©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - HIMALAYA MATHS (KANNADA

ENGLISH)

LINEAR PROGRAMMING

Question Bank

1. Objective function of L.P.P is
A. a function to be optimized
B. a constants function
C. a relation between the variables
D. none of these

Answer: A

- Watch Video Solution

2. Which of the following set is not a convex set
A. $\{(x, y): x+y \leq 1\}$
B. $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$
C. $\left\{(x, y): 1 \leq x^{2}+y^{2} \leq 3\right\}$

$$
\text { D. }\left\{(x, y): 2 x^{2}+3 y^{2} \leq 6\right\}
$$

Answer: C

- View Text Solution

3. Which of the following set is convex
A. $\left\{(x, y): x^{2}+y^{2} \geq 1\right\}$
B. $\left\{(x, y): 2 x^{2}+5 y^{2} \leq 3\right\}$
C. $\left\{(x, y): 4 \leq x^{2}+y^{2} \leq 7\right\}$
D. $\left\{(x, y): 5 \leq 2 x^{2}+5 y^{2} \leq 3\right\}$

Answer: B
4. If $X_{1}=\left(x_{1}, y_{1}\right)$ and $X_{2}=\left(x_{2}, y_{2}\right)$ are two optimal solutions of a L.P.P., then
A. $\lambda X_{1}+(1-\lambda) X_{2}, \lambda$ in R is also an optimal
solution
B. $\lambda X_{1}+(1+\lambda) X_{2}, \lambda$ in R is also an optimal solution
C. $\lambda X_{1}+(1+\lambda) X_{2}, 0 \leq \lambda \leq 1$ is also optimal solution

D. $\lambda X_{1}+(1-\lambda) X_{2}, 0 \leq \lambda \leq 1$ is also optimal

 solution
Answer: D

D Watch Video Solution

5. The optimal value of the objective function is attained at the points
A. on X-axis
B. on Y-axis
C. which are at the corner-points of the feasible region
D. Which are at the points of intersection of the inequation with Y -axis

Answer: C

D View Text Solution

6. The solution of inequality $x \geq 0$ is
A. half plane on the left of Y-axis
B. half plane on the right of Y-axis including Y-axis
C. half plane on the right of Y -axis excluding Y -axis

D. half plane on the right of Y -axis and above X -

axis

Answer: B

D View Text Solution

7. Solution set of the inequality $y \leq 0$ is
A. half plane below X -axis, excluding the points on

X-axis
B. half plane above X-axis
C. half plane below X -axis, including the points on X-axis
D. half plane above X - axis, including the point X -
axis

Answer: C

D View Text Solution
8. The solution set of the inequalities $x \geq 0$ and
$y \leq 0$ is
A. First quadrant

B. Second quadrant

C. Third quadrant

D. Fourth quardant

Answer: D

D View Text Solution

9. The region represents by the inequalities

$$
x \geq 6, y \geq 3,2 x+y \geq 10, x \geq 0, y \geq 0 \text { is }
$$

A. unbounded
B. a polygon

C. bounded region

D. exterior of a triangle

Answer: A

- Watch Video Solution

10. If an LPP admits optimal solution at two consecutive vertices of a feasible region, then
A. the required optimal solution is at the midpoint of line joining these two points
B. the optimal solution occurs at every point on the line joining these two points
C. the L.P.P under consideration is not solvable
D. the L.P.P under consideration must be reconstructed

Answer: B

- Watch Video Solution

11. The feasible region of an L.P.P is always
A. a closet set
B. an unbounded set
C. a bounded set
D. a convex polygon

Answer: D

- Watch Video Solution

12. The minimum value of the linear objective
function $x=5 x+2 y$ subjected to
$10 x+2 y \geq 20,5 x+5 y \geq 30, x \geq 0, y \geq 0$ is
A. 10
B. 15
C. 20
D. 25

Answer: B

- Watch Video Solution

13. The shaded region in the following figure is the solution set of the inequations,

A. $5 x+4 y \geq 20, x \geq 6, y \geq 4, x \geq 0, y \geq 0$
 B. $5 x+4 y \geq 20, x \leq 6, y \leq 4, x \geq 0, y \geq 0$
 C. $5 x+4 y \leq 20, x \leq 6, y \leq 4, x \leq 0, y \geq 0$
 D. $5 x+4 y \geq 20, x \geq 6, y \leq 4, x \geq 0, y \geq 0$

Answer: B

D Watch Video Solution

14. The shaded region in the following figure is the solution set of the inequations,

A. $3 x+y \geq 9, x+2 y<8, x \geq 0, y \geq 0$

$$
\text { В. } 3 x+y \leq 9, x+2 y>8, x \geq 0, y \geq 0
$$

C. $3 x+y \leq 9, x+2 y<8, x \geq 0, y \geq 0$
D. $3 x+y=9, x+2 y>8, x \geq 0, y \geq 0$

Answer:

- Watch Video Solution

15. The maximum value of linear objective function $z=$

$$
\begin{aligned}
& \text { 40x }+ \text { 50y } \quad \text { subjected } \\
& 3 x+y \leq 9, x+2 y<8, x \geq 0, y \geq 0 \text { is }
\end{aligned}
$$

A. 220
B. 240
C. 260
D. 230

Answer: D

16. The shaded region in the following figure is the

 solution set of the inequations,
A.

