2 x+y$
C. $V=x+y$
D. none of these

Answer: A
155. The solution of $\log (d y / d x)=a x+b y$ is

$$
\begin{aligned}
& \text { A. } \frac{e^{b y}}{b}=\frac{e^{a x}}{a}+c \\
& \text { B. } \frac{e^{-b y}}{-b}=\frac{e^{a x}}{a}+c \\
& \text { C. } \frac{e^{-b y}}{a}=\frac{e^{a x}}{b}+c
\end{aligned}
$$

D. none of these

Answer: B

156. Solution of differential equation ($\sin x+\cos$

$x) d y+(\cos x-\sin x) d x=0$ is
A. $e^{x}(\sin x+\cos x)+c=0$
B. $e^{y}(\sin x+\cos x)=c$
C. $e^{y}(\cos x-\sin x)=c$
D. $e^{x}(\sin x-\cos x+x)=c$

Answer: B
157. Equation of the curve whose slope is $\frac{y-1}{x^{2}+x}$ and which passes through the point $(1,0)$ is
A. $x y+x+y-1=0$
B. $x y-x-y-1=0$
C. $(y-1)(x+1)=2 x$
D. $y(x+1)-x+1=0$

Answer: A

D View Text Solution
158. $x \quad d y=y \quad d x+y^{2}$ and $y(1)=1$, then y
(-3) is equal to :
A. 3
B. 2
C. 1
D. 0

Answer: A
159. The differential equation $y \frac{d y}{d x}+x=c$ represents
A. a family of circles whose centres are on the y axis
B. a family of hyperbola
C. a family of circles whose centres are an the x axis
D. a family of parabolas

Answer: C

160. The differential equation of the family of circles passing through the origin and having their centres on the x-axis is

$$
\begin{aligned}
& \text { A. } x^{2}=y^{2}+x y \frac{d y}{d x} \\
& \text { B. } x^{2}=Y^{2}+{ }_{3} x y \frac{d y}{d x} \\
& \text { C. } y^{2}=x^{2}+2 x y \frac{d y}{d x} \\
& \text { D. } y^{2}=x^{2}-2 x y \frac{d y}{d x}
\end{aligned}
$$

Answer: C

161. A population grows at the rate of 10% of the population per year. How logn does it take for the population to double?
A. $5(\log 2)$ years
B. $2(\log 10)$ years
C. 20(log 20 years
D. $10(\log 2)$ years

Answer: D
162. The order and degree of the differential equation $y=\frac{d p}{d x} x+\sqrt{a^{2} p^{2}+b^{2}}$ where $p=\frac{a}{b}$
(here a and b are arbitrary constants) respectively are
A. 2,1
B. 1,2
C. 1,1
D. 2,2

Answer: D

- Watch Video Solution

163. The solution of the differential equation $2 x$ $d y / d x-y=3$ represent
A. circles
B. straight lines
C. parabolas
D. hyperbolas

Answer: C

- Watch Video Solution

164. If m and n are degree and other of $\left(1+y_{1}^{2}\right)^{2 / 3}=y_{2}$, then tha value of $\frac{m+n}{m-n}$ is
A. 3
B. 4
C. 5
D. 12

Answer: C

165. The differential equation of the family of lines

 passing through the origin is$$
\begin{aligned}
& \text { A. } x=y d y / d x \\
& \text { B. } x+y d y / d x=0 \\
& \text { C. } d y / d x=y \\
& \text { D. } y=x d y / d x
\end{aligned}
$$

Answer: D
166. The particular solution of $\frac{y}{x} \frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$ when $x=1 y=2$ is
A. $5\left(1+y^{2}\right)=2\left(1+x^{2}\right)$
B. $2\left(1+y^{2}\right)=5\left(1+x^{2}\right)$
C. $5\left(1+y^{2}\right)=\left(1+x^{2}\right)$
D. $\left(1+y^{2}\right)=2\left(1+x^{2}\right)$

