©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - HIMALAYA MATHS (KANNADA

ENGLISH)

Pair Of Lines

Question Bank

1. A value of p for which the equation
$x^{2}+p x y+y^{2}-5 x-7 y+6=0 \quad$ represents a
pair of lines is
A. $\frac{5}{2}$
B. 5
C. 2
D. $\frac{2}{5}$

Answer: A

- Watch Video Solution

$$
\text { 2. The value of } k \text { for which }
$$

$y^{2}+x y+k x^{2}-x-2 y+k=0$ represents two
lines is
A. 2
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

3. The distance between the pair of parallel lines $8 x^{2}+8 x y+2 y^{2}+26 x+13 y+15=0$ is
A. $\frac{7}{\sqrt{5}}$
B. $\frac{7}{2 \sqrt{5}}$
C. $\frac{\sqrt{7}}{5}$
D. $\frac{\sqrt{5}}{7}$

Answer: B

- Watch Video Solution

4. The equation to the pair of lines through the origin and perpendicular to $5 x^{2}-y^{2}=0$ is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}=2 \\
& \text { B. } x^{2}-5 y^{2}=0
\end{aligned}
$$

C. $x^{2}+5 y^{2}=0$
D. $x^{2}-y^{2}=0$

Answer: B

D Watch Video Solution

5. If one of the lines $a x^{2}+2 h x y+b y^{2}=0$ bisects
the angle between the aaxes in the first quadrant then
A. $h^{2}-a b=0$
B. $h^{2}+a b=0$
C. $(a+b)^{2}=h^{2}$
D. $(a+b)^{2}=4 h^{2}$

Answer: D

- Watch Video Solution

6. The condition that the slope of one the lines of $a x^{2}+2 h x y+b y^{2}=0$ is twice the other is
A. $h^{2}=a b$
B. $2 h^{2}=3 a b$
C. $8 h^{2}=9 a b$
D. $h^{2}=9 a b$

Answer: C

- Watch Video Solution

7. The slope of one of the lines
$2 x^{2}+3 x y+\lambda y^{2}=0$ is 2 , then the angle between
the lines is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: D

- Watch Video Solution

8. If the pair of lines $x y-x-y+1=0$ and the

line $a x+2 y-3=0$ are concurrent then $a=$
A. -1
B. 0
C. 3
D. 1

Answer: D

- Watch Video Solution

9. The equation $a x^{2}+b y^{2}+c x+c y=0, c \neq 0$ represents a pair of lines, if
A. $a+b=0$
B. $b+c=0$
C. $a+c=0$
D. $a+b+c=0$

- Watch Video Solution

10. If $x^{2}-k x y-y^{2}+2 y+2=0$ represents a pair of lines than the value of k is
A. $\sqrt{2}$
B. 2
C. $2 \sqrt{2}$
D. none of these

Answer: D
11. The equation to the pair of lines passing through (1,-1) and parallel to the pair of lines

$$
x^{2}-7 x y+12 y^{2}=0 \text { is }
$$

A. $(x-3 y-4)(x-4 y-5)=0$
B. $(x-3 y-4)(x+4 y-5)=0$
C. $(x+3 y-4)(x-3 y-5)=0$
D. $(x+3 y-4)(x-4 y+5)=0$

Answer: A

- Watch Video Solution

12.

The
equation
$9 x^{2}+24 x y+b^{2} y^{2}-12 x+16 y-12=0$
represents a pair of parallel lines then $b=$
A. ± 2
B. ± 3
C. ± 4
D. ± 5

Answer: C
13. Distance between the pair of lines represented
by the
$x^{2}-6 x y+9 y^{2}+3 x-9 y-4=0$ is
A. $\frac{15}{\sqrt{10}}$
B. $\frac{1}{2}$
C. $\sqrt{\frac{5}{2}}$
D. $\frac{1}{\sqrt{10}}$

Answer: C
14. The join of $(-3,2)$ and $(4,6)$ is cut by x-axis in the ratio
A. 2: 3 internally
B. 1: 2 externally
C. 1: 3 externally
D. 3: 2 internally

Answer: C

- Watch Video Solution

15. The sum of the slopes of the lines represented by $4 x^{2}+2 h x y-7 y^{2}=0$ is equal to the product of the slopes then h is
A. -4
B. 4
C. -6
D. -2

Answer: D

- Watch Video Solution

16. If one of the pair of lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is $y=m x$, then
A. $a+2 h m+b m^{2}=0$
B. $b+2 h m+a m^{2}=0$
C. $h+2 a m+b m^{2}=0$
D. $h+2 h m+a m^{2}=0$

Answer: A
17. If one of the pair of lines represented by $6 x^{2}+2 h x y-3 y^{2}=0$ is $y=3 x$, then $h=$
A. $\frac{5}{2}$
B. $\frac{7}{2}$
C. 6
D. 7

Answer: B

- Watch Video Solution

18. The angle between the pari of lines represented by $x^{2}-7 x y+12 y^{2}=0$ is:

$$
\begin{aligned}
& \text { A. } \frac{\sin ^{-1}(1)}{12} \\
& \text { B. } \frac{\sin ^{-1}(1)}{13} \\
& \text { C. } \frac{\sin ^{-1}(1)}{\sqrt{170}} \\
& \text { D. } \frac{\sin ^{-1}(1)}{\sqrt{85}}
\end{aligned}
$$

