

MATHS

BOOKS - HIMALAYA MATHS (KANNADA ENGLISH)

Pair Of Lines

Question Bank

1. A value of p for which the equation $x^2+pxy+y^2-5x-7y+6=0$ represents a pair of lines is

A.
$$\frac{5}{2}$$

B. 5

C. 2

D. $\frac{2}{5}$

Answer: A

Watch Video Solution

2. The value of k for which $y^2+xy+kx^2-x-2y+k=0$ represents two lines is

B.
$$\frac{1}{3}$$

$$\mathsf{C.}\ \frac{1}{4}$$

$$\mathsf{D.}\;\frac{1}{2}$$

Answer: C

Watch Video Solution

3. The distance between the pair of parallel lines

$$8x^2 + 8xy + 2y^2 + 26x + 13y + 15 = 0$$
 is

A.
$$\frac{7}{\sqrt{5}}$$

B.
$$\frac{7}{2\sqrt{\xi}}$$

D.
$$\frac{\sqrt{5}}{7}$$

Answer: B

Watch Video Solution

4. The equation to the pair of lines through the origin and perpendicular to $5x^2-y^2=0$ is

A.
$$x^2+y^2=2$$

$$\mathsf{B.}\,x^2-5y^2=0$$

$$\mathsf{C.}\,x^2+5y^2=0$$

D.
$$x^2 - y^2 = 0$$

Answer: B

Watch Video Solution

5. If one of the lines $ax^2+2hxy+by^2=0$ bisects the angle between the aaxes in the first quadrant then

A.
$$h^2-ab=0$$

$$\mathtt{B.}\,h^2+ab=0$$

C.
$$(a+b)^2 = h^2$$

D.
$$(a+b)^2 = 4h^2$$

Answer: D

Watch Video Solution

6. The condition that the slope of one the lines of

$$ax^2+2hxy+by^2=0$$
 is twice the other is

A.
$$h^2=ab$$

$$\mathsf{B.}\,2h^2=3ab$$

$$\mathsf{C.}\,8h^2=9ab$$

D.
$$h^2=9ab$$

Answer: C

Watch Video Solution

7. The slope of one of the lines $2x^2+3xy+\lambda y^2=0$ is 2, then the angle between the lines is

A.
$$\frac{\pi}{3}$$

$$\mathsf{B.}\;\frac{\pi}{4}$$

C.
$$\frac{7}{6}$$

D.
$$\frac{\pi}{2}$$

Answer: D

- **8.** If the pair of lines xy-x-y+1=0 and the
- line ax + 2y 3 = 0 are concurrent then a =
 - A. -1
 - B. 0
 - C. 3
 - D. 1

Answer: D

Watch Video Solution

9. The equation $ax^2+by^2+cx+cy=0, c\neq 0$ represents a pair of lines, if

A.
$$a + b = 0$$

$$B. b + c = 0$$

$$C. a + c = 0$$

D.
$$a + b + c = 0$$

Answer: A

10. If $x^2 - kxy - y^2 + 2y + 2 = 0$ represents a pair of lines than the value of k is

A.
$$\sqrt{2}$$

$$\mathsf{C.}\,2\sqrt{2}$$

D. none of these

Answer: D

11. The equation to the pair of lines passing through (1,-1) and parallel to the pair of lines $x^2-7xy+12y^2=0$ is

A.
$$(x-3y-4)(x-4y-5)=0$$

B.
$$(x-3y-4)(x+4y-5)=0$$

C.
$$(x + 3y - 4)(x - 3y - 5) = 0$$

D.
$$(x + 3y - 4)(x - 4y + 5) = 0$$

Answer: A

$$9x^2 + 24xy + b^2y^2 - 12x + 16y - 12 = 0$$

represents a pair of parallel lines then $b=% \frac{d^{2}}{dt^{2}}$

A. ±2

B. ±3

C. ±4

D. ±5

Answer: C

13. Distance between the pair of lines represented

by the equation

$$x^2 - 6xy + 9y^2 + 3x - 9y - 4 = 0$$
 is

A.
$$\frac{15}{\sqrt{10}}$$

B.
$$\frac{1}{2}$$

$$\mathsf{C.}\;\sqrt{\frac{5}{2}}$$

D.
$$\frac{1}{\sqrt{10}}$$

Answer: C

14. The join of (-3,2) and (4,6) is cut by \boldsymbol{x} -axis in the ratio

A. 2: 3 internally

B. 1: 2 externally

C. 1: 3 externally

D. 3: 2 internally

Answer: C

15. The sum of the slopes of the lines represented by $4x^2+2hxy-7y^2=0$ is equal to the product of the slopes then h is

- A. -4
- B. 4
- C. -6
- D. -2

Answer: D

16. If one of the pair of lines represented by

$$ax^2 + 2hxy + by^2 = 0$$
 is $y = mx$, then

$$\mathsf{A.}\,a + 2hm + bm^2 = 0$$

$$\mathsf{B.}\,b + 2hm + am^2 = 0$$

$$\mathsf{C.}\,h + 2am + bm^2 = 0$$

D.
$$h+2hm+am^2=0$$

Answer: A

17. If one of the pair of lines represented by

$$6x^2+2hxy-3y^2=0$$
 is $y=3x, \,\,$ then $h=$

- A. $\frac{5}{2}$ B. $\frac{7}{2}$
- C. 6
- D. 7

Answer: B

18. The angle between the pari of lines represented

by $x^2 - 7xy + 12y^2 = 0$ is :

