©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - HIMALAYA MATHS (KANNADA

ENGLISH)

MAXIMA AND MINIMA

Question Bank

1. The value of x for which $2 x^{3}-9 x^{2}+12 x+2$ is
decreasing in
A. $1<x<2$
B. $x<1$ or $x>2$
C. $x<-1$ or $x>-2$
D. $-1<x<-2$

Answer: A

- Watch Video Solution

2. $y=x /(\log x)$ is increasing for
A. $e<x<\infty$
B. $0<x<\infty$
C. $0<x \leq e$
D. $\infty<x<e$

Answer: A

- View Text Solution

3. The function defined by $y=x^{2}$ is
A. increasing for $x<0$
B. decreasing for $x>0$
C. maximum at $x=0$
D. minimum at $x=0$

D Watch Video Solution

4. The function $f(x)=((a \sin x+b \cos c) /(c \sin x+d$
$\cos x)$) is increasing in its domain, if
A. $a d-b c<0$
B. $a d-b c>0$
C. $a b-c d<0$
D. $a b-c d>0$
5. If $a>b$ then maximum value of
$a \sin ^{2}+b \cos ^{2} x$ is
A. a
B. b
C. $a+b$
D. $\sqrt{a^{2}+b^{2}}$

Answer: A

D View Text Solution
6. If $a>b$ miniimum value of $a \sin ^{2}+b \cos ^{2} x$ is
A. a
B. b
C. $a+b$
D. $\sqrt{a^{2}+b^{2}}$

Answer: B

D View Text Solution
7. $f(x)=\sin x+\cos 2 x$ has minimum for $x=$
A. $(2 n+1) \frac{\pi}{2}$
B. $n \pi$
C. $\frac{n \pi}{2}$
D. $2 n \pi$

Answer: A

D View Text Solution

8.

$P(x)=a_{0}+a_{1} x^{2}+a_{2} x^{4}+a_{3} x^{6}+\ldots . .+a_{n} x^{2 n}$
be a polynomial in a real variable x with
$0<a_{0}<a_{1}<a_{2}<\ldots \ldots . .<a_{n}$. The function
$P(x)$ has:
A. neither maximum nor minimum
B. only one maximum
C. only one minimum
D. only one maximum and only one minimum

Answer: C

D Watch Video Solution
9. IF $f(x)=a x^{2}+b x+c$ has minimum value, when
A. $a<0$
B. $a>0$
C. $b^{2}=4 a c$
D. $x=b /(2 a)$

Answer: B

- View Text Solution

10. Minimum value of $x \log x$ is

A. $(-1 / \mathrm{e})$
B. 1/e
C. (-e)
D. e

Answer: A

D View Text Solution
11. The maximum value of $\left(\frac{1}{x}\right)^{x}$ is
A. 1/e
B. e
C. $\left(\frac{1}{e}\right)^{c}$
D. $e^{\frac{1}{e}}$

Answer: D

- Watch Video Solution

12. Minimum value of $f(x)=2 e^{x}+e^{-x}$ is
A. $2 \sqrt{2}$
B. $3 \sqrt{2}$
C. e
D. e^{2}

Answer: A

D View Text Solution

13. The maximum value of $\left(\frac{x^{2}-x+1}{x^{2}+x+1}\right)$ is
A. 1
B. 3
C. $(1 / 3)$
D. 2

Answer: B

D View Text Solution

14. The minimum value $\left(\frac{x^{2}+2 x+9}{x^{2}-2 x+9}\right)$ is
A. 1
B. 2
C. $(1 / 2)$
D. $(1 / 3)$

Answer: C
15. The maximum value of $\left(\frac{x^{2}+x+1}{x^{2}-x+1}\right)$ is
A. 1
B. 3
C. $(1 / 3)$
D. 2

Answer: B

D View Text Solution
16. The minimum value $\left(\frac{x^{2}-2 x+9}{x^{2}+2 x+9}\right)$ is
A. 1
B. 2
C. $(1 / 2)$
D. $(1 / 3)$

Answer: C

D View Text Solution
17. If a, b are different positive numbers then maximum value of $((x+a)(x+b)) /((x-a)(x-b))$ occurs at $x=$
A. $(a-b) / 2$
B. $(a+b) / 2$
C. $-\sqrt{a b}$
D. $+\sqrt{a b}$

Answer: D

D View Text Solution
18. The maximum value of $f(x)=\frac{x}{1+4 x+x^{2}}$ on $[-1,1]$ is :
A. (-1/4)
B. $(-1 / 3)$
C. $(1 / 6)$
D. $(1 / 5)$

Answer: C

19. Maximum value of the product of two numbers

 whose sum is 36 isA. 324
B. 424
C. 288
D. 320

Answer: A

D View Text Solution

20. The sum of two positive numbers is p. If the

 sum of their square is minimum then the numbers areA. (3p)/4,p/4
B. $(2 p) / 3, p / 3$
C. $\mathrm{p} / 2, \mathrm{p} / 2$
D. $p, 0$

Answer: C

- View Text Solution

21. Among the rectangles of given area with least perimeter will be such that its sides I, b are
A. $l=\sqrt{2 b}$
B. $1=b$
C. $I=2 b$
D. $b=\sqrt{2} l$

Answer: B
22. The dimensions of a rectangle of maximum area having a perimeter of 24 ft are
A. 6,6
B. 8,4
C. 7,5
D. 6,7