Answer: C

- Watch Video Solution

19. The distance between the parallel lines given by $(x+7 y)^{2}+4 \sqrt{2}(x+7 y)-42=0$ is
A. 2
B. 7
C. $4 \sqrt{2}$
D. $8 \sqrt{2}$

Answer: A

- Watch Video Solution

20. If the slope of one of the lines represented by $a x^{2}-6 x y+y^{2}=0$ is the square of the other then
A. $a=1$
B. $a=4$
C. $a=6$
D. $a=8$

Answer: D

- Watch Video Solution

21. If the pair of lines $a x^{2}+2 h x y-a y^{2}=0$ and $b x^{2}+2 g x y-b y^{2}=0$ be such that each bisects the angle between the other then
A. $a b+g h=0$
B. $h^{2}-a b=0$
C. $a h+b g=0$
D. $a g+b h=0$

Answer: A
22. If the pairs of lines
$3 x^{2}-2 p x y-3 y^{2}=0$ and $5 x^{2}-2 q x y-5 y^{2}=0$
are such that each pair bisects the angle between the other pair then pq equals
A. 1
B. -7
C. -9
D. -15

Answer: D

- Watch Video Solution

23. The equation $x-y=4$ and $x^{2}+4 x y+y^{2}=0$ represent the sides of
A. an isosceles triangle
B. an equilateral triangle
C. a angled triangle
D. none of these

Answer: B

- Watch Video Solution

24. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a parallel lines, then
A. $h f=b g$
B. $h^{2}=b c$
C. $a^{2} f=b^{2} g$
D. none of these

Answer: A

- Watch Video Solution

25. If $x^{2}-k x y-y^{2}+2 y+2=0$ represents a pair of lines than the value of k is
A. 2
B. $\frac{1}{\sqrt{2}}$
C. $2 \sqrt{2}$
D. $\sqrt{2}$

Answer: D

- Watch Video Solution

26. If the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ is rotated about the origin through 90°, then their equation in the new position is given by

$$
\begin{aligned}
& \text { A. } a x^{2}-2 h x y-b y^{2}=0 \\
& \text { B. } a x^{2}-2 h x y+b y^{2}=0 \\
& \text { C. } b x^{2}+2 h x y+a y^{2}=0 \\
& \text { D. } b x^{2}-2 h x y+a y^{2}=0
\end{aligned}
$$

Answer: D

27. Area of triangle formed by :
$2 x^{2}+x y-3 y^{2}=0$ and $\mathrm{x}+\mathrm{y}=3$ is

$$
\begin{aligned}
& \text { A. } \frac{49}{4} \\
& \text { B. } \frac{41}{4} \\
& \text { C. } \frac{43}{4} \\
& \text { D. } \frac{43}{4}
\end{aligned}
$$

Answer: D

- Watch Video Solution

28. The equation of the pair of lines through the origin, the sum and the product of whose slopes are respectively the arithmetic and geometrical mean of 9 and 16 is

$$
\begin{aligned}
& \text { A. } 24 x^{2}-25 x y+2 y^{2}=0 \\
& \text { B. } 24 x^{2}+25 x y+2 y^{2}=0 \\
& \text { C. } 24 x^{2}-25 x y-2 y^{2}=0 \\
& \text { D. } 2 x^{2}+25 x y-24 y^{2}=0
\end{aligned}
$$

Answer: A

29. Centroid of the triangle formed by the sides $y-1$
$=0$ and $x^{2}+7 x y+2 y^{2}=0$ is
A. $\left(-\frac{7}{3}, \frac{2}{3}\right)$
B. $\left(\frac{7}{3}, \frac{2}{3}\right)$
C. $\left(\frac{2}{3}, 0\right)$
D. $\left(-\frac{2}{3}, 0\right)$

Answer: A
30. Orthocentre of the triangle formed by the lines

$$
\begin{aligned}
& x+y+1=0 \\
& 2 x^{2}-x y-y^{2}+x+2 y-1=0 \text { is }
\end{aligned}
$$

A. $(0,1)$
B. $(-1,0)$
C. $(-1,1)$
D. $(1,1)$

Answer: B

- Watch Video Solution

31. The angle between the pair of straight lines
$y^{2} \sin ^{2} \theta-x y \sin ^{2} \theta+x^{2}\left(\cos ^{2} \theta-1\right)=0$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{2 \pi}{3}$
D. $\frac{\pi}{2}$

Answer: D
32. The equation of pair of lines joining origin to the points of intersection of $x^{2}+y^{2}=9$ and $x+y=3$ is
A. $4 x^{2}-9 x y+4 y^{2}=0$
B. $2 x^{2}-7 x y-2 y^{2}=0$
C. $4 x^{2}+9 x y+4 y^{2}=0$
D. $2 x^{2}+7 x y-2 y^{2}=0$

Answer: C
33. The equation of second degree
$x^{2}+2 \sqrt{2} x y+2 y^{2}+4 x+4 \sqrt{2} y+1=0$
represents a pair of parallel lines, then the distance
between them is
A. 4
B. $4 \sqrt{3}$
C. 2
D. $2 \sqrt{3}$