A.
$$\frac{\sin^{-1}(1)}{12}$$

$$\mathsf{B.} \; \frac{\sin^{-1}(1)}{13}$$

$$\mathsf{C.}\,\frac{\sin^{-1}(1)}{\sqrt{170}}$$

D.
$$\frac{\sin^{-1}(1)}{\sqrt{85}}$$

Answer: C

19. The distance between the parallel lines given by

$$(x+7y)^2+4\sqrt{2}(x+7y)-42=0$$
 is

- A. 2
- B. 7
- C. $4\sqrt{2}$
- D. $8\sqrt{2}$

Answer: A

20. If the slope of one of the lines represented by $ax^2-6xy+y^2=0$ is the square of the other then

A.
$$a = 1$$

$$B.a=4$$

$$C. a = 6$$

D.
$$a = 8$$

Answer: D

21. If the pair of lines $ax^2+2hxy-ay^2=0$ and $bx^2+2gxy-by^2=0$ be such that each bisects the angle between the other then

$$\mathsf{A.}\,ab+gh=0$$

$$B. h^2 - ab = 0$$

$$\mathsf{C.}\,ah+bg=0$$

$$\mathsf{D}.\,ag+bh=0$$

Answer: A

22. If the pairs of lines

 $3x^2-2pxy-3y^2=0$ and $5x^2-2qxy-5y^2=0$ are such that each pair bisects the angle between the other pair then pq equals

- A. 1
- B. -7
- C. -9
- D. -15

Answer: D

23. The equation x-y=4 and $x^2 + 4xy + y^2 = 0$ represent the sides of

A. an isosceles triangle

B. an equilateral triangle

C. a angled triangle

D. none of these

Answer: B

24. If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

represents a parallel lines, then

A.
$$hf = bg$$

$$B. h^2 = bc$$

C.
$$a^2f=b^2g$$

D. none of these

Answer: A

25. If $x^2 - kxy - y^2 + 2y + 2 = 0$ represents a pair of lines than the value of k is

A. 2

$$\mathsf{B.} \; \frac{1}{\sqrt{2}}$$

C.
$$2\sqrt{2}$$

D.
$$\sqrt{2}$$

Answer: D

26. If the pair of lines $ax^2 + 2hxy + by^2 = 0$ is rotated about the origin through 90^0 , then their equation in the new position is given by

$$A. ax^2 - 2hxy - by^2 = 0$$

$$\mathsf{B.}\,ax^2-2hxy+by^2=0$$

$$\mathsf{C.}\,bx^2+2hxy+ay^2=0$$

$$D. bx^2 - 2hxy + ay^2 = 0$$

Answer: D

27. Area of triangle formed by:

 $2x^2+xy-3y^2=0$ and x+y=3 is

A. $\frac{49}{4}$

B. $\frac{41}{4}$

 $\mathsf{C.}\ \frac{43}{4}$

D. $\frac{43}{4}$

Answer: D

28. The equation of the pair of lines through the origin, the sum and the product of whose slopes are respectively the arithmetic and geometrical mean of 9 and 16 is

A.
$$24x^2 - 25xy + 2y^2 = 0$$

$$\mathsf{B.}\,24x^2 + 25xy + 2y^2 = 0$$

$$\mathsf{C.}\,24x^2 - 25xy - 2y^2 = 0$$

$$\mathsf{D.}\, 2x^2 + 25xy - 24y^2 = 0$$

Answer: A

29. Centroid of the triangle formed by the sides y-1

=0 and
$$x^2+7xy+2y^2=0$$
 is

A.
$$\left(-\frac{7}{3}, \frac{2}{3}\right)$$

$$\mathsf{B.}\left(\frac{7}{3},\,\frac{2}{3}\right)$$

$$\mathsf{C.}\left(rac{2}{3},0
ight)$$

D.
$$\left(-\frac{2}{3},0\right)$$

Answer: A

30. Orthocentre of the triangle formed by the lines

$$x + y + 1 = 0$$

and

$$2x^2 - xy - y^2 + x + 2y - 1 = 0$$
 is

Answer: B

31. The angle between the pair of straight lines

$$y^2\sin^2 heta-xy\sin^2 heta+x^2(\cos^2 heta-1)=0$$
 is

- A. $\frac{\pi}{3}$
- B. $\frac{\pi}{4}$
- $\mathsf{C.}\;\frac{2\pi}{3}$
- D. $\frac{\pi}{2}$