Answer: A

- View Text Solution

23. If $x>0$ and $x y=1$ then the minimum value of
$x^{2}+y^{2}$ is
A. 0
B. 1
C. 2
D. 3

Answer: C

D View Text Solution
24. A quadratic function in x has the value 19 when
$x=1$ and has maximum value 20 when $x=2$ Then the
function is
A. $16+4 x-x^{2}$
B. $16-4 x-x^{2}$
C. $16-4 x+x^{2}$
D. $8+12 x-x^{2}$

Answer: A

- View Text Solution

25. The point on the curve $y=x^{2}$ which is nearest to $(3,0)$ is
A. $(1,-1)$
B. $(-1,1)$
C. $(-1,-1)$
D. $(1,1)$

Answer: D

- View Text Solution

26. The nearest point on the curve $y^{2}=4 x$ from $(2,1)$ is
A. $(0,0)$
B. $(1,1$,
C. $(1,2)$
D. $(2,2)$

Answer: C

- View Text Solution

27. The functionf(x) $=\tan x$, for all real values of

$$
x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots \ldots . \text { is }
$$

A. increasing
B. decreasing
C. neither decreasing nor increasing
D. none of these

Answer: A

- View Text Solution

28. The function $f(x)=x-\cos x, x \in R$, is
A. a decreasing function
B. an increasing function
C. an odd function
D. none of these

Answer: B

- View Text Solution

29. The function $f(x)=\cot ^{-1} x+x$ increases in the interval :
A. $(1, \infty)$
B. $(-1, \infty)$
C. (-oo, oo)
D. $(0,0 o)$

Answer: C

- Watch Video Solution

30. The function $f(x)=a x+b$, is strictly decreasing for all $x \in R$ iff :
A. $a=0$
B. $a<0$
C. $a>0$
D. none of these

Answer: B

- Watch Video Solution

31. The function $y=x^{3}+5 x^{2}-1$ is decreasing in the interval

$$
\begin{aligned}
& \text { A. }-\frac{10}{3}<x<0 \\
& \text { B. } 3<x<3 \\
& \text { C. } 0<x<\infty \\
& \text { D. }-\infty<x<-\frac{10}{3}
\end{aligned}
$$

Answer: A

- View Text Solution

32. If $f(x)=\cos x+a^{2} x+b$ is an increasing function for all values of x, then
A. $a \in[-1,1]$
B. $a \in(-\infty,-1] \cup[1, \infty)$
C. $a \in[-1, \infty)$
D. $a \in(-\infty, 1]$

Answer: B

D View Text Solution

33. Let $f(x)=x^{3}+\frac{3}{2} x^{2}+3 x+3$, then $\mathrm{f}(\mathrm{x})$ is :

A. an increasing function
B. a decreasing function
C. an even function

D. an odd function

Answer: A

- Watch Video Solution

34. If $x>0, \mathrm{xy}=1$, minimum value of $\mathrm{x}+\mathrm{y}$ is
A. 2
B. (-2)
C. 1
D. (-1)

Answer: A

- View Text Solution

35. If sum of two numbers is 3 , then the maximum
value of the product of first and square of second
is
A. 4
B. 3
C. 2
D. 1

Answer: A

- View Text Solution

36. If $y=a \log x+b x^{2}+x$ has its extreme values at $x=-1$ and $x=2$, then :
A. $a=2, b=-1$

$$
\begin{aligned}
& \text { B. } a=-2, b=1 / 2 \\
& \text { C. } a=2, b=-1 / 2 \\
& \text { D. } a=-2, b=-1 / 2
\end{aligned}
$$

Answer: C

D Watch Video Solution

37. The maximum value of the function $f(x)=\sin \left(x+\frac{\pi}{6}\right)+\cos \left(x+\frac{\pi}{6}\right) \quad$ in the interval $\left(0, \frac{\pi}{2}\right)$ occurs at
A. $\frac{\pi}{12}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: A

D View Text Solution

38. The number of values of x where the function

$$
\mathrm{f}(\mathrm{x})=2(\cos 3 \mathrm{x}+\cos \text { sqrt3} x) \text { attains maximum is }
$$

A. 1
B. 2
C. 0
D. infinite

Answer: A

- View Text Solution

39. The function $f(x)=a \cos x+b \tan x+x$ has extreme values at $\mathrm{x}=0$ and $x=\frac{\pi}{6}$, then
A. $a=-2 / 3, b=-1$
B. $a=2 / 3, b=-1$
C. $a=-2 / 3, b=1$
D. $a=2 / 3, b=1$

Answer: A

- View Text Solution

40. Let $f(x)=(a x+b) /(c x+d)$, then $f(x)$ has
A. a critical point
B. a maximum
C. a minimum
D. no critical point

Answer: D

- Watch Video Solution

41. Let $f(x)=x^{3}-\frac{1}{x^{3}}$, then $f(x)+f\left(\frac{1}{x}\right)$ is equal to :
A. local maximum at $x=0$
B. local minimum at $x=0$
C. point of inflextion at $x=0$
D. none of these

- Watch Video Solution

42. The function $f(x)=2+4 x^{2}+6 x^{4}+8 x^{6}$ has
A. only one maximum
B. only one minimum
C. no maxima or minima
D. many maxima and minima

Answer: B
43. The function $f(x)=x^{\frac{1}{x}}, x>0$ has the maximum value at $x=e$, then
A. $e^{\pi} \leq \pi^{e}$
B. $e^{\pi}=\pi^{e}$
C. $e^{\pi}<\pi^{e}$
D. $e^{\pi}>\pi^{e}$