Answer: C
34. If the angle between two st lines represented by
$2 x^{2}+5 x y+3 y^{2}+7 y+4=0$ is $\tan ^{-1} \mathrm{~m}$ then m
equals
A. $\frac{1}{5}$
B. 1
C. $\frac{1}{5}$
D. 7

Answer: A

- Watch Video Solution

35. If the lines joining the origin to the points of intersection of the line $y=m x+2$ and the curve $x^{2}+y^{2}=1$ are right angles then
A. 0
B. $\frac{1}{2}$
C. 1
D. -1

Answer: B

- Watch Video Solution

36. A diagonal of the rectangle formed by the lines

$$
x^{2}-7 x+6=0 \text { and } y^{2}-14 y+40=0 \text { is }
$$

A. $5 x-6 y=0$
B. $5 x+6 y=0$
C. $6 x-5 y-14=0$
D. $6 x-5 y+14=0$

Answer: D

- Watch Video Solution

37. The equation of the pair of lines passing

> through $(0,1)$ and parallel to $2 x^{2}+5 x y+3 y^{2}+6 x+7 y+4=0$ is

$$
\begin{aligned}
& \text { А. } 2 x^{2}+5 x y+3 y^{2}-5 x-6 y+3=0 \\
& \text { B. } 2 x^{2}+5 x y+3 y^{2}+5 x-6 y+3=0 \\
& \text { C. } 2 x^{2}+5 x y+3 y^{2}-5 x+6 y+3=0 \\
& \text { D. } 2 x^{2}+5 x y+3 y^{2}+5 x+6 y+3=0
\end{aligned}
$$

Answer: A

38. If $4 x y+2 x+2 f y+3=0$ represents a pair of
lines, then $f=$
A. 2
B. 3
C. 5
D. 6

Answer: B

- Watch Video Solution

39. The equation of the pair of lines passing through the origin and each is at a distance of 2 units from $(1,1)$ is
A. $3 x^{2}-2 x y-3 y^{2}=0$
B. $3 x^{2}+2 x y+3 y^{2}=0$
C. $2 x^{2}+x y-3 y^{2}=0$
D. $2 x^{2}-x y-3 y^{2}=0$

Answer: B
40. The equation of the pair of lines passing through the origin and perpendicular to the pair $10 x^{2}+4 x y-2 y^{2}=0$ is
A. $2 x^{2}-4 x y+10 y^{2}=0$
B. $2 x^{2}+4 x y-10 y^{2}=0$
C. $2 x^{2}+4 x y-10 y^{2}=0$
D. none of these

Answer: B
41. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a parallel lines, then
A. $\frac{f^{2}-g^{2}}{b^{2}-h^{2}}$
B. $\frac{f^{2}+g^{2}}{b^{2}+h^{2}}$
C. $\frac{(f+g)^{2}}{(b+h)^{2}}$
D. $\frac{(f-g)^{2}}{(b-h)^{2}}$

Answer: B
42. The product of the perpendiculars from $(1,1)$ to
the pair of lines $x^{2}+4 x y+3 y^{2}=0$ is
A. 3
B. 1
C. $\frac{4}{\sqrt{5}}$
D. $\frac{\sqrt{5}}{4}$

Answer: C

- Watch Video Solution

43. If one of the lines $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between the aaxes in the first quadrant then

> A. $a^{2}+b^{2}=2 h^{2}$
> B. $a^{2}+b^{2}-h^{2}$
> C. $(a+b)^{2}=h^{2}$
> D. $(a+b)^{2}-4 h^{2}$

Answer: D
44. Equation of pair of lines passing through (2,1) and perpendicular to the lines $6 x^{2}+17 x y+12 y^{2}=0$ is

$$
\text { A. } 12 x^{2}-17 x y+6 y^{2}-31 x-22 y+64=0
$$

B. $12 x^{2}-17 x y+6 y^{2}+31 x+22 y-104=0$
C. $12 x^{2}-17 x y+6 y^{2}-31 x+22 y+20=0$
D. $12 x^{2}-17 x y+6 y^{2}-31 x-22 y-20=0$

Answer: C

- Watch Video Solution

45. The values of p and q for which the equation $4 x^{2}+2 p x y+25 y^{2}+2 x+5 y+q=0$ represents a pair of parallel lines is

$$
\begin{aligned}
& \text { A. } p=10, \quad q \in R \\
& \text { B. } p=-10, \quad q=-12 \\
& \text { C. } p=-10, \quad q=12 \\
& \text { D. } p=10, \quad q \leq \frac{1}{4}
\end{aligned}
$$

Answer: D
46. Area of the parallelogram formed by
$2 x^{2}+5 x y+3 y^{2}=0$
$2 x^{2}+5 x y+3 y^{2}+3 x+4 y+1=0$ is
A. 2
B. 1
C. 4
D. 3

Answer: B

- Watch Video Solution

47. The four lines given by $y^{2}-4 y+3=0$ and $x^{2}+4 x y+4 y^{2}-5 y-10 y+4=0$ form a
A. parallelogram
B. square
C. rhombus
D. none of these