Answer: D

32. The equation of pair of lines joining origin to the points of intersection of $x^2+y^2=9$ and x+y=3 is

A.
$$4x^2 - 9xy + 4y^2 = 0$$

$$B.\,2x^2 - 7xy - 2y^2 = 0$$

$$\mathsf{C.}\, 4x^2 + 9xy + 4y^2 = 0$$

$$\mathsf{D.}\, 2x^2 + 7xy - 2y^2 = 0$$

Answer: C

33. The equation of second degree

$$x^2 + 2\sqrt{2}xy + 2y^2 + 4x + 4\sqrt{2}y + 1 = 0$$

represents a pair of parallel lines, then the distance between them is

- A. 4
- B. $4\sqrt{3}$
- C. 2
- D. $2\sqrt{3}$

Answer: C

34. If the angle between two st lines represented by

 $2x^2+5xy+3y^2+7y+4=0$ is an^{-1} m then m equals

A.
$$\frac{1}{5}$$

B. 1

 $\mathsf{C.}\ \frac{1}{5}$

D. 7

Answer: A

35. If the lines joining the origin to the points of intersection of the line y =mx +2 and the curve $x^2+y^2=1$ are right angles then

A. 0

 $\mathsf{B.}\;\frac{1}{2}$

C. 1

D. -1

Answer: B

36. A diagonal of the rectangle formed by the lines

$$x^2 - 7x + 6 = 0$$
 and $y^2 - 14y + 40 = 0$ is

A.
$$5x - 6y = 0$$

$$B. 5x + 6y = 0$$

C.
$$6x - 5y - 14 = 0$$

D.
$$6x - 5y + 14 = 0$$

Answer: D

37. The equation of the pair of lines passing through (0,1) and parallel to

$$2x^2 + 5xy + 3y^2 + 6x + 7y + 4 = 0$$
 is

A.
$$2x^2 + 5xy + 3y^2 - 5x - 6y + 3 = 0$$

B.
$$2x^2 + 5xy + 3y^2 + 5x - 6y + 3 = 0$$

C.
$$2x^2 + 5xy + 3y^2 - 5x + 6y + 3 = 0$$

D.
$$2x^2 + 5xy + 3y^2 + 5x + 6y + 3 = 0$$

Answer: A

38. If 4xy + 2x + 2fy + 3 = 0 represents a pair of lines, then f =

A. 2

B. 3

C. 5

D. 6

Answer: B

39. The equation of the pair of lines passing through the origin and each is at a distance of 2 units from (1,1) is

A.
$$3x^2 - 2xy - 3y^2 = 0$$

$$B. \, 3x^2 + 2xy + 3y^2 = 0$$

C.
$$2x^2 + xy - 3y^2 = 0$$

D.
$$2x^2 - xy - 3y^2 = 0$$

Answer: B

40. The equation of the pair of lines passing through the origin and perpendicular to the pair $10x^2+4xy-2y^2=0$ is

A.
$$2x^2 - 4xy + 10y^2 = 0$$

$$B. \ 2x^2 + 4xy - 10y^2 = 0$$

$$\mathsf{C.}\, 2x^2 + 4xy - 10y^2 = 0$$

D. none of these

Answer: B

41. If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

represents a parallel lines, then

A.
$$\dfrac{f^2-g^2}{b^2-h^2}$$

B.
$$\frac{f^2 + g^2}{b^2 + h^2}$$

$$\mathsf{C.}\,\frac{\left(f+g\right)^2}{\left(b+h\right)^2}$$

D.
$$\frac{\left(f-g\right)^2}{\left(b-h\right)^2}$$

Answer: B

42. The product of the perpendiculars from (1, 1) to

the pair of lines $x^2 + 4xy + 3y^2 = 0$ is

- A. 3
- B. 1
- C. $\frac{4}{\sqrt{5}}$ D. $\frac{\sqrt{5}}{4}$

Answer: C

43. If one of the lines $ax^2 + 2hxy + by^2 = 0$ bisects the angle between the aaxes in the first quadrant then

A.
$$a^2+b^2=2h^2$$

B.
$$a^2 + b^2 - h^2$$

C.
$$(a+b)^2 = h^2$$

D.
$$(a+b)^2 - 4h^2$$

Answer: D

44. Equation of pair of lines passing through (2,1)

lines

and perpendicular to the

 $6x^2 + 17xy + 12y^2 = 0$ is

A.
$$12x^2 - 17xy + 6y^2 - 31x - 22y + 64 = 0$$

B.
$$12x^2 - 17xy + 6y^2 + 31x + 22y - 104 = 0$$

C.
$$12x^2 - 17xy + 6y^2 - 31x + 22y + 20 = 0$$

D.
$$12x^2 - 17xy + 6y^2 - 31x - 22y - 20 = 0$$

Answer: C

45. The values of p and q for which the equation

 $4x^2+2pxy+25y^2+2x+5y+q=0$ represents a pair of parallel lines is

A.
$$p=10, \ \ q\in R$$

B.
$$p = -10, q = -12$$

C.
$$p = -10, q = 12$$

D.
$$p = 10, \ \ q \le \frac{1}{4}$$

Answer: D

46. Area of the parallelogram formed by