Answer: D

D View Text Solution

44. Maximum slope of the curve

$$
y=-x^{3}+3 x^{2}+9 x-27 \text { is : }
$$

A. 0
B. 12
C. 16
D. 32

Answer: B

- Watch Video Solution

45. The sum of two non zero numbers is 4 . The minimum value of the sum of their reciprocals is
A. 0
B. 1
C. $(1 / 4)$
D. $(1 / 2)$

Answer: B

D View Text Solution
46. The point in the interval [$0,2 \mathrm{pi}$] where $f(x)=e^{x} \cdot \sin x$ has maximum slope is

> A. $\frac{\pi}{4}$
> B. $\frac{\pi}{2}$
> C. π
> D. $\frac{3 \pi}{2}$

Answer: B

D View Text Solution
47. The function $f(x)=x^{2}+\frac{k}{x}$ has a local minimum at $x=2$, then the value of $k=$
A. 8
B. 16
C. 18
D. 12

Answer: B

D View Text Solution

48. $\operatorname{For} f(x)=x+\frac{1}{x}$,

A. local minimum $>$ local maximum
B. local maximum $>$ local minumum
C. local maximum does not exist
D. local minimum does not exist

Answer: A

- Watch Video Solution

49. The maximum value of $f(x)=\frac{x}{4+x+x^{2}}$ on $[-2,2]$ is
A. (-1/4)
B. (-1/3)
C. (1/6)
D. $(1 / 5)$

Answer: D

- Watch Video Solution

50. $A B$ is a diameter of a circle and C is any point on the circumference of the circle, then :
A. the area of the triangle $A B C$ is maximum, if it is isoceles
B. the area of triangle $A B C$ is minimum when it is isoceles
C. the perimeter of $A B C$ is minimum when it is isoceles
D. none of these

- Watch Video Solution

51. A circle of radius unity is inscribed in an isosceles triangle. The least perimeter of the triangle is :
A. $6 \sqrt{3}$
B. 9
C. $2 \sqrt{3}$
D. $3 \sqrt{3}$

Answer: A
52. An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. The area of the triangle is maximum, if $\theta=$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{3}$

Answer: C
53. If x is real, the maximum value of $\left(\frac{4 x^{2}+7 x+10}{4 x^{2}+7 x+4}\right)$ is
A. $(3 / 4)$
B. $111 / 15$
C. $211 / 30$
D. $(9 / 8)$

Answer: B

- Watch Video Solution

54. If x is real, the minimum value of

$$
\left(\frac{2 x^{2}+4 x+5}{2 x^{2}+4 x+7}\right) \text { is }
$$

A. $(3 / 5)$
B. $(-3 / 5)$
C. $(5 / 3)$
D. $(-5 / 3)$

Answer: A
55. The interval in which $y=x^{2} e^{-x}$ is increasing in
A. $(-\infty, \infty)$
B. $(-2,0)$
C. $(2, \infty)$
D. $(0,2)$

Answer: D

- Watch Video Solution

56. The point on the curve $x^{2}=2 y$ which is nearest to the point $(0,5)$ is
A. $(2, \sqrt{2}, 4)$
B. $(2 \sqrt{2}, 0)$
C. $(0,0)$
D. $(2,2)$

Answer: A

- Watch Video Solution

57. For all real values of x, the minimum value of $\left(\frac{1-x+x^{2}}{1+x+x^{2}}\right.$ is
A. 0
B. 1
C. 3
D. $(1 / 3)$

Answer: D

- Watch Video Solution

58. The interval on which function

$$
f(x)=2 x^{3}+9 x^{2}+12 x-1 \text { is decreasing is }
$$

A. $[-1, \infty)$
B. $[-2,-1]$
C. $(-\infty,-2]$
D. $[-1,1]$

Answer: B

- Watch Video Solution

59. Let, $f: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+\cos \mathrm{x}$, then f
A. has a minimum at $x=\pi$
B. has a maximum at $x=0$
C. is a decreasing function
D. is an increasing function

Answer: D

- Watch Video Solution

60. $y=x(x-3)^{2}$ decreases for the values of x given by
A. $1<x<3$
B. $x<0$
C. $x>0$
D. $0<x<\frac{3}{2}$

Answer: A

- Watch Video Solution

61.

$$
f(x)=4 \sin ^{3} x-6 \sin ^{2} x+12 \sin x+100
$$

strictly

A. increasing in $\left(\pi, \frac{3 \pi}{2}\right)$
B. decreasing in $\left(\frac{\pi}{2}, \pi\right)$
C. decreasing in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
D. increasing in $\left[0, \frac{\pi}{2}\right]$

Answer: B

- Watch Video Solution

62. Which of the following function is decreasing
on $\left(0, \frac{\pi}{2}\right)$
A. $\sin 2 x$
B. $\tan x$
C. $\cos x$
D. $\cos 3 x$

Answer: C
63. The function $f(x)=1+|\sin x|$ is:
A. A. always increases
B. B. always decreases
C. C. never increases
D. D. sometimes increases and sometime decreases

Answer: A

D Watch Video Solution

64. If x is real, the minimum value of $x^{2}-8 x+17$ is:
A. (-1)
B. 0
C. 1
D. 2

Answer: C

(-) Watch Video Solution
65. The smallest value of the polynomial
$x^{3}-18 x^{2}+96 x$ is $[0,9]$ is
A. 126
B. 0
C. 135
D. 160

Answer: B

- Watch Video Solution

66. The function $f(x)=2 x^{3}-3 x^{2}-12 x+4$ has
A. two points of local maximum
B. two points of local minimum

C. one maxima and one minima

D. no maxima or minima

Answer: C

Watch Video Solution
67. The maximum value of $\sin x \cdot \cos x$ is
A. $(1 / 4)$
B. $(1 / 2)$
C. $\sqrt{2}$
D. $2 \sqrt{2}$