Answer: A
48. The four lines given by $3 x^{2}+10 x y+3 y^{2}=0$ and

$$
3 x^{2}+10 x y+3 y^{2}-28 x-28 y+49=0
$$

form a
A. rhombus
B. square
C. triangle
D. none of these

Answer: A

- Watch Video Solution

49. The four lines given by the equations
$12 x^{2}+7 x y-12 y^{2}=0$
$12 x^{2}+7 x y-12 y^{2}-x+7 y-1=0$ lie along the
sides of a
A. square
B. parallelogram
C. rectangle
D. rhombus

Answer: A
50. The point of intersection of perpendicular lines

$$
a x^{2}+3 x y-2 y^{2}-5 x+5 y+c=0 \text { is }
$$

A. $\left(\frac{1}{3}, \frac{2}{3}\right)$
B. $\left(\frac{1}{5}, \frac{2}{5}\right)$
C. $\left(\frac{1}{5}, 1\right)$
D. $\left(\frac{1}{5}, \frac{7}{5}\right)$

Answer: D
51. The coordinates of the orthocentre of the triangle formed by the lines $2 x^{2}-3 x y+y^{2}=0$ and $x+y=1$, are
A. $\left(\frac{1}{4}, \frac{1}{4}\right)$
B. $(1,1)$
C. $\left(\frac{1}{2}, \frac{1}{2}\right)$
D. $\left(\frac{1}{3}, \frac{1}{3}\right)$

Answer: B
52. The area of the triangle formed by the lines
$x^{2}+4 x y+y^{2}=0, x+y=1$ is
A. $\sqrt{3}$
B. 2
C. 1
D. $\frac{\sqrt{3}}{2}$

Answer: D

- Watch Video Solution

53. The condition that the slope of one the lines of $a x^{2}+2 h x y+b y^{2}=0$ is twice the other is

$$
\text { A. } h^{2}=a b
$$

B. $2 h^{2}=3 a b$
C. $8 h^{2}=9 a b$
D. $h^{2}=9 a b$

Answer: C

- Watch Video Solution

54. The acute angle between the lines
$x^{2}-2 x y \sec \alpha+y^{2}=0$ is
A. α
B. $\frac{\alpha}{2}$
C. $\frac{\pi}{2}$
D. θ

Answer: A

- Watch Video Solution

55. Condition that a pair of lines are at right angle is
A. sum of the coefficients of x^{2} and $y^{2}=0$
B. $x y$ term is absent
C. constant term is absent
D. none of these

Answer: A

- Watch Video Solution

56. If $x^{2}-k x y-y^{2}+2 y+2=0$ represents a pair of lines than the value of k is
A. $\sqrt{2}$
B. 2
C. $2 \sqrt{2}$
D. none of these

Answer: D

- Watch Video Solution

57. The angle between the lines $x^{2}+4 x y-y^{2}=0$ is
A. 90°
B. 0
C. 45°
D. 60°

Answer: A

- Watch Video Solution

58. Acute angle between the lines
$y^{2}-2 \sqrt{3} x y+3 x^{2}=0$ is
A. 0
B. 30°
C. 45°
D. none of these

Answer: A

- Watch Video Solution

59. If $x^{2}+k y^{2}+x-y=0$ represents a pair of lines then $k=$
A. 1
B. -1
C. $\frac{1}{2}$
D. $-\frac{1}{2}$

Answer: B

- Watch Video Solution

60. Angle between the lines
$\sqrt{3}\left(x^{2}+y^{2}\right)-4 x y=0$ is
A. 30°
B. 60°
C. $\frac{\tan ^{-1}(1)}{2}$
D. $\frac{\tan ^{-1}(2)}{\sqrt{3}}$

Answer: A

- Watch Video Solution

61. Angle between the lines $x^{2}+\sqrt{17} x y+2 y^{2}=0$ is
A. 30°
B. 45°
C. 60^{0}
D. none of these

Answer: B

- Watch Video Solution

62. If $k x^{2}-y^{2}+2 x-y=0$ represents a pair of
lines, then $k=$
A. 4
B. -4
C. -2
D. 2

Answer: A

- Watch Video Solution

63. The joint equation of the straight lines $x+y=1$ and $x-y=4$ is
A. $x^{2}-y^{2}=-4$
B. $x^{2}-y^{2}=4$
C. $(x+y-1)(x-y-4)=0$
D. $(x+y+1)(x-y+4)=0$

Answer: C
64. The combined equation of y-axis and the line $x-1=0$ is
A. $x^{2}=x$
B. $x y=1$
C. $x^{2}=1$
D. $(x-1) y=0$

Answer: A

- Watch Video Solution

65. The sum of the slopes of the lines represented by $4 x^{2}+2 h x y-7 y^{2}=0$ is equal to the product of the slopes then h is
A. -4
B. 4
C. -6
D. -2

Answer: D

- Watch Video Solution

66. If the equation $x^{2}+y^{2}+2 g x+2 f y+1=0$ represents a pair of lines then
A. $f^{2}-g^{2}=1$
B. $f^{2}+g^{2}=1$
C. $g^{2}-f^{2}=1$
D. $f^{2}+g^{2}=\frac{1}{2}$

