©゙"doubtnut

India's Number 1 Education App

MATHS

BOOKS - HIMALAYA MATHS

(KANNADA ENGLISH)

MATHEMATICAL REASONING

Question Bank

1. Which of the following is not a proposition?
A. Bring me a glass of a water
B. They a played a good cricket
C. 475 is an even integer
D. He is handsome

Answer: C

D Watch Video Solution

2. If in two triangles $D E F$ and $P Q R$,
$\lfloor D=\lfloor Q$, and $\lfloor R=\lfloor E \quad$ which of the following is not true?
A. For any statement p, 'p nu (
B.
C.
D.

Answer: C

D Watch Video Solution
3. Which of the following is not a propostion?
A. Wish you good luck in the examination
B. Red Fort is in Mumbai
C. $3+7 \geq 4+1$
D. ~ilar triangles are congruent

Answer: A

D Watch Video Solution

4. Which of the following is not a propostion?
A. There are only finite number of primes
B. Every even integer is divisible by 2
C. Inverse of a singular matrix does not exist
D. None

Answer: D

D Watch Video Solution
5. Which of the following is a propostion?
A. Bring me a glass of a water
B. What a beautiful flower it is!
C. Sum of two integers is again an integer D. Logic is interesting

Answer: C

D Watch Video Solution

6. Which of the following is not a proposition?
A. Mathematics is an interesting subject
B. Are we going out today?
C. He looks very young at this age

D. None of these

Answer: D

D Watch Video Solution

7. If pdenotes " congruent triangles are ~ilar" and qdenotes " the grass is green" then
symbol $p \wedge \sim q$ means
A. Congruent triangles are ~ilar and the grass is green
B. Congruent triangles are ~ilar or the grass is not green
C. Congruent triangles are ~ilar and the grass is not green
D. Congruent triangles are ~ilar and the

grass is green

Answer: C

- Watch Video Solution

8. Let p be the proposition "Delhi is in Karnataka" and q be the proposition "Mumbai is in M.P." The symbol $p \rightarrow(\sim q)$ means
A. If Delhi is in Karnataka then Mumbai is not in M.P.
B. If Delhi is in Karnataka and Mumbai is in
M.P.
C. Delhi is in Karnataka and Mumbai is in M.P.

D. If Delhi is not Karnataka then Mumbai is

also not in M.P.

Answer: A

D Watch Video Solution

9. Let pdenote the proposition "Sunset in East" and qbe the proposition " $2+7=8$ ", then the symbol $q \rightarrow p$, means
A. If $2+7+8$ then Sun sets in East
B. If $2+7=8$ then Sun sets in East
C. If $2+7 \neq 8$ and Sun does not set in

East
D. If $2+7=8$ and Sun does not set in

East

Answer: B

- Watch Video Solution

10. Let p:Suraj passes in Mathematics. q: Prof X
resigns from the job. r : College conducts an
enquiry Then, the symbol $p \rightarrow(q \wedge r)$ means
A. If Suraj passes in Mathematics, then Prof.
X resigns the job or college will conduct
an enquiry
B. If Suraj passes in Mathematics and Prof.
X resigns the job or college will conduct
an enquiry

C. Suraj passes in mathematics and Prof.X

resigns but college will not conduct an enquiry
D. None of these

Answer: B

D Watch Video Solution
11. Let $\mathrm{p}: 32$ is a multiple of 8 . $\mathrm{q}: 17$ is a prime number. $r: 3+7=11$. The symbolic form of
the statement : " 32 is a multiple of 8 and 17 is
a prime number but ` $3+7$ ne 7 ", is
A. $(p \wedge q) \vee r$
B. $(p \wedge q) \wedge r$
C. $(p \wedge q) \wedge \sim r$
D. $(p \vee q) \wedge \sim r$

Answer: C

D Watch Video Solution
12. Let $\mathrm{p}: 2+3=5, q=\sqrt{2}$ is irrational. The symbolic form of the statement. " It is not true that $2+3=5$ if and only if $\sqrt{2}$ is irrational ", is
A. $\sim p \leftrightarrow q$
B. $\sim p \leftrightarrow \sim q$
C. ${ }^{\sim}(p$ harr $\sim q)$
D. $\sim(p$ harr $q)$

Answer: D

13. Let p : Banglore is the capital fo Maharastra $\mathrm{q}:$ Paris is in England $\mathrm{r}: 7$ is greater than 10.

The symbolic form of the statement 7 is greater than 10 if and only if, Bangalore is the capital of Maharastra or Pari is in England, is
A. $r \leftrightarrow(p \nu q)$
B. $r \rightarrow(p \nu \sim q)$
C. $r \leftrightarrow \sim(p \nu q)$
D. $\sim r \nu(p \nu q)$

Answer: A

D Watch Video Solution

14. Let $p: 3+4=7, q: 4$ is a prime integer. The symbolic form of the statement. " A necessary condition that $3+4=7$ is that 4 is a prime integer " is given by
A. $q \rightarrow p$
B. $p \rightarrow q$
C. $p \mu q$

D. $p \nu q$

Answer: B

D Watch Video Solution

15.