$$
x+2 y \leq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x, y \geq 0
$$

B.

$$
x+2 y \geq 6,5 x+3 y \leq 15, x \leq 7, y \leq 6, x, y \geq 0
$$

C.

$$
x+2 y \geq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x, y \geq 0
$$

D.

$$
x-2 y \geq 6,5 x-3 y \geq 15, x \leq 7, y \leq 6, x, y \geq 0
$$

Answer: C

(Watch Video Solution

17. Maximum value of set $z=3 x+2 y$ subjected to

$$
0 \leq x \leq 3,0 \leq y \leq 3, x+y \leq 5,2 x+y \geq 4, \text { is }
$$

A. 10
B. 11
C. 12
D. 13

Answer: D

Watch Video Solution

18. The shaded region in the following figure is the solution set of the inequations,

A. $x, y \geq 0, x+y \geq 5, x \geq 4, y \leq 2$

$$
\text { В. } x, y \geq 0, x+y \leq 5, x \geq 4, y \leq 2
$$

C. $x, y \geq 0, x+y \geq 5, x \leq 4, y \leq 2$
D. $x, y \geq 0, x+y \geq 5, x \geq 4, y \geq 2$

Answer: A
(D) Watch Video Solution
19. The minimum value of $z=6 x+4 y$ subjected to

$$
2 x+3 y \leq 30,3 x+2 y \leq 24, x+4 y \leq 3, x, y \leq 0
$$

A. occur at only one point
B. occur at two points only
C. occur at infinite number of points
D. does not occur at any point

Answer: C

- Watch Video Solution

20. The region represented by the inequations

$$
2 x+3 y \leq 18, x+y \geq 10, x \geq 0, y \geq 0 \text { is }
$$

A. unbounded
B. a polygon
C. bounded region
D. null region

Answer: D

D Watch Video Solution

21. Optimization of the objective function is a process of
A. maximizing the objective function
B. minimizing the objective function
C. maximizing or minimizing the objective function

D. none of these

Answer: C

D Watch Video Solution

22. The corner points of the feasible region determined by the system linear constraints are $(0,10),(5,5),(15,15),(0,20)$. Let $Z=p x+q y$, where p,
$q>0$, condition on p and q so that the maximum of Z occurs at both the points $(15,15)$ and $(0,20)$ is

$$
\begin{aligned}
& \text { A. } p=q \\
& \text { B. } p=2 q \\
& \text { C. } q=2 p \\
& \text { D. } q=3 p
\end{aligned}
$$

Answer: D

- Watch Video Solution

23. Feasible region (shaded) for a LPP is shown in the following figure

A. $(0,8)$
B. $(2,5)$
C. $(4,3)$
D. $(9,0)$

Answer: B
24. The corner points of the feasible region determined by the system of linear constraints are
$(0,0),(0,40),(20,40),(60,20),(60,0)$. The objective function is $Z=4 x+3 y$. Compare the quantity in column in A and column B. Column $A=$ Maximum of Z Column B= 325
A. The quantity in column B is greater
B. The quantity in column A is greater
C. The two quantities are equal
D. The relationship can not be determined on the basis of the information supplied

Answer: A

D Watch Video Solution

25. The feasible solution for a LPP is shown in the following figure. Let $Z=3 x-4 y$ be the objective function. Minimum of Z occurs at

A. $(0,0)$
B. $(0,8)$
C. $(5,0)$
D. $(4,10)$

Answer: B

- Watch Video Solution

26. The feasible solution for a LPP is shown in the following figure. Let $Z=3 x-4 y$ be the objective
function. Minimum of Z occurs at

A. $(5,0)$
B. $(6,5)$
C. $(5,0)$
D. minus 46

Answer: A
27. The feasible solution for a LPP is shown in the following figure. Let $Z=3 x-4 y$ be the objective function. (Maximum value of $Z+$ Minimum value of Z) is

A. 13
B. 1
C. -13

$$
\text { D. }-17
$$

Answer: D

D Watch Video Solution

28. The feasible region for an LPP is shown in the following figure. Let $F=3 x-4 y$ be the objective
function. Maximum value of F is

A. 0
B. 8
C. 12
D. minus 18

Answer: C
29. The feasible region for an LPP is shown in the following figure. Let $F=3 x-4 y$ be the objective function. Minimum value of F is

A. 0
B. minus 16
C. 12

D. minus 46

Answer: D

- Watch Video Solution

30. Corner points of feasible region for an LPP are $(0,2),(3,0),(6,0),(6,8)$ and (0,5). Let $F=4 x+6 y$ be the objective function. The minimum value of F occur at
A. $(0,2)$ only
B. $(3,0)$ only
C. the mid point of the line segment joining the
D. any point on the line segment joining the points (0,2) and (3,0)

Answer: D

D Watch Video Solution

31. In the equation 33 Maximum of F - Minimum of $F=$
A. 60
B. 49
C. 42
D. 18

D View Text Solution

32. Corner points of the feasible region determined by the system of linear constraints are $(0,3),(1,1)$ and $(3,0)$. Let $z=p x+q y$, where $p, q>0$. Condition on p and q so that the minimum of z occurs at $(3,0)$ and $(1,1)$ is
A. $p=2 q$
B. $p=-q / 2$
C. $p=3 q$
D. $p=q$

Answer: B

- Watch Video Solution