Answer: B

D Watch Video Solution

68. Maximum slope of the curve
$y=-x^{3}+3 x^{2}+9 x-27$ is :
A. 0
B. 12
C. 16
D. 32
69. $f(x)=x^{x}$ has a stationary point at :
A. $x=e$
B. $x=1 / e$
C. $x=1$
D. $x=\sqrt{e}$

Answer: B

- Watch Video Solution

70. The maximum value of $\left(\frac{1}{x}\right)^{x}$ is
A. e
B. e^{e}
C. $(e)^{\frac{1}{e}}$
D. $\left(\frac{1}{e}\right)^{\frac{1}{e}}$

Answer: C

- Watch Video Solution

71. For $f(x)=\sqrt{3} \sin x+3 \cos x$, the point $x=\frac{\pi}{6}$ is
A. local minimum
B. local maximum
C. point of inflextion
D. none of these

Answer: B

- Watch Video Solution

72. The maximum value of $\frac{\log x}{x}$ in $(2, \infty)$ is
A. 2/e
B. 1/e
C. \sqrt{e}
D. e

Answer:

- Watch Video Solution

73. The maximum value of $\sin x+\cos x$ is :
A. $\sqrt{2}$
B. $-\sqrt{2}$
C. $\sqrt{3}$
D. 2

Answer: A

D Watch Video Solution

74. The maximum value of $\left(\frac{1}{x}\right)^{x}$ is
A. 2/e
B. e
C. $e^{\frac{1}{e}}$
D. 1/e

Answer: C
75. The point on the curve $y^{2}=4 x$ which is nearest to the point $(2,1)$ is
A. $(1,-2)$
B. $(-2,1)$
C. $(1,2 \sqrt{2})$
D. $(1,2)$

Answer: D
76. The function $f(x)=2 x^{3}-15 x^{2}+36 x+4$ is maximum at
A. $x=3$
B. $x=0$
C. $x=4$
D. $x=2$

Answer: D
77. The perimeter of a sector is p. the area of the sector is maximum when it radius is
A. $\mathrm{p} / 2$
B. $\frac{1}{\sqrt{p}}$
C. \sqrt{p}
D. $\mathrm{p} / 4$

Answer: D

- Watch Video Solution

78. Let the function $\mathrm{f}: R \rightarrow R$ be defined by

$$
f(x)=2 x+\cos x \text {. Then } \mathrm{f}
$$

A. has a minimum at $x=\pi$
B. has a maximum at $x=0$
C. is a decreasing function
D. is an increasing function

Answer: D

- Watch Video Solution

79. The maximum of $4 \sin ^{2} x+3 \cos ^{2} x$ is

A. 4
B. 3
C. 7
D. 5

Answer: A

- Watch Video Solution

80. The maximum of the function $3 \cos x-4 \sin x$ is
A. 2
B. 3
C. 4
D. 5

Answer: D

- Watch Video Solution

81. A population $p(t)$ of 1000 bacteria introduced into nutrient medium grows according to the relation $p(t)=1000+\frac{1000 t}{100+t^{2}}$ The maximum size of this bacterial population is...
A. 1050
B. 5250
C. 1100
D. 1250

Answer: A

- Watch Video Solution

82. A circular sector of perimeter 60 metre with maximum area is to be constructed. The radius of the circular arc in metre must be
A. 10
B. 15
C. 5
D. 20

Answer: B

- Watch Video Solution

83. The range in which $y=-x^{2}+6 x-3$ is increasing is
A. $x>3$
B. $x<3$
C. $5<x<6$
D. $7<x<8$

Answer: B

D Watch Video Solution

84. The function $f(x)=\cot ^{-1} x+x$ increases in the interval :
A. $(1, \infty)$
B. $(-1, \infty)$

$$
\text { C. }(-\infty, \infty)
$$

D. $(0, \infty)$

Answer: C

(D) Watch Video Solution

> 85. The greatest value of $f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3}$ on $[0,1]$ is :
A. 1
B. 2
C. 3
D. $(1 / 3)$

Answer: B

- Watch Video Solution

86. The real number x when added to its inverse gives the minimum value of the sum at x equal to :
A. 1
B. (-1)
C. (-2)
D. 2

Answer: A

D Watch Video Solution

87.

$f(x)=2 x^{3}-9 a x^{2}+12 a^{2} x+1$, where $\quad a>0$
attains its maximum and minimum at p and q
respectively such their $p^{2}=q$, then a equals:
A. 1
B. 2
C. $(1 / 2)$
D. 3

Answer: B

D Watch Video Solution

88. The function $f(x)=\frac{x}{2}+\frac{2}{x}$ has a local minimum at :
A. $x=2$
B. $x=-2$
C. $x=0$
D. $x=1$

Answer: A
89. A triangular park is enclosed on two sides by a fence and on the third side of straight river bank.