The statement,
$(a . b=0) \rightarrow(a=0$ or $b=0)$ where a and
b are real numbers means
A. $a=0$ or $b=0$ is a necessary condition

$$
\text { for `a. } b=0
$$

B. If $a . b \neq$ then $a=0$ or $b=0$
C. If $a \neq 0$ and $b \neq 0$ then ' $\mathrm{a} . \mathrm{b}=0$
D. None of these

Answer: A

- Watch Video Solution

16. If a function $f(x)$ is differentiable at $\mathrm{x}=\mathrm{c}$ prove that it is continuous at $\mathrm{x}=\mathrm{c}$.
A. Sufficient condition for $f(x)$ is to
differentiable at $\mathrm{x}=\mathrm{a}$
B. Necessary condition for $f(x)$ to be differentiable at $\mathrm{x}=\mathrm{a}$ is it si continous at

$$
x=a
$$

C. Continuity os $f(x)$ of $x=a$ implies
differentiability at $x=a$
D. not differentiability of $f(x)$ implies not
continuity at $\mathrm{x}=\mathrm{a}$
17. The proposition $(p \wedge q)$ to $(r \vee \sim s)$ is known to be false. Then the truth values of p, q, r and s respectively
A. T, F, T, T
B. T,T,T, F
C. T, T, F, F
D. T, T, F, T
18. The proposition $p \wedge \sim(q \vee r)$ is known to
true, then the truth values of p, q, r respectively
A. T, T, F
B. T, F, F
C. T, F, T
D. F, T, T
19. The proposition $(p \wedge \sim q) \wedge \sim r$ is given to be true statement. Then the truth values of p, q and r respectively
A. T, F, F
B. F, T, T
C. T, F, T
D. T, T, F

Answer: A
20. The proposition $p \vee \sim(q \wedge r)$ is given to be false, then the truth values of p, q and r are respectively
A. T, F, T
B. T, T, F
C. F,T, T
D. T, F, F
21. If $p \rightarrow(\sim p \vee q)$ is given to be a false statement then the truth values of p and q respectively.
A. F, T
B. T, T, F
C. F, F
D. T, F

- Watch Video Solution

22. If p, q, and r are proposition with truth
values F, T and F respectively, then the truth
values of $(p \wedge \sim q) \rightarrow r, \quad(p \vee q) \rightarrow r$ and

$$
q \rightarrow(p \wedge r)
$$

A. T, T, F
B. T, F, T
C. T, F, F
D. T, T, T

Answer: C

D Watch Video Solution

23. " If $x-2=3$ and $y=-2$ then $2 \mathrm{x}+\mathrm{y}=$ $3^{\text {" " The contrapositive of this statement is }}$
A. If $(x-2) \neq 3$ and $y=-2$ then ${ }^{`}(2 x+$

$$
y=3)
$$

B. If $(2 x+y \neq 3)$ then ${ }^{`}(x-2=3$ or $\mathrm{y}=-2)$
C. If $(2 x+y \neq 3)$ then $(x-2 \neq 3)$ and

$$
(y \neq-2)
$$

D. If $(x-2 \neq 3)$ and $(y \neq-2)$ then

$$
(2 x+y \neq 3)
$$

Answer: B

D Watch Video Solution

24. The inverse of the proposition "If two numbers are not equal then their squares are not equal"
A. If two numbers are equal then their squares are equal
B. If two numbers are not equal then their squares are equal
C. If the squares of two numbers are equal
then the numbers are not equal
D. If two numbers are equal then their squares are not equal

Answer: C

25. The inverse of the statement " If an integer
is greater than 3 and less than 5 then it is a multiple of 4 " is
A. If an integer is not greater than 3 and not less than 5 then it is not a multiple of 4
B. If an integer is not greater than 3 and
not less than 5 then it is not a multiple
of 4
C. If an integer is not greater than 3 or not
less than 5 then it is a multiple of 4
D. If