Answer: B

- Watch Video Solution

67. Equation of the separate lines of the pair of
lines, whose equation is $x^{2}-x y-12 y^{2}=0$ are given by

$$
\text { A. } x+4 y=0 \text { and } x-3 y=0
$$

B. $x-6 y=0$ and $x-3 y=0$
C. $2 x-3 y=0$ and $x-4 y=0$
D. $x-4 y=0$ and $x+3 y=0$

Answer: A

- Watch Video Solution

68. If the slope of one of the lines gives by $a x^{2}+2 h x y+b y^{2}=0$ is 5 times the other, then
A. $5 h^{2}=9 a b$
B. $5 h^{2}=a b$
C. $h^{2}=a b$
D. $9 h^{2}=5 a b$

Answer: A
69. If $a x^{2}-y^{2}+4 x-y=0$ represents a pair of lines then a ...
A. -16
B. 16
C. 4
D. -4

Answer: B

- Watch Video Solution

70. The distance between the pair of parallel lines

$$
x^{2}+2 x y+y^{2}-8 a x-8 a y-9 a^{2}=0 \text { is... }
$$

A. $2 \sqrt{5}$ a
B. $\sqrt{10} a$
C. $10 a$
D. $5 \sqrt{2} \mathrm{a}$

Answer: D

71. The lines represented by $a x^{2}+2 h x y+b y^{2}=0$

 are perpendicular to each other ifA. $a+b=0$
B. $h^{2}=a+b$
C. $h=0$
D. $h^{2}=a b$

Answer: A

- Watch Video Solution

72. The area enclosed by the pair of lines $x y=0$, the line $x-4=0$ and $y+5=0$ is
A. 10 sq. units
B. 20 sq. units
C. 0 sq. units
D. $\frac{5}{4}$ sq. units

Answer: B

73.
 The
 lines
 given
 $x^{2}+2 x y-35 y^{2}-4 x+44 y-12=0$ and the line

$5 x+2 y-8=0$ are
A. parallel
B. concurrent
C. coincident
D. none of these

Answer: B
74. If the pair of lines
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ intersect on y-axis then
A. $2 f g h=b g^{2}+c h^{2}$
B. $b g^{2} \neq c h^{2}$
C. $a b c=2 f g h$
D. none of these

Answer: A

- Watch Video Solution

75. The pair of lines represented by
$3 a x^{2}+5 x y+\left(a^{2}-2\right) y^{2}=0$ are perpendicular to each other for
A. two values of, a
B. for all a
C. for one value of a
D. for no value of a

Answer: A
76. If the pairs of lines $x^{2}-2 p x y-y^{2}=0$ and $x^{2}-2 q x y-y^{2}=0$ be such that each pair bisects the angle between the other pair then

$$
\begin{aligned}
& \text { A. } p=-q \\
& \text { B. } p q=1 \\
& \text { C. } p q=-1 \\
& \text { D. } p=q
\end{aligned}
$$

Answer: C
77. If the sum of the slopes of the lines given by
$x^{2}-2 c x y-7 y^{2}=0$ is four times their product then c has the value
A. 1
B. -1
C. 2
D. -2

Answer: C
78. If one of the lines given by $6 x^{2}-x y+4 c y^{2}=0$ is $3 x+4 y=0$, then $c=$
A. 3
B. -1
C. 1
D. -3

Answer: D

- Watch Video Solution

79. If the pair of lines $a x^{2}+2(a+b) x y+b y^{2}=0$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sectors, then:
A. $3 a^{2}+10 a b+3 b^{2}=0$
B. $3 a^{2}+2 a b+3 b^{2}=0$
C. $3 a^{2}-10 a b+3 b^{2}=0$
D. $3 a^{2}-2 a b+3 b^{2}=0$

Answer: B

- Watch Video Solution

80. If the angle between the pair of lines $x^{2}-3 x y+\lambda y^{2}+3 x-5 y+2=0$ is $\tan ^{-1}\left(\frac{1}{3}\right)$ where λ is a non-negative real number, then $\lambda=$
A. 2
B. 0
C. 3
D. 1

Answer: A

- Watch Video Solution

81. The triangle formed by $x^{2}-3 y^{2}=0$ and $x=4$
is
A. isosceles
B. equilateral
C. angled
D. none of these

Answer: B
82. The distance between the pair of parallel lines
$x^{2}+4 x y+4 y^{2}+3 x+6 y-4=0$ is
A. $\sqrt{5}$
B. $\frac{2}{\sqrt{5}}$
C. $\frac{1}{\sqrt{5}}$
D. $\frac{\sqrt{5}}{2}$

Answer: A
83.
$2 x^{2}+7 x y+3 y^{2}-9 x-7 y+k=0$ represents a
pair of lines, then $k=$
A. 4
B. 2
C. 1
D. -4

Answer: A

- Watch Video Solution

84. The equation of bisectors of the angle between the two lines $2 x^{2}-3 x y+y^{2}=0$ is

$$
\begin{aligned}
& \text { A. } 3 x^{2}+2 x y-3 y^{2}=0 \\
& \text { B. } 3 x^{2}-2 x y-3 y^{2}=0 \\
& \text { C. } 3 x^{2}+2 x y+3 y^{2}=0 \\
& \text { D. } 3 x^{2}-2 x y^{\prime}+3 y^{2}=0
\end{aligned}
$$