$$2x^2 + 5xy + 3y^2 = 0 \qquad \qquad \text{and} \qquad \qquad$$

$$2x^2 + 5xy + 3y^2 + 3x + 4y + 1 = 0$$
 is

A. 2

B. 1

C. 4

D. 3

Answer: B

47. The four lines given by $y^2 - 4y + 3 = 0$ and

$$x^2 + 4xy + 4y^2 - 5y - 10y + 4 = 0$$
 form a

A. parallelogram

B. square

C. rhombus

D. none of these

Answer: A

48. The four lines given by $3x^2 + 10xy + 3y^2 = 0$

and $3x^2 + 10xy + 3y^2 - 28x - 28y + 49 = 0$

form a

A. rhombus

B. square

C. triangle

D. none of these

Answer: A

49. The four lines given by the equations

$$12x^2+7xy-12y^2=0$$
 and $12x^2+7xy-12y^2-x+7y-1=0$ lie along the sides of a

A. square

B. parallelogram

C. rectangle

D. rhombus

Answer: A

50. The point of intersection of perpendicular lines

$$ax^2 + 3xy - 2y^2 - 5x + 5y + c = 0$$
 is

A.
$$\left(\frac{1}{3}, \frac{2}{3}\right)$$

$$\mathsf{B.}\left(\frac{1}{5},\,\frac{2}{5}\right)$$

$$\mathsf{C.}\left(\frac{1}{5},1\right)$$

D.
$$\left(\frac{1}{5}, \frac{7}{5}\right)$$

Answer: D

51. The coordinates of the orthocentre of the triangle formed by the lines $2x^2-3xy+y^2=0$ and x+y=1, are

$$A.\left(\frac{1}{4},\frac{1}{4}\right)$$

B. (1,1)

$$\mathsf{C.}\left(\frac{1}{2},\frac{1}{2}\right)$$

$$D.\left(\frac{1}{3},\frac{1}{3}\right)$$

Answer: B

52. The area of the triangle formed by the lines

$$x^2 + 4xy + y^2 = 0, x + y = 1$$
 is

A.
$$\sqrt{3}$$

D.
$$\frac{\sqrt{3}}{2}$$

Answer: D

53. The condition that the slope of one the lines of

$$ax^2+2hxy+by^2=0$$
 is twice the other is

A.
$$h^2 = ab$$

B.
$$2h^2=3ab$$

$$\mathsf{C.}\,8h^2=9ab$$

D.
$$h^2=9ab$$

Answer: C

54. The acute angle between the lines

$$x^2-2xy\seclpha+y^2=0$$
 is

A. α

 $\operatorname{B.}\frac{\alpha}{2}$

C. $\frac{\pi}{2}$

D. θ

Answer: A

55. Condition that a pair of lines are at right angle is

A. sum of the coefficients of x^2 and $y^2=0$

B. xy term is absent

C. constant term is absent

D. none of these

Answer: A

56. If $x^2 - kxy - y^2 + 2y + 2 = 0$ represents a pair of lines than the value of k is

- A. $\sqrt{2}$
- B. 2
- $\mathsf{C.}\,2\sqrt{2}$
- D. none of these

Answer: D

57. The angle between the lines $x^2 + 4xy - y^2 = 0$

is

A. 90°

B. 0

C. 45°

D. 60°

Answer: A

58. Acute angle between the lines

$$y^2-2\sqrt{3}xy+3x^2=0$$
 is

A. 0

B. 30°

C. 45°

D. none of these

Answer: A

59. If $x^2 + ky^2 + x - y = 0$ represents a pair of

lines then k =

A. 1

B. -1

 $\mathsf{C.}\,\frac{1}{2}$

 $\mathsf{D.}-\frac{1}{2}$

Answer: B

$$\sqrt{3}ig(x^2+y^2ig)-4xy=0$$
 is

A. 30°

B. 60°

$$\mathsf{C.}\ \frac{\tan^{-1}(1)}{2}$$

D.
$$\frac{\tan^{-1}(2)}{\sqrt{3}}$$

Answer: A

61. Angle between the lines $x^2 + \sqrt{17}xy + 2y^2 = 0$

is

A. 30°

B. $45\,^\circ$

 $\mathsf{C.}\,60^0$

D. none of these

Answer: B

62. If $kx^2-y^2+2x-y=0$ represents a pair of lines, then k=

A. 4

B. -4

C. -2

D. 2

Answer: A

63. The joint equation of the straight lines x + y = 1

and
$$x - y = 4$$
 is

A.
$$x^2 - y^2 = -4$$

$$\mathsf{B.}\,x^2-y^2=4$$

C.
$$(x + y - 1)(x - y - 4) = 0$$

D.
$$(x + y + 1)(x - y + 4) = 0$$

Answer: C

64. The combined equation of y -axis and the line

$$x-1=0$$
 is

$$\mathsf{A.}\,x^2=x$$

$$\mathsf{B.}\,xy=1$$

$$C. x^2 = 1$$

D.
$$(x - 1)y = 0$$

Answer: A

65. The sum of the slopes of the lines represented by $4x^2+2hxy-7y^2=0$ is equal to the product of the slopes then h is