Answer: C

D Watch Video Solution

26. The inverse of the conditional " If $x \in(A \cup B)$ then $x \in A$ or $x \in B$ " is
A. If $x \notin A$ and $x \notin B$ then $x \notin A \nu B$
B. If $x \notin A$ or $x \notin B$ then $x \notin A \nu B$
C. If $x \notin A$ or $x \in B$ then $x \in A \nu B$
D. If $x \notin(A \nu B)$ then $x \notin A$ or $x \notin B$

Answer: C

D Watch Video Solution

27. The inverse of the conditional " If $x \in(A \cup B)$ then $x \in A$ or $x \in B$ " is
A. If $x \notin A$ or $x \notin B$ then $x \notin A \mu B$
B. If $x \notin A$ and $x \notin B$ then $x \notin A \mu B$
C. If $x \notin A$ or $x \notin B$ then $x \in A \nu B$
D. If $x \notin A$ and x in B then $x \in A \mu B$

Answer: B

D Watch Video Solution

28. The inverse of the conditional " If $x \in(A \cup B)$ then $x \in A$ or $x \in B$ " is
A. If $x \in A \nu B$ then $x \notin A$ and $x \notin B$
B. If $x \notin A \nu B$ then $x \notin A$ or $x \notin B$
C. If $x \notin A$ or $x \notin B$ then $x \notin A \nu B$
D. If $x \notin A$ and $x \notin B$ then $x \notin A \cup B$

Answer: B

D Watch Video Solution

29. The contrapositive of " If $x \in A \cap B$ then $x \in A$ and $x \in B$ is
A. If $x \notin A$ and $x \notin B$ then $x \notin A \nu B$
B. If $x \notin A$ or $x \notin B$ then $x \notin A \nu B$
C. If $x \notin A$ or $x \in B$ then $x \notin A \nu B$
D. If $x \notin A$ and $x \in B$ then $x \notin A \nu B$

Answer: B

D Watch Video Solution

30. Negation of the statement $\sim p \rightarrow(q \vee r)$ is
A. $p \rightarrow \sim(q \vee r)$
B. $\sim p \rightarrow(q \vee r)$

$$
\begin{aligned}
& \text { C. } \sim p \vee(\sim q \vee \sim r) \\
& \text { D. } \sim p \wedge(\sim q \wedge \sim r)
\end{aligned}
$$

Answer: C

- Watch Video Solution

31. The negation of the proposition " If a quadrilateral is a square then it is a rhombus", is
A. If a quadrilateral is not a square then it is a rhombus
B. If a quadrilateral is a square then it is
not a rhombus
C. If a quadrilateral is a square and it is not a rhombus
D. Quadrilateral is nota square or it is not a rhombus

Answer: C
32. The negation of the statement" He is neither quiet nor practical", is
A. He is either quiet or practical
B. He is not quiet and not practical
C. He is quiet and practical
D. none of these

Answer: A
33. The negation of $p \rightarrow(q \wedge r)$ is
A. $p \wedge(q \wedge r)$
B. $p \wedge \sim(q \vee r)$
C. $p \wedge(\sim q \vee \sim r)$
D. $\sim p \rightarrow \sim(q \wedge r)$

Answer: C

34. The negation of $(p \rightarrow q) \vee(p \rightarrow r)$ is

A. $p \wedge(q \wedge \sim r)$
B. $p \wedge(\sim q \wedge r)$
C. $\sim p \wedge(p \rightarrow r)$
D. $p \wedge(\sim q \wedge \sim r)$

Answer: D

35. The negation of the proposition " 4 is the divisor of 48 and 325 is not divisible by 4 ", is
A. 4 is not a divisor of 48 or 4 divides 325
B. 4 is a divisor of 48 and 325 is divisible by

4
C. 4 is a divisor of 48 or 4 is not a divisor of

325
D. none of these
36. The inverse of the statement " If an integer
is greater than 3 and less than 5 then it is a multiple of 4 " is
A. An integer is greater than 3 and less
than 5 but it is not a multiple of 4
B. An integer not greater than 3 but less
than 5 and it is not a multiple of 4
C. If an integer is greater than 3 and less
than 5 then it is not a multiple of 4
D. None of these

Answer: A

D Watch Video Solution

37. Negation of $(p \rightarrow q) \wedge(q \wedge p)$ is
A. $\sim(p \wedge \sim q) \vee(\sim q \vee \sim p)$
B. $(p \wedge \sim q) \vee(\sim q \vee \sim p)$

$$
\begin{aligned}
& \text { C. }(p \rightarrow \sim q) \wedge(\sim q \wedge \sim p) \\
& \text { D. }(\sim p \rightarrow q) \vee(q \wedge \sim p)
\end{aligned}
$$