Answer: B

- Watch Video Solution

167. The solution of the differential equation $\frac{d y}{d x}=(x+y)^{2}$ is
A. $1 /(x+y)=c$
B. $\sin ^{x+y}=x+c$
C. $\tan ^{-1}(x+y)=c$
D. $\tan ^{-1}(x+y)=x+c$

Answer: D

- Watch Video Solution

168. Let $y^{\prime}=e^{-2 y}$ and $\mathrm{y}=0$ when $\mathrm{x}=\mathrm{e}$. Then the value of x when $y=1 / 2$ is
A. e-1
B. $1 / 2(\mathrm{e}-1)$
C. $1 / 2(3 e-1)$
D. 0.2

Answer: C

- View Text Solution

169. The solution of the differential equation $\frac{d y}{d x}=x e^{x-y}$ is

$$
\text { A. } e^{x-y}=c
$$

B. $e^{x}\left(x e^{x}+e^{x}\right)+c+1=0$
C. $e^{x-y}=e^{x y}$
D. none of these

Answer: D

D View Text Solution
170. $f(x)$ and $g(x)$ are two differentiable functions
on $[0,2]$ such that $f^{\prime \prime}(x)-g^{\prime \prime}(x)=0$,

$$
f^{\prime}(1)=4, g^{\prime}(1)=2, f(2)=9, g(2)=3, \quad \text { then }
$$

$$
f(x)-g(x) \text { at } x=\frac{3}{2} \text { is }
$$

A. 0
B. 2
C. 10
D. 5

Answer: D
171. The differential equation : $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$ determines a family of circles with :

A. Variable radii and fixed centre at $(0,1)$

B. Variable radii and fixed centre at ($0,-1$)
C. fixed radius 1 and variable centre along the x axis
D. fixed radius 1 and variable centre along the y -
axis

Answer: C
172. Tangent is drawn at any point P of a curve which passes through (1,1) cutting x-axis and y-axis at A and B respectively. If $B P: A P=3: 1$ then
A. the differential equation of the curve is $3 x$
$d y / d x+y=0$ and the curve passes through
(1/8,2)
B. the differential equation of the curve is $3 x$
$d y / d x-y-0$ and the curve pass through $(1 / 8,2)$
C. the curve passes through ($-1 / 8 .-2$)
D. the normal at $(1,1)$ is $x+3 y=4$

D View Text Solution

173. The interval contained in the domain of definition of non-zero solutions of the differential equation $(x-3)^{2} y^{\prime}+y=0$ is
A. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
B. $(0, \pi)$
C. $(0,2 \pi)$
D. $(-\pi, \pi)$

D Watch Video Solution

174. Let f be a real values differentiable function on R such that $f(1)=1$. If the y intercept of the tangent at any $P(x, y)$ on the curve $y=f(x)$ is equal to cube of the abscissa of P, then the value of $f(-3)$ is equal to
A. 3
B. 6
C. 9
D. 0

- View Text Solution

175. The solution of the differential equation:

$$
\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0 \text { is : }
$$

A. $x e^{2 \tan ^{-1} y}=e^{\tan ^{-1} y}+k$
B. $(x-2)=k e^{\tan ^{-1} y}$
C. $2 x e^{\tan ^{-1} y}-e^{2 \tan ^{-1} y}+k$
D. $x e^{\tan ^{-1} y}-\tan ^{-1} y+k$

- Watch Video Solution

176. The differential equation of all circles which pass through origin and whose centres lie on y axis is :

$$
\begin{aligned}
& \text { A. }\left(x^{2}-y^{2}\right) \frac{d y}{d x}+x y=0 \\
& \text { B. }\left(x^{2}-y^{2}\right) \frac{d y}{d x}-x y=0 \\
& \text { C. }\left(x^{2}-y^{2}\right) \frac{d y}{d x}+2 x y=0 \\
& \text { D. }\left(x^{2}-y^{2}\right) \frac{d y}{d x}-2 x y=0
\end{aligned}
$$