- A. -4
- B. 4
- C. -6
- D. -2

Answer: D

66. If the equation $x^2 + y^2 + 2gx + 2fy + 1 = 0$

represents a pair of lines then

A.
$$f^2-g^2=1$$

$$\mathsf{B.}\, f^2+g^2=1$$

$$\mathsf{C.}\,g^2-f^2=1$$

D.
$$f^2+g^2=rac{1}{2}$$

Answer: B

67. Equation of the separate lines of the pair of lines, whose equation is $x^2-xy-12y^2=0$ are given by

A.
$$x+4y=0$$
 and $x-3y=0$

B.
$$x-6y=0$$
 and $x-3y=0$

C.
$$2x - 3y = 0$$
 and $x - 4y = 0$

D.
$$x - 4y = 0$$
 and $x + 3y = 0$

Answer: A

68. If the slope of one of the lines gives by

$$ax^2+2hxy+by^2=0$$
 is 5 times the other, then

A.
$$5h^2=9ab$$

$$\mathtt{B.}\,5h^2=ab$$

$$\mathsf{C}.\,h^2=ab$$

D.
$$9h^2=5ab$$

Answer: A

69. If $ax^2-y^2+4x-y=0$ represents a pair of lines then a ...

A. -16

B. 16

C. 4

D. -4

Answer: B

70. The distance between the pair of parallel lines

$$x^2 + 2xy + y^2 - 8ax - 8ay - 9a^2 = 0$$
 is...

- A. $2\sqrt{5}$ a
- B. $\sqrt{10}$ a
- $\mathsf{C.}\,10a$
- D. $5\sqrt{2}$ a

Answer: D

71. The lines represented by $ax^2+2hxy+by^2=0$ are perpendicular to each other if

A.
$$a + b = 0$$

$$\mathsf{B.}\,h^2=a+b$$

$$C. h = 0$$

D.
$$h^2 = ab$$

Answer: A

72. The area enclosed by the pair of lines xy=0,

the line x-4=0 and y+5=0 is

- A. 10 sq. units
- B. 20 sq. units
- C. 0 sq. units
- D. $\frac{5}{4}$ sq. units

Answer: B

The lines given

by

$$x^2+2xy-35y^2-4x+44y-12=0$$
and the line

$$5x+2y-8=0$$
 are

A. parallel

B. concurrent

C. coincident

D. none of these

Answer: B

74. If the pair of lines $ax^2+2hxy+by^2+2gx+2fy+c=0$ intersect on y -axis then

A.
$$2fgh=bg^2+ch^2$$

B.
$$bg^2
eq ch^2$$

C.
$$abc=2fgh$$

D. none of these

Answer: A

75. The pair of lines represented by $3ax^2+5xy+\left(a^2-2\right)y^2=0$ are perpendicular to each other for

A. two values of, a

B. for all a

C. for one value of a

D. for no value of a

Answer: A

76. If the pairs of lines $x^2 - 2pxy - y^2 = 0$ and

 $x^2-2qxy-y^2=0$ be such that each pair bisects

the angle between the other pair then

A.
$$p = -q$$

B.
$$pq = 1$$

$$\mathsf{C}.\,pq=\,-\,1$$

D.
$$p = q$$

Answer: C

77. If the sum of the slopes of the lines given by $x^2-2cxy-7y^2=0$ is four times their product then c has the value

A. 1

B. -1

C. 2

D. -2

Answer: C

78. If one of the lines given by $6x^2 - xy + 4cy^2 = 0$

is 3x + 4y = 0, then c =

A. 3

B. -1

C. 1

D. -3

Answer: D

79. If the pair of lines $ax^2 + 2(a+b)xy + by^2 = 0$ lie along diameters of a circle and divide the circle into four sectors such that the area of one of the sectors is thrice the area of another sectors, then:

$$A. 3a^2 + 10ab + 3b^2 = 0$$

$$B. \, 3a^2 + 2ab + 3b^2 = 0$$

$$C. 3a^2 - 10ab + 3b^2 = 0$$

D.
$$3a^2 - 2ab + 3b^2 = 0$$

Answer: B

80. If the angle between the pair of lines

$$x^2 - 3xy + \lambda y^2 + 3x - 5y + 2 = 0 ext{ is } an^{-1}igg(rac{1}{3}igg)$$

where λ is a non-negative real number, then $\lambda=$

- A. 2
- B. 0
- C. 3
- D. 1

Answer: A

81. The triangle formed by $x^2-3y^2=0$ and x=4is

A. isosceles

B. equilateral

C. angled

D. none of these

Answer: B

82. The distance between the pair of parallel lines

$$x^2 + 4xy + 4y^2 + 3x + 6y - 4 = 0$$
 is

- A. $\sqrt{5}$
- B. $\frac{2}{\sqrt{5}}$
- C. $\frac{1}{\sqrt{5}}$ D. $\frac{\sqrt{5}}{2}$