Answer: A

D Watch Video Solution

38. The negation of the statement "If $x \in A \nu B$ then $x \in A$ and $x \in B^{\prime \prime}$ is
A. $x \notin(A \nu B)$ and $(x \notin A$ or $x \notin B)$
B. $x \in(A \nu B)$ and $(x \notin A$ or $x \notin B)$
C. $x \notin(A \mu B)$ and $(x \notin A$ or $x \notin B)$
D. None of these

Answer: B

D Watch Video Solution

39. The negation of the statement "If $x \in A \cup B$ then $x \in A$ and $x \in B^{\prime \prime}$ is
A. $x \notin(A \mu B)$ and $(x \in A$ or $x \in B)$
B. $x \in(A \mu B)$ and $(x \notin A$ or $x \notin B)$
C. $x \in(A \mu B)$ but $(x \notin A$ and $x \notin B)$
D. $x \notin(A \cup B)$ but $(x \notin A$ or $x \notin B)$

Answer: C

- Watch Video Solution

40. Which of the following is always true

$$
\begin{aligned}
& \text { A. } p \wedge(q \vee r) \cong(p \wedge q) \wedge r \\
& \text { B. } \sim(p \wedge q) \cong \sim p \wedge \sim q \\
& \text { C. } \sim(p t p q) \cong \sim p \wedge \sim q
\end{aligned}
$$

$$
\text { D. } \sim(p \rightarrow q) \cong p \wedge \sim q
$$

Answer: C

D Watch Video Solution

41. The negation of the statement " If he is
successful then he will join engineering course
or medical course" is
A. He is successful and joined engineering course but not medical course
B. He is not successful and not joined neither engineering nor medical course
C. He is successful and joined medical
course
D. He is successful but he joined neither
engineering nor medical course

Answer: C

D Watch Video Solution
42. The statement that is not correct is
A. It is raining and the weather is not pleasant
B. It is not raining or weather is pleasant
C. It is raining or weather is not pleasant
D. It is raining and the weather is pleasant

Answer: D

- Watch Video Solution

43. The contrapositive of the statement " If $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$ then $\vec{a} \times \vec{b}=\overrightarrow{0}$ " is
A. If $\quad \vec{a} \times \vec{b} \neq \overrightarrow{0} \quad$ then $\quad \vec{a} \neq \overrightarrow{0} \quad$ or

$$
\vec{b} \neq \overrightarrow{0}
$$

B. If $\vec{a} \times \vec{b}=0$ then $\vec{a}=0$ or $\vec{b}=\overrightarrow{0}$
C. If $\quad \vec{a} \neq \overrightarrow{0} \quad$ and $\quad \vec{a} \neq \overrightarrow{0} \quad$ then

$$
\vec{a} \times \vec{b} \neq \overrightarrow{0}
$$

D. If $\vec{a} \times \vec{b}$ then $\vec{a} \neq \overrightarrow{0}$ then $\vec{b} \neq \overrightarrow{0}$

Answer: D

44. The inverse of the statement " If $\vec{a}=\Longrightarrow 0$ or $\vec{b}=\overrightarrow{0}$ then $\vec{a} \times \vec{b}=\overrightarrow{0}$ is
A. If $\quad \vec{a} \neq \overrightarrow{0} \quad$ or $\quad \vec{b} \neq \overrightarrow{0} \quad$ then
$\vec{a} \times \vec{b} \neq \overrightarrow{0}$
B. If $\vec{a} \times \vec{b} \neq \overrightarrow{0}$ then $\vec{a} \neq \overrightarrow{0}$ or $\vec{b} \neq 0$
C. If $\quad \vec{a} \neq \overrightarrow{0} \quad$ and $\quad \vec{b} \neq \overrightarrow{0} \quad$ then
$\vec{a} \times \vec{b} \neq 0$
D. If $\quad \vec{a} \times \vec{b}=\overrightarrow{0} \quad$ then $\quad \vec{a} \neq \overrightarrow{0} \quad$ or

$$
\vec{b} \neq \overrightarrow{0}
$$

Answer: C

D Watch Video Solution

45. The negation of the statement " If
A. $B=0$ then $A=0$ or $B=0$ (where A and B are square matrices) is
A. If $A . B \neq 0$ then (A ne 0 or B ne 0)
B. $A \cdot B=0 b u t(\mathrm{~A} \text { ne } 0 \text { and } \mathrm{B} \text { ne } 0)^{\prime}$
C. If A. $B \neq 0$ then $(A \neq 0$ and $B \neq 0)$
D. $A . B \neq 0$ but $(A \neq 0$ or $B \neq 0)$