The two sides having fence of same length x. The maximum area enclosed by the park is
A. $\sqrt{\frac{x^{3}}{8}}$
B. $\frac{1}{2} x^{2}$
C. πx^{2}
D. $\frac{3}{2} x^{2}$
90. If x is real, the maximum value of $\frac{3 x^{2}+9 x+17}{3 x^{2}+9 x+7}$ is
A. 41
B. 1
C. (17/7)
D. $(1 / 4)$

Answer: A
91. Let x and y be two variables such that $x>0$ and $x y=1$. Then the minimum value of $x+y$ is
A. 0
B. 1
C. 3
D. 2

Answer: D

D Watch Video Solution
92. The maximum value of the function $f(x)=\sin \left(x+\frac{\pi}{6}\right)+\cos \left(x+\frac{\pi}{6}\right) \quad$ in the interval $\left(0, \frac{\pi}{2}\right)$ occurs at
A. $\frac{\pi}{12}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: A

- Watch Video Solution

93. The function $f(x)$ is defined by $f(x)=(x+2) e^{-x}$ is
A. A. decreasing for all x
B. B. decreasing in $(-\infty,-1)$ and increasing

$$
\text { in }(-1, \infty))
$$

C. C. increasing for all x
D. D. decreasing in $(-1, \infty)$ and increasing in

$$
(-\infty,-1)
$$

94. The function $f(x)=\sin ^{4} x+\cos ^{4} x$ increases
if
A. $0<x<\frac{\pi}{8}$
B. $\frac{\pi}{4}<x<\frac{\pi}{2}$
C. $\frac{3 \pi}{8}<x<\frac{5 \pi}{8}$
D. $\frac{5 \pi}{8}<x<\frac{3 \pi}{8}$

Answer: B

- Watch Video Solution

95. Consider the following statements S and R S :

Both $\sin x$ and $\cos x$ are decreasing function in $\left(\frac{\pi}{2}, \pi\right) \mathrm{R}$: If a differentiable function decreases in
(a, b) then its derivative also decreases in (a, b)
Which of the following is true?
A. A. Both S and R are wrong
B. B. Both S and R are correct by R is not the correct explantation for S
C. C. S is correct and R is the correct explanation for S
D. D. S is correct and R is wrong

D Watch Video Solution

96. Let $\mathrm{f}(\mathrm{x})=\{(|\mathrm{x}|$, for $0<|\mathrm{x}|<2)=1$,for $\mathrm{x}=0$ \} Then at $x=0, f(x)$ has
A. A. a local maximum
B. B. no local maximum
C. C. a local minimum
D. D. no extremum
97. The length of the largest interval, in which the function $3 \sin x-4 \sin ^{3} x$ is increasing is

> A. $\frac{\pi}{3}$
> B. $\frac{\pi}{2}$
> C. $\frac{3 \pi}{2}$
> D. π

Answer: A
98. If $f(x)=x^{3}+b x^{2}+c x+d$ and $0<b^{2}<c$, then in $(-\infty, \infty), f(x)$:
A. $f(x)$ is strictly increasing function
B. $f(x)$ has a local maxima
C. $f(x)$ is strictly decreasing function
D. $f(x)$ is bounded

Answer: A

- Watch Video Solution

99. If $f(x)=x^{3}+b x^{2}+c x+d$ and $0<b^{2}<c$,
then in $(-\infty, \infty), f(x)$:
A. is increasing
B. has real maximum
C. is decreasing
D. is bounded

Answer: A

- Watch Video Solution

100. The minimum $2 x^{3}-3 x^{2}-12 x+8$ occurs at $x=$
A. (-1)
B. 2
C. $\sqrt{6}$
D. $-\sqrt{6}$

Answer: B

- Watch Video Solution

101. If x is real, the minimum value of $x^{2}-8 x+17$
is :
A. 17
B. (-1)
C. 1
D. 2

Answer: C

- Watch Video Solution

102. The maximum value of
$f(x)=2 x^{3}-21 x^{2}+36 x+20$ in $0 \leq x \leq 2$
A. 37
B. 44
C. 32
D. 30

Answer: A

- Watch Video Solution

103. The minium distance from the point $(4,2)$ to the curve $y^{2}=8 x$, is equal to
A. $\sqrt{2}$
B. $2 \sqrt{2}$
C. $3 \sqrt{2}$
D. $4 \sqrt{2}$

Answer: B

- Watch Video Solution

104. If x and y are strictly positive such that $x+y=1$, then the minimum value of $x \log x+y \log y$ is
A. $\log 2$
B. $(-\log 2)$
C. $2 \log 2$
D. 0

Answer: B

- Watch Video Solution

105. If $\mathrm{x}+\mathrm{y}=12$, then the minimum value of $x^{2}+y^{2}$ is
A. 72
B. 144
C. 48
D. 36

Answer: A

- Watch Video Solution

106. If $l^{2}+m^{2}=1$, then the maximum value of $1+m$ is
A. 1
B. $\sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. 2

Answer: B

- Watch Video Solution

107. The minimum value of x^{x} is

A. e
B. e^{e}
C. $\frac{1}{e^{-\frac{1}{e}}}$
D. $e^{-\frac{1}{e}}$

Answer: C

- Watch Video Solution

108. The maximum value of $x y$ subjects to $x+y=7$ is
A. 12
B. 10
C. (49/4)
D. $(55 / 4)$

Answer: C

- Watch Video Solution

109. The minimum value of $(x-\alpha)(x-\beta)$ is
A. 0
B. $\alpha \beta$

$$
\begin{aligned}
& \text { C. } \frac{1}{4}(\alpha-\beta)^{2} \\
& \text { D. }-\frac{1}{4}(\alpha-\beta)^{2}
\end{aligned}
$$

Answer: D

(D) Watch Video Solution

110.

Show
that

$$
y=\log (1+x)-\frac{2 x}{2+2 x}, x>-1, \quad \text { is } \quad \text { an }
$$ increasing function of x throughout its domain.