Answer: A

 $2x^2+7xy+3y^2-9x-7y+k=0$ represents a pair of lines, then k=

A. 4

B. 2

C. 1

D. -4

Answer: A

84. The equation of bisectors of the angle between

the two lines $2x^2 - 3xy + y^2 = 0$ is

A.
$$3x^2 + 2xy - 3y^2 = 0$$

$$B. \, 3x^2 - 2xy - 3y^2 = 0$$

$$\mathsf{C.}\,3x^2 + 2xy + 3y^2 = 0$$

D.
$$3x^2 - 2xy' + 3y^2 = 0$$

Answer: A

85. The quadrilateral formed by the pair of lines

$$xy + x + y + 1 = 0, xy + 3x + 3y + 9 = 0$$
 is a

A. parallelogram

B. rhombus

C. rectangle

D. square

Answer: D

86. If xy+x+y+1=0 and x+qy-3=0 are concurrent then q=

A. 3

B. 2

C. -4

D. 1

Answer: C

The **87.** equation $x^2-3xy+\lambda y^2+3x-5y+2=0$, whose λ is a real number, represents a pair of lines. If θ is the angle between the lines then $opera
ightarrow rname(\cos ec)^2 heta =$

A. 3

B. 9

C. 10

D. 100

Answer: C

88. Circumcentre of the triangle formed by the lines

xy+2x+2y+4=0 and x+y+2=0 is

- A. (0,0)
- B.(-2,-2)
- C. (-1,-1)
- D. (-1,-2)

Answer: C

89. The distance between the parallel lines

$$9x^2-6xy+y^2+18x-6y+8=0$$
 is

A.
$$\frac{1}{\sqrt{10}}$$

$$\mathsf{B.}\;\frac{2}{\sqrt{10}}$$

$$\operatorname{C.}\frac{4}{\sqrt{10}}$$

D.
$$\sqrt{10}$$

Answer: B

90. The angle between the pair of lines

$$2x^2 + 5xy + 2y^2 + 3x + 3y + 1 = 0$$
 is

A.
$$\cos^{-1}\left(\frac{4}{5}\right)$$

B.
$$\tan^{-1}\left(\frac{4}{5}\right)$$

D.
$$\frac{\pi}{2}$$

Answer: A

91. The combined equation to a pair of lines passing through the origin and inclined 30° and 60° respectively with x -axis is

A.
$$\sqrt{3}(x^2+y^2)=4xy$$

$$\mathsf{B.}\,4\big(x^2+y^2\big)=\sqrt{3}xy$$

$$\mathsf{C.}\,4\big(x^2+y^2\big)=\sqrt{3}xy$$

D.
$$x^2 + 3y^2 - 2xy = 0$$

Answer: A

92. The pair of Lines $hig(x^2-y^2ig)+pxy=0$ bisects the angle between the pair $ax^2+2hxy+by^2=0$ then the value of p is

A.
$$a-b$$

$$B.b-a$$

$$\mathsf{C}.\,a+b$$

$$D. a + b$$

Answer: B

93. The equation of the pair of bisectors of the angles between the pair of lines $x^2-2axy-y^2=0$ is $x^2-2bxy-y^2=0$. Then

$$\mathsf{A.}\,ab=1$$

B.
$$ab + 1 = 0$$

$$\mathsf{C}.\,ab=2$$

D.
$$ab + 2 = 0$$

Answer: B

94. The triangle formed by the pair of lines

$$x^2-4y^2=0$$
 and the line $x-a=0$ is always

A. equilateral

B. isosceles

C. angled

D. scalene

Answer: B

95. Point of intersection of pair of lines

$$x^2 + xy + 2y^2 - 3x + 2y + 4 = 0$$
 is

- A. (1,2)
- B. (-1,2)
- C. (-2,1)
- D. (2,-1)

Answer: D

96. If $ax^2 + 6xy + by^2 - 10x + 10y - 6 = 0$

represents a pair of perpendicular lines, then

$$|a| =$$

A. 1

B. 4

C. -1

D. 3

Answer: B

97. The difference of slopes of the lines represented

is

 $y^2-2xy\sec^2lpha+ig(3+ an^2lphaig)ig(-1+ an^2lphaig)x^2=0$

A. 2

B. 4

C. 6

D. 8

Answer: B

98. The angle between the pair of lines

$$2(x+2)^2 + 3(x+2)(y-2) - 2(y-2)^2 = 0$$
 is

A.
$$\frac{\pi}{4}$$

$$\operatorname{B.}\frac{\pi}{3}$$

$$\operatorname{C.}\frac{\pi}{6}$$

D.
$$\frac{\pi}{2}$$

Answer: D

99. The equation of the pair of lines through (1,-1) and perpendicular to the pair of lines $x^2-xy-2y^2=0$ is

A.
$$2x^2 - xy + y^2 + 5x + y + 2 = 0$$

B.
$$2x^2 - xy - y^2 - 5x - y + 2 = 0$$

C.
$$x^2 - xy + 2y^2 - 5x - y - 2 = 0$$

D.
$$2x^2 - xy - y^2 + 5x + y - 2 = 0$$

Answer: B

100. The equation of the line common to the pair of

lines

$$ig(p^2-q^2ig)x^2+ig(q^2-r^2ig)xy+ig(r^2-p^2ig)y^2=0$$

and $(l-m)x^2+(m-n)xy+(n-l)y^2=0$ is

A.
$$x + y = 0$$

B.
$$x - y = 0$$

$$\mathsf{C.}\,x + y = pqr$$

$$D. x - y = pqr$$

Answer: B

101. If the pair of lines given by

$$ig(x^2+y^2ig)\sin^2lpha=(x\coslpha-y\sinlpha)^2$$
 are

perpendicular to each other then $\alpha =$

A.
$$\frac{\pi}{2}$$

В. О

$$\mathsf{C.}\ \frac{\pi}{4}$$

D.
$$\frac{\pi}{3}$$

Answer: C

102. If a,h,b are in A.P. then the triangular area formed by the pair of lines $ax^2+2hxy+by^2=0$ and the line x-y=-2 is, in square units