Answer: B

D Watch Video Solution

46. The logically equivalent statement of $\sim(p \wedge \sim q)$ is

$$
\text { A. } p \wedge q
$$

$$
\begin{aligned}
& \text { B. } p \vee q \\
& \text { C. } \sim p \vee q \\
& \text { D. } \sim p \wedge \sim q
\end{aligned}
$$

Answer: C

D Watch Video Solution

47. Negation of the statement $\sim p \rightarrow(q \vee r)$ is
A. $\sim p \rightarrow \sim(q \wedge r)$
B. $p \rightarrow \sim(q \wedge r)$

$$
\begin{aligned}
& \text { C. } p \wedge(\sim q \vee \sim r) \\
& \text { D. } p \vee(\sim q \vee \sim r)
\end{aligned}
$$

Answer: C

D Watch Video Solution

48. The false statement in the following is
A. $\sim p \wedge(\sim p)$ is a contradiction
B. ${ }^{~}(p$ to $q)$ harr (q to p) is a contradiction
C. $\sim(\sim p) \leftrightarrow p$ is a tautology

D. $p \vee(\sim p)$ is a tautology

Answer: B

D Watch Video Solution

49. The compound statement
 $(p \wedge q) \rightarrow(p \vee q)$ is

A. a tautology
B. contradiction
C. neither option 1 nor option 2

D. both option 1 and option 2

Answer: A

D Watch Video Solution

50. $(t \wedge p) \leftrightarrow p$, where t is a tautology, is
A. a tautology
B. contradiction
C. both tautology and contradiction
D. neither tautology nor contradiction

D Watch Video Solution

51. $(c \wedge p) \leftrightarrow c$, where c is a contradiction is
A. a tautology
B. contradiction
C. neither tautology nor contradiction

D. both tautology and contradiction

52. The contrapositive of the statement 'p to ($\sim q$ to $\sim r$) is
A. $(q \wedge r) \rightarrow \sim p$
B. $\left(\sim q^{\wedge \wedge} r\right)$ to $\sim p$
C. $(\sim q \rightarrow \sim r) \rightarrow p$
D. $(q \wedge \sim r) \rightarrow \sim p$

Answer: A
53. If $x=4$ and $y=-3$, then $2 x-y=11$.

The contrapositive of this statement is
A. If $2 x-y \neq 11$ then $x \neq 4$ or $y \neq 3$
B. If $2 x-y=11$ then $x \neq 4$ or $y \neq 3$
C. If $2 x-y \neq 11$ then $x=4$ or $y=-3$
D. If $2 x-y=11$ then $x n=4$ or $y=-3$

Answer: A

D Watch Video Solution
54. Negation of the statement ${ }^{\wedge} \mathrm{t}\left(\mathrm{q}^{\wedge \wedge} \mathrm{r}\right)$ is

$$
\begin{aligned}
& \text { A. } \sim p \rightarrow \sim(q \vee r) \\
& \text { B. } \sim p \rightarrow \sim(q \wedge r) \\
& \text { C. }(q \wedge r) \rightarrow p \\
& \text { D. } p \wedge(\sim q \vee \sim r)
\end{aligned}
$$

Answer: D

- Watch Video Solution

55. The inverse of the proposition
$(p \wedge \sim q) \rightarrow r$ is
A. $\sim r \rightarrow(\sim p \vee q)$
B. $(\sim o \vee q) \rightarrow \sim r$
C. $r \rightarrow(p \wedge \sim q)$
D. none of these

Answer: B

D Watch Video Solution

56. If p and q be two statement, then the Bioconditional statement $p \Leftrightarrow q$ is true only when :
A. $(p \rightarrow q) \wedge(q \rightarrow p)$
B. $(p \rightarrow q) \operatorname{vess}(q \rightarrow p)$
C. $(p \wedge q) \rightarrow(p v e s s q)$
D. $(p \wedge q)$ vess $(p v e s s q)$

Answer: A

- Watch Video Solution

57. Which of the following is true for the proposition p and q ?
A. $p \wedge q$ is true when atleast one of p and q
is true
B. $p \rightarrow q$ is true when p is true and q is
false
C. $p \leftrightarrow q$ is true only when both p and q are true