A. $0<x<\infty$
B. $-\infty<x<0$

$$
\text { C. }-\infty<x<\infty
$$

D. $1<x<2$

Answer: A

- Watch Video Solution

111. The function $f(x)=x e^{-x}(x \in R)$ attains a maximum value at $x=$
A. 2
B. 1/e
C. 1
D. 3

Answer: C

- Watch Video Solution

112. Observe the following statements:
$A: f(x)=2 x^{3}-9 x^{2}+12 x-3$ is increasing outside (1,2) $R: f^{\prime}(x)<0$ for $x \in(1,2)$ Then which of the following is true?
A. Both A and R true and R is not the correct reason for A
B. Both A and R are true and R is the correct reasong for A
C. A is true but B is false
D. A is false but R is true

Answer: B

- Watch Video Solution

113. If x is real then the minimum value of $\frac{x^{2}-x+1}{x^{2}+x+1}$ is
A. $(1 / 3)$
B. 3
C. $(1 / 2)$
D. 1

Answer: A

- Watch Video Solution

114. The perimeter of a sector is a constant. If its area is to be maximum, then the sectional angle is
A. $\frac{\pi^{c}}{6}$
B. $\frac{\pi^{c}}{4}$
C. 4^{c}
D. 2^{c}

Answer: D

D Watch Video Solution

115. In the interval $(-3,3)$ the function $f(x)=x / 3+$ $3 / \mathrm{x}, x \neq 0$ is
A. increasing
B. decreasing
C. neither decreasing nor increasing

D. partly increasing and partly decreasing

Answer: B

D Watch Video Solution

116. The function $f(x)=1-x^{3}-x^{5}$ is decreasing for
A. $1 \leq x \leq 5$
B. $x \leq 1$
C. $x \geq 1$
D. all values of x

Answer: D

- Watch Video Solution

117. If $P Q$ and $P R$ are the two sides of a triangle,
then the angle between them which gives maximum area of the triangle is
A. π
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

118. The function $y=a(1-\cos x)$ is maximum when x is equal to
A. π
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. $-\frac{\pi}{6}$
119. Twenty metres are available to fence a flower bed in the form of a circular sector. If the flower bed should have the greatest possible surface area, the radius of the circle must be
A. 4 metres
B. 3 metres
C. 6 metres
D. 5 metres
$f(x)=\tan ^{-1}(\sin x+\cos x), x>0$ is always an increasing function on the interval
A. $(0,(5 \mathrm{pi}) / 4)^{\prime}$
B. $(0, \mathrm{pi} / 2)^{\prime}$
C. $\left(0, \frac{\pi}{4}\right)$
D. $\left(0, \frac{3 \pi}{4}\right)$

Answer: C

121. The maximum value of $x y$, when $x+2 y=8$ is

A. 20
B. 16
C. 24
D. 8

Answer: A

- Watch Video Solution

122. The denominator of a fraction is greater them

 16 of the square of numerator, then least value of fraction isA. (-1/4)
B. (-1/8)
C. (1/12)
D. $(1 / 16)$

Answer: D

- Watch Video Solution

123. If $x y=c^{2}$, then minimum value of $\mathrm{ax}+$ by is
A. $c \sqrt{a b}$
B. $2 c \sqrt{a b}$
C. $-c \sqrt{a b}$
D. $2 c \sqrt{a b}$

Answer: B

- Watch Video Solution

124. If $a^{2} x^{4}+b^{2} y^{4}=c^{6}$, then maximum value of
$x y$ is

> A. $\frac{c^{2}}{\sqrt{a b}}$
> B. $\frac{c^{3}}{a b}$
> C. $\frac{c^{3}}{2 \sqrt{a b}}$
> D. ${ }^{\wedge} c^{\wedge}(3) /(2 a b)$

Answer: B

- Watch Video Solution

125. If $f(x)=\frac{1}{4 x^{2}+2 x+1}$, then its maximum value
A. $(4 / 3)$
B. $(2 / 3)$
C. 1
D. $(3 / 4)$

Answer: D

- Watch Video Solution

126. Let $f(x)=\frac{x}{1+x}-\log (1+x)$, when $x>0$, then f is :
A. an increasing function
B. a decreasing function
C. both increasing and decreasing function
D. none of these

Answer: C

D Watch Video Solution

127. If $f(x)=x^{3}-6 x^{2}+9 x+3$ be a decreasing function, then x lies in
A. $(-\infty,-1) \cap(3, \infty)$
B. $(1,3)$
C. $(3, \infty)$

D. none of these

Answer: B

- Watch Video Solution

128. If $y=a \log x+b x^{2}+x$ has its extreme values at $x=-1$ and $x=2$, then :
A. $(1,1 / 2)$
B. $(1 / 2,2)$
C. $(2,-1 / 2)$
D. $(-2 / 3,-1 / 6)$

Answer: C

D Watch Video Solution

129. The function $f(x)=(\log x) /(x)$ is increasing in the interval
A. $(1,2 e)$
B. $(0, \mathrm{e})$
C. $(2,2 e)$
D. (1/e, 2e)
130. $2 x^{3}-6 x+5$ is an increasing function, if

$$
\begin{aligned}
& \text { A. } 0<x<1 \\
& \text { B. }-1<x<1 \\
& \text { C. } x<-1 \text { or } x>1 \\
& \text { D. }-1<x<-\frac{1}{2}
\end{aligned}
$$

Answer: C

D Watch Video Solution
131. If $x-2 y=4$, then the minimum value of $x y$ is
A. A. (-2)
B. B. 2
C. C. 0
D. D. (-3)