A.
$$\left| \frac{a+b}{a-b} \right|$$

$$\mathsf{B.}\left|\frac{a^2+b^2}{a-b}\right|$$

$$\left| \frac{a-b}{a+b} \right|$$

D.
$$|(a^{(2)}+b^{(2)})/(a+b)|$$

Answer: C

103.

If

the

equation

 $ax^2+5xy-6y^2-10x+11y+c=0$, represents

two perpendicular lines then $c=% \frac{1}{2}\left(\frac{1}{2}\right) \left(\frac{1}{2}\right) \left($

A. 6

B. -6

C. 4

D. -4

Answer: D

104. The equation of the pair of lines through the points (a, b) parallel to the coordinate axes is

A.
$$(x - b)(y - a) = 0$$

$$B.(x-a)(y+b)=0$$

C.
$$(x-a)(y-b) = 0$$

D.
$$(x + a)(y - b) = 0$$

Answer: C

105.

If

the

equation

 $\lambda x^2 - 5xy + 6y^2 + x - 3y = 0$ represents a pair of lines, then their point of intersection is

- A. (-3,-1)
- B. (-1,-3)
- C. (3,1)
- D. (1,3)

Answer: A

106. The product of the perpendiculars from (-1,2) to

the pair of-lines $2x^2-5xy+2y^2=0$ is

- A. 4
- B. 3
- C. 8
- $\mathsf{D.}\,\frac{5}{2}$

Answer: A

107. Area of the triangle formed by the lines

$$3x^2 - 4xy + y^2 = 0$$
, $2x - y = 6$ is

A. 16

B. 25

C. 36

D. 49

Answer: C

108. The orthocentre of the triangle formed by the

lines x+3y=10 and $6x^2+xy-y^2=0$ is

- A. (1,3)
- B. (3,1)
- C. (-1,3)
- D. (1,-3)

Answer: A

109. If one of the lines of the pair $ax^2 + 2hxy + by^2 = 0$ bisects the angle between positive directions of the axes, then a,b,h satisfy the relation

A.
$$a + b = 2|h|$$

B.
$$a + b = 2|h|$$

$$\mathsf{C.}\,a-b-2|h|$$

D.
$$(a - b)^2 = 4h^2$$

Answer: B

110. If the slope of one line is twice the slope of the other in the pair of lines $ax^2+2hxy+by^2=0$ then $8h^2=$

 $\mathsf{A.} - 9ab$

B.9ab

 $\mathsf{C}.\,7ab$

D. -7ab

Answer: B

111. If the pair of lines xy-x-y+1=0 and the

line ax+2y-3=0 are concurrent then a=

A. -2

B. 3

C. 1

D. 0

Answer: C

112. If the angle 2θ is acute, then the acute angle

between the pair of lines

$$x^2(\cos heta - \sin heta) + 2xy\cos heta + y^2(\cos heta + \sin heta) = 0$$

is

A.
$$2\theta$$

B.
$$\frac{ heta}{2}$$

B.
$$\frac{\theta}{2}$$

D. θ

Answer: D

113. If the coordinate axes are the bisectors of the angles between the pair of lines $ax^2+2hxy+by^2=0$ where $h^2>ab$ and $a\neq b,$ then

A.
$$a + b = 0$$

B.
$$a - b = 0$$

C.
$$h = 0, a + b \neq 0$$

D.
$$h \neq 0, a + b = 0$$

Answer: B

114. If the pair of lines given by $ax^2+2hxy+by^2=0$ $\left(h^2>ab\right)$ forms an equilateral triangle with Ax+By+C=0 then (a+3b)(3a+b)=