D. ${ }^{\sim}\left(p^{\wedge \wedge} q\right)$ is true only when both p and q

are false

Answer: D

- Watch Video Solution

58. The negation of the statement ' A circle is an ellipse' is
A. An ellipse is a circle
B. An ellipse is not a circle

C. A circle is not a ellipse

D. A circle is an ellipse

Answer: C

D Watch Video Solution

59. The negation of the statement ' 7 is greater is than 8 ' is
A. 7 is equal to 8
B. 7 is not greater than 8

C. 8 is less than 7

D. none of these

Answer: B

D Watch Video Solution

60. The negation of the statement ' 72 is divisible by 2 and 3^{\prime} is
A. 72 is not divisible by 2 or 72 is not divisible by 3
B. 72 is not divisible by 2 and 72 is not divisible by 3
C. 72 is divisible by 2 and 72 is not divisible by 3
D. 72 is not divisible by 2 and 72 is divisible
by 3

Answer: A

D Watch Video Solution

61. The negation of the statement ' plants take in $c O_{2}$ and give ${ }^{\circ}{ }_{-}(2)^{\prime}$ ' is
A. plants donot take in co2 and do not give out o2
B. plants donot take in co2 or do not give out o2
C. plants take in co2 and go not give out o2
D. plants take in co2 and donot give out o2
62. The negation of the statement ' Rajesh or Rajni lived in Banglore' is
A. Rajesh did not live in Banglore or Rajini
lives in Banglore
B. Rajesh lives in Banglore and Rajni did not live in Banglore
C. Rajesh did not live in Banglore and Rajni
did not live in Banglore

D. Rajesh did not live in Banglore or Rajni

did not live in Banglore

Answer: C

D Watch Video Solution

63. The contrapositive of the statement :
"If 7 is greater than 5 , then 8 is greater than 6 "
is :
A. If 8 is greater than 6 then 7 is greater
than 5
B. If 8 is not greater than 6 then 7 is
greater than 5
C. If 8 is not greater than 6 then 7 is not
greater than 5
D. If 8 is greater than 6 then 7 is not greater than 5

Answer: C
64. The converse of the statement , "If $x \geq y$ then $x+a \geq y+a^{\prime}$ is
A. If $x \leq y$ then $x+a \leq y+a$
B. If $x+a \geq y+a$ then $x \geq y$
C. If $x \leq y$ then $x+a \geq y+a$
D. If $x \geq y$ then $x+a \leq y+a$

Answer: B
65. The statement ' If $x^{\wedge} 2$ is not even then x is not even ' converse is
A. if $x^{\wedge} 2$ is odd then x is even
B. if x is not even then $x^{\wedge} 2$ is not even
C. if x is even then $x^{\wedge} 2$ is even
D. If x is odd then $x^{\wedge} 2$ is even

Answer: B

D Watch Video Solution

66. Which of the following is not a proposition?
A. 3 is prime
B. 'sqrt\{2\}' is a irrational
C. Mathematics is interesting
D. 5 is an even integer

Answer: C

D Watch Video Solution
67. Let p be the proposition "mathematics is interesting" and q be the proposition
"mathematics is difficult' then the symbol of
$p \wedge q$ means
A. Mathematics is interesting and

Mathematics is difficult
B. Mathematics is interesting but it is
difficult
C. Mathematics is interesting implies and is

D. Mathematics is interesting implies

mathematics is difficult

Answer: B

D Watch Video Solution

68. Which of the following is always true?
A. $(p \rightarrow q) \equiv \sim q \rightarrow \sim p$
B. $\sim(p \vee y) \equiv \sim q \vee \sim p$
C. $\sim(p \rightarrow q) \equiv p \vee \sim q$

$$
\text { D. } \sim(p \wedge q) \equiv \sim p \wedge \sim q
$$

Answer: A

D Watch Video Solution

69. The logically equivalent statement of
$p \leftrightarrow q$ is
A. $(p \wedge q) \vee(p \vee q)$
B. $(p \rightarrow q) \wedge(q \rightarrow p)$
C. $(p \rightarrow q) \vee(q \rightarrow p)$

$$
\text { D. }(p \wedge q) \rightarrow(p \vee q)
$$

Answer: B

- Watch Video Solution

70. $\sim p \wedge q$ is logically equivalent to ...
A. prarr q'
B. $q \rightarrow p$
C. $\sim(p \rightarrow q)$
D. $(p \wedge q) \rightarrow(p \vee q)$

Answer: D

- Watch Video Solution

71. If $\mathrm{p} \rightarrow(q \vee r)$ is false then the truth values

 of p, q, and r are respectivelyA. T, F, F
B. F, F, F
C. F, T, T
D. T, T, F

Answer: A

D Watch Video Solution

72. If $p \rightarrow(\sim p \vee q)$ is false then the truth values of p and q are respectively
A. F, F
B. F, T
C. T, F
D. T, T