Answer: A

- Watch Video Solution

> 132. The minimum vallue of
> $f(x)=\sin ^{4} x+\cos ^{4} x, 0 \leq x \leq \frac{\pi}{2}$ is
A. $\frac{1}{2 \sqrt{2}}$
B. $(1 / 4)$
C. (-1/2)
D. $(1 / 2)$

Answer: D

- Watch Video Solution

133. If $\mathrm{ab}=2 \mathrm{a}+3 \mathrm{~b}, a>0, b>0$, then the minimum value of $a b$ is
A. A. 12
B. B. 24
C. C. $(1 / 4)$
D. D. none of these

Answer: B

- Watch Video Solution

$$
\begin{aligned}
& \text { 134. Maximum slope of the curve } \\
& y=-x^{3}+3 x^{2}+9 x-27 \text { is : }
\end{aligned}
$$

A. 0
B. 12
C. 16
D. 32

Answer: B

Watch Video Solution
135. Function $f(x)=\frac{\lambda \sin x+6 \cos x}{2 \sin x+3 \cos x}$ is monotonic increasing if
A. $\lambda>1$
B. $\lambda<1$
C. $\lambda<4$
D. $\lambda>4$

Answer: D

- Watch Video Solution

136. The function $f(x)=a \sin x+1 / 3 \sin 3 x$ has a maximum value of $x=\frac{\pi}{3}$. The value of a is
A. A. 3
B. B. $(1 / 3)$
C. C. 2
D. D. $(1 / 2)$

Answer: C

D Watch Video Solution

137. If $a<0$, the function $f(x)=e^{a x}+e^{-a x}$ is decreasing for all values of x, where
A. A. $x>0$
B. B. $x<0$
C. C. $x>1$
D. D. $x<1$
138. If p and q are positive real numbers such that
$p^{2}+q^{2}=1$ then the maximum value of $(p+q)$ is
A. $(1 / 2)$
B. $\frac{1}{\sqrt{2}}$
C. $\sqrt{2}$
D. 2

Answer: C

D Watch Video Solution
139. On the interval $[0,1]$ the function $x^{25}(1-x)^{75}$ takes its maximum value at the point
A. 0
B. $(1 / 4)$
C. $(1 / 2)$
D. $(1 / 3)$

Answer: B

- Watch Video Solution

140.

$P(x)=a_{0}+a_{1} x^{2}+a_{2} x^{4}+a_{3} x^{6}+\ldots \ldots+a_{n} x^{2 n}$
be a polynomial in a real variable x with
$0<a_{0}<a_{1}<a_{2}<\ldots \ldots \ldots<a_{n}$. The function
$P(x)$ has :
A. neither maximum nor minimum
B. only one maximum
C. only one minimum
D. none of these

Answer: C

141.

The

$$
f(x)=\int_{1}^{x}\left[2(t-1)(t-2)^{3}+3(t-1)^{2}(t-2)^{2}\right] d t
$$

attains its maximum at $x=$
A. 1
B. 2
C. 3
D. 4

Answer: A
142. Let, $f(x)=\int e^{x}(x-1)(x-2) d x$, then $\mathrm{f}(\mathrm{x})$ decreases in the interval
A. $(-\infty,-2)$
B. $(-2,-1)$
C. $(1,2)$
D. $(2, \infty)$

Answer: C

143. If $f(x)=x e^{x(1-x)}$, then $\mathrm{f}(\mathrm{x})$ is

A. increasing on [-1/2,1]
B. decreasing on R
C. increasing on R
D. decreasing on [-1/2.1]

Answer: A

- Watch Video Solution

144. The number of values of x where the function $f(x)=\cos x+\cos (\sqrt{2} x)$ attains its maximum is
A. A. 0
B. B. 1
C. C. 2
D. D. infinite

Answer: B

- Watch Video Solution

145. If $f: R \rightarrow R$ is defined by $f(x)=\frac{x}{x^{2}+1}$
find $f(f(2))$
A. $f(x)$ is decreasing on $(-1,1)$ and has a local
minimum at $x=1$
B. $f(x)$ is increasing on ($-1,1$) and has local
maximum at $x=1$
C. $f(x)$ is increasing on $(-1,1)$ and has neither a
local maximum nor a local minimum at $x=1$
D. $f(x)$ is decreasing on ($-1,1$) but has neither a local maximum nor a local minimum at $x=1$

Answer: A

146. The function $f(x)=\tan ^{-1}(\sin x+\cos x)$ is an increasing function in :
A. $\left(0, \frac{\pi}{2}\right)$
B. $(-\mathrm{pi} / 4, \mathrm{pi} / 2)^{\prime}$
C. $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
D. $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$

Answer: D

- Watch Video Solution

147. Suppose the cubic $x^{3}-p x+q$ has three distinct real roots, where $p>0$ and $q>0$. Then which one of the following holds?
A. The cubic has minimum at both $\sqrt{\frac{p}{3}}$ and
$-\sqrt{\frac{p}{3}}$
B. The cubic has maximum at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$
C. The cubic has minimum at $\sqrt{\frac{p}{3}}$, maximum at $-\sqrt{\frac{p}{3}}$
D. The cubic has minimum at $-\sqrt{\frac{p}{3}}$, maximum at $\sqrt{\frac{p}{3}}$

Answer: C

D Watch Video Solution

148.