Answer: A
85. The quadrilateral formed by the pair of lines

$$
x y+x+y+1=0, x y+3 x+3 y+9=0 \text { is a }
$$

A. parallelogram
B. rhombus
C. rectangle
D. square

Answer: D

- Watch Video Solution

86. If $x y+x+y+1=0$ and $x+q y-3=0$ are concurrent then $q=$
A. 3
B. 2
C. -4
D. 1

Answer: C

- Watch Video Solution

$x^{2}-3 x y+\lambda y^{2}+3 x-5 y+2=0$, whose λ is a
real number, represents a pair of lines. If θ is the angle between the
lines then
oper $a \rightarrow \operatorname{rname}(\cos e c)^{2} \theta=$
A. 3
B. 9
C. 10
D. 100

Answer: C

88. Circumcentre of the triangle formed by the lines
$x y+2 x+2 y+4=0$ and $x+y+2=0$ is
A. $(0,0)$
B. $(-2,-2)$
C. $(-1,-1)$
D. $(-1,-2)$

Answer: C
89. The distance between the parallel lines

$$
9 x^{2}-6 x y+y^{2}+18 x-6 y+8=0 \text { is }
$$

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{10}} \\
& \text { B. } \frac{2}{\sqrt{10}} \\
& \text { C. } \frac{4}{\sqrt{10}} \\
& \text { D. } \sqrt{10}
\end{aligned}
$$

Answer: B
90. The angle between the pair of lines
$2 x^{2}+5 x y+2 y^{2}+3 x+3 y+1=0$ is
A. $\cos ^{-1}\left(\frac{4}{5}\right)$
B. $\tan ^{-1}\left(\frac{4}{5}\right)$
C. 0
D. $\frac{\pi}{2}$

Answer: A
91. The combined equation to a pair of lines passing through the origin and inclined 30° and 60° respectively with x-axis is
A. $\sqrt{3}\left(x^{2}+y^{2}\right)=4 x y$
B. $4\left(x^{2}+y^{2}\right)=\sqrt{3} x y$
C. $4\left(x^{2}+y^{2}\right)=\sqrt{3} x y$
D. $x^{2}+3 y^{2}-2 x y=0$

Answer: A
92. The pair of Lines $h\left(x^{2}-y^{2}\right)+p x y=0$ bisects
the angle between the pair $a x^{2}+2 h x y+b y^{2}=0$
then the value of p is
A. $a-b$
B. $b-a$
C. $a+b$
D. $a+b$

Answer: B

- Watch Video Solution

93. The equation of the pair of bisectors of the

$$
\begin{aligned}
& \text { angles between the pair of lines } \\
& x^{2}-2 a x y-y^{2}=0 \text { is } x^{2}-2 b x y-y^{2}=0 \text {. Then }
\end{aligned}
$$

A. $a b=1$
B. $a b+1=0$
C. $a b=2$
D. $a b+2=0$

Answer: B
94. The triangle formed by the pair of lines
$x^{2}-4 y^{2}=0$ and the line $x-a=0$ is always
A. equilateral
B. isosceles
C. angled
D. scalene

Answer: B

- Watch Video Solution

95. Point of intersection of pair of lines

 $x^{2}+x y+2 y^{2}-3 x+2 y+4=0$ isA. $(1,2)$
B. $(-1,2)$
C. $(-2,1)$
D. $(2,-1)$

Answer: D
96. If $a x^{2}+6 x y+b y^{2}-10 x+10 y-6=0$
represents a pair of perpendicular lines, then $|a|=$
A. 1
B. 4
C. -1
D. 3

Answer: B

- Watch Video Solution

97. The difference of slopes of the lines represented by
$y^{2}-2 x y \sec ^{2} \alpha+\left(3+\tan ^{2} \alpha\right)\left(-1+\tan ^{2} \alpha\right) x^{2}=0$
is
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

98. The angle between the pair of lines
$2(x+2)^{2}+3(x+2)(y-2)-2(y-2)^{2}=0$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: D
99. The equation of the pair of lines through ($1,-1$)
and perpendicular to the pair of lines

$$
x^{2}-x y-2 y^{2}=0 \text { is }
$$

A. $2 x^{2}-x y+y^{2}+5 x+y+2=0$
B. $2 x^{2}-x y-y^{2}-5 x-y+2=0$
C. $x^{2}-x y+2 y^{2}-5 x-y-2=0$
D. $2 x^{2}-x y-y^{2}+5 x+y-2=0$

Answer: B
100. The equation of the line common to the pair of
lines
$\left(p^{2}-q^{2}\right) x^{2}+\left(q^{2}-r^{2}\right) x y+\left(r^{2}-p^{2}\right) y^{2}=0$
and $(l-m) x^{2}+(m-n) x y+(n-l) y^{2}=0$ is
A. $x+y=0$
B. $x-y=0$
C. $x+y=p q r$
D. $x-y=p q r$