177. A function $y=f(x)$ has a second order derivative
$f^{\prime \prime}(x)=6(x-1)$. If its graph passes thro' the point $(2,1)$ and at the point the tangent to the graph is $y=3 x-5$, then the function is :

> A. $(x+1)^{2}$
> B. $(x-1)^{3}$
> C. $(x+1)^{2}$
> D. $(x-1)^{2}$
178. If $x \frac{d y}{d x}=y(\log y-\log x+1)$, then the solution of the equation is:
A. $\log (x / y)=c y$
B. $\log (y / x)=c x$
C. $x \log (y / x)-c y$
D. $y \log (x / y)=c x$

Answer: B
179. The differential equation whose solution is
$A x^{2}+B y^{2}=1$, where A and B are arbitrary constants, is of :
A. second order and second degree
B. first order and second degree
C. first order and first degree
D. second order and first degree

Answer: D

- Watch Video Solution

180. The differential equation of family of circles with fixed radius 5 units and centre on the line $y=2$ is

$$
\begin{aligned}
& \text { A. }(y-2)^{2}\left(y^{\prime}\right)^{2}=25-(y-2)^{2} \\
& \text { B. }(x-2)^{2}\left(y^{\prime}\right)^{2}=25-(y-2)^{2} \\
& \text { C. }(x-2)\left(y^{\prime}\right)^{2}=25-(y-2)^{2} \\
& \text { D. }(y-2)\left(y^{\prime}\right)^{2}=25-(y-2)^{2}
\end{aligned}
$$

Answer: A
181. The differential equation which represents the
family of curves $y=c_{1} e^{c_{2} x}$ where c_{1} and c_{2} are arbitrary constants, is:

$$
\begin{aligned}
& \text { A. } y y^{\prime \prime}=\left(y^{\prime}\right)^{2} \\
& \text { B. } y^{\prime}=y^{2} \\
& \text { C. } y^{\prime \prime}=y^{\prime} y \\
& \text { D. } y y^{\prime \prime}=y^{\prime}
\end{aligned}
$$

Answer: A
182. Solution of the differential equation $\cos x d y=$
$y(\sin x-y) d x 0<x<\frac{\pi}{2}$ is
A. $y \tan x=\sec x+c$
B. $\tan x=(\sec x+c) y$
C. $\sec x=(\tan x+c) y$
D. $y \sec x=\tan x+c$

Answer: C

D View Text Solution
183. The general solution of
$y^{2} d x+\left(x^{2}-x y+y^{2}\right) d y=0$ is

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{x}{y}\right)+\log y+c=0 \\
& \text { B. } 2 \tan ^{-1}\left(\frac{x}{y}\right)+\log y+c=0 \\
& \text { C. } \log \left(y+\sqrt{x^{2}+y^{2}}\right)+\log y+c=0 \\
& \text { D. } \log y=\tan ^{-1}\left(\frac{y}{x}\right)+c
\end{aligned}
$$

Answer: D
184. The differential equation of the family of parabola with focus at the origin and the x-axis as axis is

$$
\begin{aligned}
& \text { A. } y\left(\frac{d y}{d x}\right)+4 x \frac{d y}{d x}=4 y \\
& \text { B. } y\left(\frac{d y}{d x}\right)^{2}=2 x \frac{d y}{d x}-y \\
& \text { C. } y\left(\frac{d y}{d x}\right)^{2}+y=2 x y \frac{d y}{d x} \\
& \text { D. } y\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}+y=0
\end{aligned}
$$

Answer: B

185. Integrating factor of the differential equation $\cos x d y / d x+y \sin x=1$ is
A. $\sin x$
B. $\sec x$
C. $\tan x$
D. $\cos x$

Answer: B

- Watch Video Solution

186. The differential equation $\frac{d y}{d x}+P y=Q y^{n}, n>2$ can be reduced to linear form by substituting
A. $z=y^{n-1}$
B. $z=y^{n}$
C. $z=y^{n+1}$
D. $z=y^{1+n}$