The
condition
$f(x)=x^{3}+p x^{2}+q x+r(x \in R)$ to have no extreme value is
A. A. $p^{2}<3 q$
B. B. $2 p^{2}<q$
C. C. $p^{2}<\frac{q}{4}$
D. D. $p^{2}>3$

Answer: A

D Watch Video Solution

149. If m and M respectively the minimum and maximum of $\quad f(x)=(x-1)^{2}+3 \quad$ for
$x \in[-3,1]$ then the ordered pair (m, M) is equal to
A. A. $(-3,19)$
B. B. $(3,19)$
C. C. $(-19,3)$
D. D. $(-19,-3)$

Answer: B

D Watch Video Solution

150. Let, $f(x)=\int_{0}^{x} \frac{\cos t}{t} d t$.
$x=(2 n+1) \frac{\pi}{2}, \mathrm{f}(\mathrm{x})$ has
A. maximum when, $\mathrm{n}=-2,-4,-6, \ldots$ and minimum
when $\mathrm{n}=-1,-3,-5, \ldots$.
B. maximum when $n=-1,-3,-5$, and minimum
when $n=1,3,5, \ldots$
C. minimum when $x=0,2,4, \ldots$. . And maximim when $n=1,3,5, \ldots . . .$.
D. none of these

Answer: B

D Watch Video Solution

151. The point of extremum of the function $\phi(x)=\int_{1}^{x} e^{\frac{t^{2}}{2}}\left(1-t^{2}\right) d t$ are
A. $x=0,1$
B. $x=1,-1$
C. $x=1 / 2$
D. $x=-1 / 2$

Answer: B

- Watch Video Solution

152. If $f^{\prime}(x)=(x-a)^{2 n}(x-b)^{2 p+1}$, when n and
p are positive integers, then :
A. $x=b$ is a point of minimum

B. $x=b$ is point of maximum

C. $x=b$ is a point of inflexion
D. none of these

Answer: A

- Watch Video Solution

153. If $f(x)=k x^{3}-9 x^{2}+9 x+3$ is increasing on R then
A. $k<3$
B. $k>3$
C. $k \leq 3$
D. none of these

Answer: B

D Watch Video Solution

154. If $h(x)=f(x)+f(-x)$ then $h(x)$ has got an extreme value at a point where $f^{\prime}(x)$ is
A. an even function
B. an odd function
C. zero

D. none of these

Answer: A

- Watch Video Solution

155. If $a<0$, the function $f(x)=e^{a x}+e^{-a x}$ is decreasing for all values of x, where
A. $x>0$
B. $x<0$
C. $x>1$
D. $x<1$

Answer: B

D Watch Video Solution

156. If $a<0, f(x)=e^{a x}+e^{-a x}$ and $\mathrm{S}=\{\mathrm{x}: \mathrm{f}(\mathrm{x})$ is monotonically increasing\} then S equals,
A. $\{x: x>0\}$
B. $\{x: x<0\}$
C. $(x: x>1\}$
D. $\{x: x<1\}$

- Watch Video Solution

157. If $\mathrm{y}=a \log x+b x^{2}+x$ has its extremum value at $x=-1$ and $x=2$, then
A. $a=2, b=-1$
B. $a=2, b=-1 / 2$
C. $a=-2, b=1 / 2$
D. none of these

Answer: B

D Watch Video Solution
158. $f(x)=\left(\frac{e^{2 x}-1}{e^{2 x}+1}\right)$ is
A. an increasing function on R
B. a decreasing function on R
C. an even function on R
D. none of these

Answer: A

- Watch Video Solution

159. If $f(x)=2 x^{3}-21 x^{2}+36 x-30$, then for $f(x)$ which one of the following is correct?
A. $f(x)$ has minimum at $x=1$
B. $f(x)$ has maximum at $x=6$
C. $f(x)$ has maximum at $x=1$
D. $f(x)$ has no maximum and minimum

Answer: C

- Watch Video Solution

160. The value of k in order that
$f(x)=\sin x-\cos x-k x+b$ decrease for all real values is given by :
A. $a \geq \sqrt{2}$
B. $a \geq 1$
C. $a<\sqrt{2}$
D. $a<1$

Answer: A

- Watch Video Solution

161. The maximum area of a rectangle that can be inscribed in a circle of radisu 2 units is
A. 8π
B. 4
C. 5
D. 8

Answer: D

Watch Video Solution

162. The maximum value of $\frac{\log x}{x}$ in $(2, \infty)$ is
A. 2/e
B. 1
C. 1/e
D. e

Answer: C

- Watch Video Solution

163. The minimum value of $26^{\cos 2 x} 81^{\sin 2 x}$ is
A. $(1 / 243)$
B. $(1 / 27)$
C. (-5)
D. $(1 / 5)$

Answer: A

D Watch Video Solution

164. A wire of lenggth 20 cm is bent in the form of
a sector of a circle. The maximum area that can be snclosed by the wire is
A. $30 \mathrm{sq} . \mathrm{cm}$
B. $10 \mathrm{sq} . \mathrm{cm}$
C. 25 sq. cm
D. $20 \mathrm{sq} . \mathrm{cm}$

Answer: C

D Watch Video Solution

165. The set of real values of x for which $f(x)=\frac{x}{\log x}$ is increasing is :
A. $\{1\}$
B. $\{x \in x<e\}$
C. empty
D. $\{x: x \geq e\}$

Answer: D

- Watch Video Solution

166. Let x be a number which exceeds its square by
the greatest possible quantity, then $x=$
A. $(1 / 2)$
B. $(1 / 4)$
C. $(3 / 4)$
D. $(1 / 3)$

Answer: A

- Watch Video Solution

167. The maximum value of $\left(\frac{1}{x}\right)^{2 x^{2}}$ is :
A. $e^{-\frac{1}{2}}$
B. $\sqrt[e]{e}$
C. 1
D. e^{2}

Answer: B