Answer: C

D Watch Video Solution

73. "The diagonals of a rhombus are perpendicular". The contrapositive of this statement is
A. If the figure is not a rhombus, then its
diagonals are not perpendicular
B. If the diagonals are perpendicular, then
the figure is a rhombus
C. If the diagonals are not perpendicular then the figure is a rhombus
D. If the diagonals are not perpendicular,
then the figure is not a rhombus

Answer: D

D Watch Video Solution

74. The contrapositive of $(p \vee q)$ rarr r is

$$
\text { A. } p \rightarrow(q \vee r)
$$

$$
\begin{aligned}
& \text { B. } r \rightarrow(p \vee q) \\
& \text { C. } \sim r \rightarrow \sim(p \vee q) \\
& \text { D. } \sim r \rightarrow(\sim p \wedge \sim q)
\end{aligned}
$$

Answer: C

D Watch Video Solution

75. p and q are two propositions. Then the contrapositive of the implication $p \rightarrow q$ is
A. $q \rightarrow p$

$$
\begin{aligned}
& \text { B. } p \leftrightarrow p \\
& \text { C. } \sim q \rightarrow \sim p \\
& \text { D. } \sim p \rightarrow \sim q
\end{aligned}
$$

Answer: C

D Watch Video Solution

76. Which of the following is the inverse of the

 proposition: "If a number is a prime then it is odd"?A. If a number is not a prime then it is odd
B. If a number is not a prime then its is not
odd
C. If a number is not odd then it is not a
prime
D. If a number is odd then it is a prime

Answer: B

D Watch Video Solution
77. The contrapositive of "If two triangles are identical then these are ~ilar" is
A. If two triangles are not identical then
these are ~ilar
B. If two triangles are not \sim ilar then these are identical
C. If two triangles are not ~ilar then these
are not identical

D. If two triangles arc not identical then

 these are not \sim ilar
Answer: C

D Watch Video Solution

78. The contrapositive of the inverse of $p \rightarrow \sim q$ is
A. $\sim q \rightarrow \sim p$
B. $\sim p \rightarrow \sim q$
C. $\sim q \rightarrow p$
D. $p \rightarrow q$

Answer: C

D Watch Video Solution

79. The converse of the contrapositive $p \rightarrow q$ is
A. $\sim p \rightarrow \sim q$
B. $\sim q \rightarrow p$

$$
\text { C. } \sim p \rightarrow q
$$

$$
\text { D. } p \rightarrow \sim q
$$

Answer: A

D Watch Video Solution

80. The negation of $q \vee \sim(p \wedge r)$ is
A. $\sim q \vee \sim(p \wedge r)$
B. $\sim q \vee(p \wedge r)$
C. $\sim q \wedge(p \wedge r)$

$$
\text { D. } \sim q \wedge \sim(p \wedge r)
$$

Answer: C

D Watch Video Solution

81. The proposition $(p \rightarrow \sim p)^{\wedge \wedge}(\sim \mathrm{p} \text { rarr } \mathrm{p})^{\wedge}$ is
a
A. tautology
B. contradiction
C. neither (a) nor (b)

D. both tautology and contradiction

Answer: B

D Watch Video Solution

82. $(p \wedge \sim q) \wedge(\sim p \vee q)$ is
A. tautology
B. contradiction
C. both tautology and contradiction
D. neither a tautology nor a contradiction

Answer: B

D Watch Video Solution

83. The negation of the proposition"If 2 is prime then 3 is odd" is
A. 2 is prime and 3 is not odd
B. If 2 is not prime then 3 is not odd
C. 2 is not prime and 3 is odd
D. 2 is not prime and 3 is odd

Answer: C

- Watch Video Solution

84. The incorrect statement is
A. $p \rightarrow q$ is logically equivalent to $\sim p \vee q$
B. If the truth values of p, q, r are T, F, T
respectively then the truth calue of
$(p \vee q) \wedge(q \vee r)$ is T
C. $\sim(p \vee q \vee r) \equiv \sim p \wedge \sim q \wedge \sim r$