Answer: D

187. The function $f(\theta)=\frac{d}{d} \theta \int_{0}^{\theta} \frac{d x}{1-\cos \theta \cos x}$ satisfies the differential equation

$$
\begin{aligned}
& \text { A. } \frac{d f}{d \theta}+2 f(\theta) \cot \theta=0 \\
& \text { B. } \frac{d f}{d \theta}-2 f(\theta) \cot \theta=0 \\
& \text { C. } \frac{d f}{d \theta}+2 f(\theta)=0 \\
& \text { D. } \frac{d f}{d \theta}-2 f(\theta)=0
\end{aligned}
$$

Answer: A
188. The solution of the differential equation

$$
\left(1+x^{2}\right) d y \cdot d x+1+y^{2}=0 \text { is }
$$

A. $\tan ^{-1} x+\tan ^{-1} y=\tan c$
B. $\tan ^{-1} y-\tan ^{-1} x=\tan ^{-1} c$
C. $\tan ^{-1} y \pm \tan ^{-1} x=\tan ^{-1} c$
D. $\tan ^{-1} y+\tan ^{-1} x=\tan ^{-1} c$

Answer: D
189. The differential equation of all parabolas whose axes are parallel to y-axis is

$$
\begin{aligned}
& \text { A. } \frac{d^{3} y}{d x^{3}}=0 \\
& \text { B. } \frac{d^{2} x}{d y^{2}}=c \\
& \text { C. } \frac{d^{3} y}{d x^{3}}+\frac{d^{2} x}{d y^{2}}=0 \\
& \text { D. } \frac{d^{2} y}{d x^{4}}+2 \frac{d y}{d x}=c
\end{aligned}
$$

Answer: A
190. The solution of the differential equation $\frac{d y}{d x}+1=e^{x+y}$ is

$$
\begin{aligned}
& \text { A. }(\mathrm{x}+\mathrm{y}) \mathrm{e}^{\wedge}(\mathrm{x}+\mathrm{y})=0 \\
& \text { B. }(\mathrm{x}+\mathrm{c}) \mathrm{e}^{\wedge}(\mathrm{x}+\mathrm{y})=0 \\
& \text { C. }(x-c) e^{x+y}=1 \\
& \text { D. }(x-c) e^{x+y}+1=0
\end{aligned}
$$

Answer: D

D View Text Solution
191. Which of the following functions is a solution
of the differential equation

$$
\left(\frac{d y}{d x}\right)^{2}-x\left(\frac{d y}{d x}\right)+y=0 ?
$$

A. $y=2$
B. $y=2 x$
C. $y=2 x-4$
D. $y=2 x^{2}-4$

Answer: C
192. The general solution of $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$ is
A. $\tan ^{-1} x+\cot ^{-1} x=c$
B. $\sin ^{-1} x+\sin ^{-1} y=c$
C. $\sec ^{-1} x+\cos e c^{-1} x=c$
D. none of these

Answer: B

- Watch Video Solution

193. The solution of $\cos (x+y) d y=d x$ is

$$
\text { A. } y=\tan \left(\frac{x+y}{2}\right)+c
$$

B. $\grave{y}=\cos ^{\wedge}(-1)(y / x)$
C. $y=x \sec (y / x)$
D. none of these

Answer: A

D View Text Solution

194. The integrating factor of the differential equation :
$\frac{d y}{d x}(x \log x)+y=2 \log x$ is :
A. $\log (\log x)$
B. e^{x}
C. $\log x$
D. x

Answer: C

D Watch Video Solution

195.Thesolutionof $\frac{d y}{d x}+2 y \tan x=\sin x$ is
A. $y \sec ^{3} x=\sec ^{2} x+c$
B. $y \sec ^{2} x=\sec x+c$
C. $y \sin x=\tan x+c$
D. none of these

Answer: B

- Watch Video Solution

196. Solution of the differential equation $x d y-y d x=0$
represents
A. a rectangular hyperbola
B. a straight line passing through the origin
C. Parabola whose vertex is at the origin
D. circle whose centre is at origin