A. h^2

 $B.-h^2$

 $\mathsf{C}.\,2h^2$

D. $4h^{2}$

Answer: D

115. The area of the triangle formed by the lines

$$x^2 + 4xy + y^2 = 0, x + y = 1$$
 is

A.
$$\dfrac{\left|ax_1^2+2hx_1y_1+by_1^2
ight|}{\sqrt{\left(a-b
ight)^2+4h^2}}$$

B.
$$\frac{c^2}{2(a^2+b^2)}$$

C.
$$\dfrac{\left|ax_1^2+2hx_1y_1+by_1^2\right|}{\sqrt{\left(a+b
ight)^2+4h^2}}$$

D.
$$\dfrac{\left|ax_1^2-2hx_1y_1+by_1^2\right|}{\sqrt{\left(a-b
ight)^2+4h^2}}$$

Answer: D

116. The product of the perpendicular distances from the origin on the pair of lines $12x^2+25xy+12y^2+10x+11y+2=0$ is

A.
$$\frac{1}{25}$$

$$\mathsf{B.}\;\frac{2}{25}$$

$$\mathsf{C.}\,\frac{3}{25}$$

D.
$$\frac{4}{25}$$

Answer: B

117. The centroid of the triangle formed by the pair of lines $12x^2-20xy+7y^2=0$ and the line

2x - 3y + 4 = 0 is

A.
$$\left(-\frac{7}{3}, \frac{7}{3}\right)$$

$$\mathsf{B.}\left(-\frac{8}{3},\frac{8}{3}\right)$$

$$\mathsf{C.}\left(\frac{8}{3},\frac{8}{3}\right)$$

D.
$$\left(\frac{4}{3}, \frac{4}{3}\right)$$

Answer: C

118. If m is the slope of one of the lines represented

by
$$ax^2+2hxy+by^2=0$$
, then $(h+bm)^2$ =

A.
$$h^2 - ab$$

$$\mathsf{B.}\,h^2+ab$$

C.
$$(a - b)^2$$

D.
$$(a + b)^2$$

Answer: A

119. The perpendicular distance between the lines

$$9x^2 - 24xy + 16y^2 + 21x - 28y + 10 = 0$$
 is

- A. $\frac{7}{5}$ B. $\frac{3}{5}$
- $\mathsf{c.}\,\frac{4}{5}$
- D. $\frac{1}{5}$

Answer: B

120. If the line px +qy =0 coincides with one of the

lines given by

$$ax^2 + 2hxty + by^2 = 0$$
 then

A.
$$ap^2+2hpq+bq^2=0$$

$$\mathsf{B.}\,aq^2+2hpq+bq^2=0$$

$$\mathsf{C.}\,aq^2-2hpq+bp^2=0$$

D. none of these

Answer: C

121. Let PQR be a right-angled isosceles triangle right-angled at P(2, 1). If the equation of the line QR is 2x + y = 3, then the equation representing the pair of lines PQ and PR is :

A.
$$3x^2 - 3y^2 + 8xy + 20xy + 10y + 25 = 0$$

$${\tt B.}\,3x^2-3y^2+8xy-20xy-10y+25=0$$

$$\mathsf{C.}\,3x^2-3y^2+8xy+10x+15y+20=0$$

D.
$$3x^2 - 3y^2 - 8xy - 10x - 15y - 20 = 0$$

Answer: B

122. If one of the lines of

$$my^2 + (1-m^2)xy - mx^2 = 0$$

is a bisector of the angle between the lines xy=0 then m is

A. 1

B. 2

 $C. - \frac{1}{2}$

D. -2

Answer: A

123. If the gradient of one of the lines given by

 $x^2+2hxy+2y^2=0$ is twice that of the other,

then h =

A. ±2

B. ±3

C. ±1

D. $\pm \frac{3}{2}$

Answer: B

124. The angle between the lines

$$x^2 - y^2 - 2x - 1 = 0$$
 is

- A. 90°
- B. 60°
- C. 75°
- D. 36°

Answer: A

125. The product of perpendiculars let fall from the point (x_1,y_1) upon the lines represented by $ax^2+2hxy+by^2=0$ is

A.
$$\left(\left|ax_1^2+2hx_1y_1+by_1^2\right|\right)\left(\sqrt{\left(a-b\right)^2+4h^2}
ight)$$

B.
$$\left(\left|ax_1^2+2hx_1y_1+by_1^2\right|\right)\left(\sqrt{\left(a-b\right)^2+h^2}\right)$$

C.
$$rac{\left|ax_1^2+2hx_1y_1+by_1^2
ight|}{\sqrt{\left(a-\dot{b}
ight)^2+4h^2}}$$

D.
$$\left(\left|ax_1^2-2hx_1y_1+by_1^2\right|\right)\left(\sqrt{\left(a-b
ight)^3+4h^2}
ight)$$

Answer: A

126. Equation of pair of lines drawn through (1, 1) and perpendicular to the pair of lines $3x^2-7xy+2y^2=0$ is

A.
$$2x^2 + 7x - 11x + 6 = 0$$

$$\mathsf{B.}\, 2(x-1)^2 + 7(x-1)(y-1) - 3y^2 = 0$$

C.

$$(2(x-1)^2 + 7(x-1)(y-1) - 3(y-1)^2 = 0)$$

D. none of these

Answer: D

127. The equatio $y^2-x^2+2x-1=0$ represents

A. a hyperbola

B. an ellipse

C. a pair of lines

D. a rectangular hyperbola

Answer: C

Watch Video Solution

128. The equation $4x^2 - 24xy + 11y^2 = 0$ represents

- A. two parallel lines
- B. two perpendicular lines
- C. two lines through the origin
- D. a circle

Answer: C

x+y=3 is

Watch Video Solution

129. The equation of pair of lines joining origin to the points of intersection of $x^2+y^2=9$ and

A.
$$x^2 + (3-x)^2 - 9$$

$$B. xy = 0$$

C.
$$(3+y)^2 + y^2 = 9$$

D.
$$(x - y)^2 = 9$$

Answer: B