Answer: B
101. If the pair of lines given by
$\left(x^{2}+y^{2}\right) \sin ^{2} \alpha=(x \cos \alpha-y \sin \alpha)^{2} \quad$ are
perpendicular to each other then $\alpha=$
A. $\frac{\pi}{2}$
B. 0
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: C
102. If a, h, b are in A.P. then the triangular area formed by the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ and the line $x-y=-2$ is, in square units

$$
\begin{aligned}
& \text { A. }\left|\frac{a+b}{a-b}\right| \\
& \text { B. }\left|\frac{a^{2}+b^{2}}{a-b}\right| \\
& \text { C. }\left|\frac{a-b}{a+b}\right| \\
& \text { D. }\left|\left(\mathrm{a}^{\wedge}(2)+\mathrm{b}^{\wedge}(2)\right) /(\mathrm{a}+\mathrm{b})\right|^{\wedge}
\end{aligned}
$$

Answer: C
103.
the
equation
$a x^{2}+5 x y-6 y^{2}-10 x+11 y+c=0$, represents
two perpendicular lines then $c=$
A. 6
B. -6
C. 4
D. -4

Answer: D

- Watch Video Solution

104. The equation of the pair of lines through the points (a, b) parallel to the coordinate axes is

$$
\begin{aligned}
& \text { А. }(x-b)(y-a)=0 \\
& \text { B. }(x-a)(y+b)=0 \\
& \text { С. }(x-a)(y-b)=0 \\
& \text { D. }(x+a)(y-b)=0
\end{aligned}
$$

Answer: C
105.
the
$\lambda x^{2}-5 x y+6 y^{2}+x-3 y=0$ represents a pair of lines, then their point of intersection is
A. $(-3,-1)$
B. $(-1,-3)$
C. $(3,1)$
D. $(1,3)$

Answer: A

- Watch Video Solution

106. The product of the perpendiculars from (-1,2) to
the pair of-lines $2 x^{2}-5 x y+2 y^{2}=0$ is
A. 4
B. 3
C. 8
D. $\frac{5}{2}$

Answer: A

- Watch Video Solution

107. Area of the triangle formed by the lines $3 x^{2}-4 x y+y^{2}=0, \quad 2 x-y=6$ is
A. 16
B. 25
C. 36
D. 49

Answer: C

- Watch Video Solution

108. The orthocentre of the triangle formed by the
lines $x+3 y=10$ and $6 x^{2}+x y-y^{2}=0$ is
A. $(1,3)$
B. $(3,1)$
C. $(-1,3)$
D. $(1,-3)$

Answer: A
109. If one of the lines of the pair $a x^{2}+2 h x y+b y^{2}=0$ bisects the angle between positive directions of the axes, then a, b, h satisfy the relation

> A. $a+b=2|h|$
> B. $a+b=2|h|$
> C. $a-b-2|h|$
> D. $(a-b)^{2}=4 h^{2}$

Answer: B
110. If the slope of one line is twice the slope of the other in the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ then $8 h^{2}=$
A. $-9 a b$
B. $9 a b$
C. $7 a b$
D. $-7 a b$

Answer: B

- Watch Video Solution

111. If the pair of lines $x y-x-y+1=0$ and the line $a x+2 y-3=0$ are concurrent then $a=$
A. -2
B. 3
C. 1
D. 0

Answer: C

- Watch Video Solution

112. If the angle 2θ is acute, then the acute angle between
A. 2θ
B. $\frac{\theta}{2}$
C. $\frac{\theta}{3}$
D. θ

Answer: D

113. If the coordinate axes are the bisectors of the angles between the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ where $h^{2}>a b$ and $a \neq b$, then
A. $a+b=0$
B. $a-b=0$
C. $h=0, a+b \neq 0$
D. $h \neq 0, a+b=0$

Answer: B
114. If the pair of lines given by
$a x^{2}+2 h x y+b y^{2}=0 \quad\left(h^{2}>a b\right) \quad$ forms an
equilateral triangle with $A x+B y+C=0$ then
$(a+3 b)(3 a+b)=$
A. h^{2}
B. $-h^{2}$
C. $2 h^{2}$
D. $4 h^{2}$

Answer: D
115. The area of the triangle formed by the lines

$$
x^{2}+4 x y+y^{2}=0, x+y=1 \text { is }
$$

$$
\begin{aligned}
& \text { A. } \frac{\left|a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}\right|}{\sqrt{(a-b)^{2}+4 h^{2}}} \\
& \text { B. } \frac{c^{2}}{2\left(a^{2}+b^{2}\right)} \\
& \text { C. } \frac{\left|a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}\right|}{\sqrt{(a+b)^{2}+4 h^{2}}} \\
& \text { D. } \frac{\left|a x_{1}^{2}-2 h x_{1} y_{1}+b y_{1}^{2}\right|}{\sqrt{(a-b)^{2}+4 h^{2}}}
\end{aligned}
$$

Answer: D

116. The product of the perpendicular distances from the origin on the pair of lines $12 x^{2}+25 x y+12 y^{2}+10 x+11 y+2=0$ is