D. The truth value of ${ }^{\prime} \mathrm{p}^{\wedge \wedge} \sim\left(\mathrm{p}^{\wedge \wedge} \mathrm{q}\right)$ is

always T

Answer: A

D Watch Video Solution

85. The converse of the contrapositive of the
conditional $p \rightarrow \sim q$ is
A. $\sim p \rightarrow \sim q$
B. $p \rightarrow q$

$$
\text { C. } \sim p \rightarrow q
$$

D. $\sim q \rightarrow p$

Answer: C

D Watch Video Solution

86. The negation of $p \wedge(q \rightarrow \sim r)$ is

> A. $p \vee(q \wedge r)$
> B. $\sim p \vee(q \wedge r)$
> C. $\sim p \wedge(q \wedge r)$

```
D. \(p \vee(q \vee r)\)
```

Answer: B

- Watch Video Solution

87. Which of the following is not true?
A. $\sim(p \leftrightarrow q) \equiv(p \wedge \sim q) \vee(\sim p \wedge q)$
B. $p \rightarrow(q \wedge r) \equiv(p \rightarrow q) \wedge(p \rightarrow r)$
C. $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow p \rightarrow r \quad$ is \quad a

D. $\left(\sim p^{` \wedge \wedge} \sim q\right)$ harr (p rarr q) is a tautology

Answer: D

- Watch Video Solution

88. The negation of $p \rightarrow(\sim p \vee q)$ is
A. $p \vee(p \vee \sim q)$
B. $p \rightarrow \sim(p \vee q)$
C. $p \rightarrow q$
D. $p \wedge \sim q$

Answer: D

- Watch Video Solution

89. The inverse of the proposition
$(p \wedge \sim q) \rightarrow r$ is
A. $\sim r \rightarrow(\sim p) \vee q$
B. $\sim p \vee q \rightarrow \sim r$
C. $r \rightarrow p \wedge(\sim q)$
D. $(\sim p \vee \sim q) \rightarrow r$

Answer: B

D Watch Video Solution

90. The negation of the proposition " If a quadrilateral is a square then it is a rhombus", is
A. If a quadrilateral is not a square, then it
is a rhombus
B. If a quadrilateral is a square then it is

C. A quadrilateral is a square and it is not a

rhombus
D. A quadrilateral is not a square and it is a rhombus

Answer: C

D Watch Video Solution
91. The contrapositive of the statement "if
$x^{2}-1=q 0$ then $x=q-1$ or $(\mathrm{x}=\mathrm{q} 1)^{\prime}$ is
A. If
$x^{2}-1 \neq q 0 \operatorname{the} n x \neq q-1$ or $x \neq q 1$
B. If
$x^{2}-1 \neq q 0$ then $x \neq q-1$ and $x \neq q 1$
C. If
$x \neq q-1$ or $x \neq q 1$ then $x^{2}-1 \neq q 0$
D.

$$
\text { If } x \neq q-1 \text { and } x \neq q 1 \text { then } x^{2}-1 \neq q 0
$$

Answer: D

92. It is not true that "Roses are yellow implies
violets are green" The \sim plified form of this statement is
A. Roses are yellow and violets are green
B. Roses are not yellow and violets are green
C. Roses are yellow and violets are not green
D. Roses are not yellow or violets are green

D Watch Video Solution

93. $p \leftrightarrow q$ is logically equivalent to
A. $(p \rightarrow q) \vee(q \rightarrow p)$
B. $p \wedge q) \rightarrow(q \rightarrow p)$
C. $(p \wedge q) \leftrightarrow(q \wedge p)$
D. none of these

- Watch Video Solution

94. Let S be a non-empty subset of R . Consider
the following statement P : There is a rational number x in S such that $x>0$ which of the following statement is the negation of the statement P.
A. Every rational number x in S satisfies
$x \leq 0$
B. x in S and $x \leq 0 \rightarrow x$ is not rational
C. There is a rational number x in S such
that $x \leq 0$
D. There is no rational number x in S such
that $x \leq 0$

Answer: A

D Watch Video Solution
95. The statement $p \rightarrow(q \rightarrow p)$ is equivalent to
A. $p \rightarrow(p \wedge q)$
B. $p \rightarrow(p \leftrightarrow q)$
C. $p \rightarrow(p \rightarrow q)$
D. $p \rightarrow(p \vee q)$

Answer: D

D Watch Video Solution

96. Which of the following statements is a
tautology?
A. $(\sim q \wedge p) \wedge q$
B. $(\sim q \wedge p) \wedge(p \wedge \sim p)$
C. $(\sim q \wedge p) \vee(p \vee \sim p)$
D. $(p \wedge q) \wedge(\sim(p \wedge q))$

Answer: C

D Watch Video Solution

97. $\sim(p \vee q) \vee(\sim p \wedge q)$ is logically equivalent to
A. $\sim p$
B. p
C. q
D. $\sim q$

Answer: A

- Watch Video Solution