Answer: B

- Watch Video Solution

197. The solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=x^{2}$ is :
A. $y=\frac{x^{2}}{4}+c x^{-2}$
B. $y=x^{-1}+c x^{-3}$
C. $y=\frac{x^{3}}{4}+c x^{-1}$
D. $x y=x^{2}+c$

Answer:

- Watch Video Solution

198. The solution of the differential equation $\frac{d y}{d x}-\frac{\tan y}{x}=\frac{\tan y \sin y}{x^{2}}$ is
A. $x /(\sin y)+\log x=c$
B. $y /(\sin x)+\log x=c$
C. $\log y+x=c$
D. $\log x+y=c$
199. The differential equation of family of curves

$$
x^{2}+y^{2}-2 a x=0 \text { is }
$$

A. $x^{2}-y^{2}+2 x y y^{\prime}=0$
B. $y^{2}+x^{2}=2 x y y^{\prime}$
C. $x^{2}+Y^{2}+2 y^{\prime \prime}=0$
D. none of these

Answer: A
200. The solution of the differential equation

$$
\frac{d y}{d x}+\frac{2 x}{1+x^{2}} y=\frac{1}{\left(1+x^{2}\right)^{2}} \text { is }
$$

A. $y\left(1-x^{2}\right)=\tan ^{-1} x+c$
B. $y\left(1+x^{2}\right)=\tan ^{-1} x+c$
C. $y\left(1+x^{2}\right)^{2}=\tan ^{-1} x+c$
D. $y\left(1-x^{2}\right)^{2}=\tan ^{-1} x+c$

Answer: B

- Watch Video Solution

201. The solution of the equation $d y / d x=(x+y) /(x-y)$

is
A. $c\left(x^{2}-y^{2}\right)^{\frac{1}{2}}+e^{\tan ^{-1}\left(\frac{y}{x}\right)}=0$
B. $c\left(x^{2}+y^{2}\right)^{\frac{1}{2}}+e^{\tan ^{-1}\left(\frac{y}{x}\right)}$
C. $c\left(x^{2}-y^{2}\right)^{\frac{1}{2}}+e^{\tan ^{-1}\left(\frac{y}{x}\right)}$
D. none of these

Answer: B
202. The solution of the differential equation $\left(x^{2}-y x^{2}\right) \frac{d y}{d x}+y^{2}+x y^{2}=0$ is
A. $\log (x / y)=1 / x+1 / y+c$
B. $\log (y / x)=1 / x+1 / y+C$
C. $\log (x y)=1 / x+1 / y+c$
D. $\log (x y)+1 / x+1 / y=c$

Answer: B

- View Text Solution

203. The degree and order of the differential equation of the family of all parabolas whose axis is x - axis, are respectively:
A. 2,1
B. 1,2
C. 3,2
D. none of these

Answer: B
204. If a is an arbitrary constant, then solution of
the different equation $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$ is
A. $x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}=a$
B. $y \sqrt{1-y^{2}}+x \sqrt{1-x^{2}}=a$
C. $x \sqrt{1-y^{2}}-y \sqrt{1-x^{2}}=a$
D. $y \sqrt{1-y^{2}}-x \sqrt{1-x^{2}}=a$

Answer: C

205. A curve having the condition that the slope of the tangent at some point is two times the slope of the straight line joining the same point to the origin of cordinates is a/an
A. circle
B. ellipse
C. parabola
D. hyperbola

Answer: C
206. The differential equation of the family of circles passing through the fixed points $(a, 0)$ and ($a, 0)$ is

> A. $y_{1}\left(Y^{2}-x^{2}+a^{2}\right)+2 x y+a^{2}=0$
> B. $Y_{1} y^{2}+x y+a^{2} x^{2}=0$
> C. $y_{1}\left(y^{2}-x^{2}+a^{2}\right)+2 x y=0$
> D. none of these

Answer: C