> A. $\frac{1}{25}$
> B. $\frac{2}{25}$
> C. $\frac{3}{25}$
> D. $\frac{4}{25}$

Answer: B
117. The centroid of the triangle formed by the pair of lines $12 x^{2}-20 x y+7 y^{2}=0$ and the line $2 x-3 y+4=0$ is

$$
\begin{aligned}
& \text { A. }\left(-\frac{7}{3}, \frac{7}{3}\right) \\
& \text { В. }\left(-\frac{8}{3}, \frac{8}{3}\right) \\
& \text { С. }\left(\frac{8}{3}, \frac{8}{3}\right) \\
& \text { D. }\left(\frac{4}{3}, \frac{4}{3}\right)
\end{aligned}
$$

Answer: C
118. If m is the slope of one of the lines represented by $a x^{2}+2 h x y+b y^{2}=0$, then $(h+b m)^{2}=$
A. $h^{2}-a b$
B. $h^{2}+a b$
C. $(a-b)^{2}$
D. $(a+b)^{2}$

Answer: A

- Watch Video Solution

119. The perpendicular distance between the lines
$9 x^{2}-24 x y+16 y^{2}+21 x-28 y+10=0$ is

> A. $\frac{7}{5}$
> B. $\frac{3}{5}$
> C. $\frac{4}{5}$
> D. $\frac{1}{5}$

Answer: B
120. If the line $p x+q y=0$ coincides with one of the lines given by
$a x^{2}+2 h x t y+b y^{2}=0$ then

> A. $a p^{2}+2 h p q+b q^{2}=0$
> B. $a q^{2}+2 h p q+b q^{2}=0$
> C. $a q^{2}-2 h p q+b p^{2}=0$
D. none of these

Answer: C
121. Let $P Q R$ be a right-angled isosceles triangle right-angled at $P(2,1)$. If the equation of the line $Q R$ is $2 x+y=3$, then the equation representing the pair of lines $P Q$ and $P R$ is :

$$
\begin{aligned}
& \text { A. } 3 x^{2}-3 y^{2}+8 x y+20 x y+10 y+25=0 \\
& \text { B. } 3 x^{2}-3 y^{2}+8 x y-20 x y-10 y+25=0 \\
& \text { C. } 3 x^{2}-3 y^{2}+8 x y+10 x+15 y+20=0 \\
& \text { D. } 3 x^{2}-3 y^{2}-8 x y-10 x-15 y-20=0
\end{aligned}
$$

Answer: B

- Watch Video Solution

122. If one of the lines of
$m y^{2}+\left(1-m^{2}\right) x y-m x^{2}=0$
is a bisector of the angle between the lines $x y=0$
then m is
A. 1
B. 2
C. $-\frac{1}{2}$
D. -2

Answer: A
123. If the gradient of one of the lines given by $x^{2}+2 h x y+2 y^{2}=0$ is twice that of the other, then $h=$
A. ± 2
B. ± 3
C. ± 1
D. $\pm \frac{3}{2}$

Answer: B

124. The angle between the lines
 $x^{2}-y^{2}-2 x-1=0$ is

A. 90°
B. 60°
C. 75°
D. 36°

Answer: A

- Watch Video Solution

125. The product of perpendiculars let fall from the point $\left(x_{1}, y_{1}\right)$ upon the lines represented by $a x^{2}+2 h x y+b y^{2}=0$ is

$$
\begin{aligned}
& \text { A. }\left(\left|a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}\right|\right)\left(\sqrt{(a-b)^{2}+4 h^{2}}\right) \\
& \text { B. }\left(\left|a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}\right|\right)\left(\sqrt{(a-b)^{2}+h^{2}}\right) \\
& \text { C. } \frac{\left|a x_{1}^{2}+2 h x_{1} y_{1}+b y_{1}^{2}\right|}{\sqrt{(a-\dot{b})^{2}+4 h^{2}}}
\end{aligned}
$$

$$
\text { D. }\left(\left|a x_{1}^{2}-2 h x_{1} y_{1}+b y_{1}^{2}\right|\right)\left(\sqrt{(a-b)^{3}+4 h^{2}}\right)
$$

Answer: A

- Watch Video Solution

126. Equation of pair of lines drawn through (1, 1) and perpendicular to the pair of lines $3 x^{2}-7 x y+2 y^{2}=0$ is

$$
\text { A. } 2 x^{2}+7 x-11 x+6=0
$$

B. $2(x-1)^{2}+7(x-1)(y-1)-3 y^{2}=0$
C.

$$
2(x-1)^{2}+7(x-1)(y-1)-3(y-1)^{2}=0
$$

D. none of these

Answer: D

127. The equatio $y^{2}-x^{2}+2 x-1=0$ represents

A. a hyperbola
B. an ellipse
C. a pair of lines
D. a rectangular hyperbola

Answer: C

- Watch Video Solution

128. The equation $4 x^{2}-24 x y+11 y^{2}=0$
A. two parallel lines
B. two perpendicular lines
C. two lines through the origin
D. a circle

Answer: C

D Watch Video Solution

129. The equation of pair of lines joining origin to
the points of intersection of $x^{2}+y^{2}=9$ and $x+y=3$ is
A. $x^{2}+(3-x)^{2}-9$
B. $x y=0$
C. $(3+y)^{2}+y^{2}=9$
D. $(x-y)^{2}=9$

Answer: B

- Watch Video Solution

