©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - HIMALAYA MATHS (KANNADA ENGLISH)

PARABOLA

Question Bank

> 1. Vertex of the parabola
> $y^{2}-8 x-4 y+4=0$ at
A. $(2,-3)$
B. $(0,2)$
C. $(-3,-2)$
D. $(-2,3)$

Answer: B

D View Text Solution

2. Focus of the parabola $y^{2}=16 x$ is at
A. $(-4,0)$
B. $(4,0)$
C. $(0,-4)$
D. $(0,4)$

Answer: B

- Watch Video Solution

3. Focus of the parabola $y=2 x^{2}+x$ is
A. $(0,0)$
B. $\left(\frac{1}{2}, \frac{1}{4}\right)$

> C. $\left(-\frac{1}{4}, 0\right)$
> D. $\left(-\frac{1}{4}, \frac{1}{8}\right)$

Answer: C

D View Text Solution
4. The focus of the parabola
$y^{2}=4(b-a)(x-a)$ is
A. (a, b)
B. $(b, 0)$
C. $(b-a, 0)$
D. $(a+b, 0)$

Answer: B

D View Text Solution

5. The focus of the parabola $x^{2}+12 y=0$ is
at
A. $(3,0)$
B. $(-3,0)$
C. $(0,3)$
D. $(0,-3)$

Answer: D

D View Text Solution

6. Directrix of the parabola $y^{2}=16 x$ is
A. $y=4$
B. $x=-4$
C. $x=4$

$$
\text { D. } y=-4
$$

Answer: B

D View Text Solution

7. If the line $x-1=0$ is the directrix of the parabola $y^{2}-k x+8=0$ then one of the
values of k is
A. $\frac{1}{6}$
B. 8
C. 4
D. $\frac{1}{4}$

Answer: C

D Watch Video Solution

8. The directrix of the parabola $y^{2}+8 x=0$ is
the line
A. $y=2$
B. $y+2=0$

C. $x+2=0$

D. $x=2$

Answer: D

D View Text Solution

9. The parabola $(y+1)^{2}=a(x-2)$ passes
through the point $(1,-2)$. The equation of the directrix is
A. $4 x+1=0$
B. $4 x+9=0$
C. $4 x-1=0$
D. $4 x-9=0$

Answer: D

D View Text Solution
10. The directrix of the parabola $2 x^{2}+9 y=0$
is given by
A. $8 x=9$
B. $8 x+9=0$
C. $8 y=9$
D. $8 x+9=0$

Answer: C

D View Text Solution

11. The directrix of the parabola $y^{2}=16 x$ is
A. $y=4$
B. $y=-4$

C. $x=-4$

D. $x=4$

Answer: C

D View Text Solution

12. The equation of the axis of
$y^{2}-x+4 y+5=0$ is
A. $y+2=0$
B. $x+1=0$

C. $x-1=0$

$$
\text { D. } y-2=0
$$

Answer: A

D View Text Solution

13. The length of the latus rectum of the parabola $3 y^{2}+6 y+8 x-5=0$
A. $\frac{8}{3}$
B. $\frac{3}{8}$
C. 3
D. 8

Answer: A

D View Text Solution
14. The parabola $y^{2}=4 a x$ passes through
$(2,-6)$ then the length of the latus rectum is
A. 18
B. 9
C. 6
D. 16

Answer: A

D View Text Solution
15. The focus of the parabola is at $(3,3)$ and its
directrix is $3 x-4 y=2$, then its latus rectum
is
A. 2
B. 3
C. 4
D. 5

Answer: A

D View Text Solution

16. The equation of the parabola whose vertex
and focus are $(a, 0)$ and $(b, 0)$ is $(b>a)$

$$
\text { A. } y^{2}=4(a-b)(x-a)
$$

$$
\begin{aligned}
& \text { B. } y^{2}=4(b-a)(x-b) \\
& \text { C. } y^{2}=4(b-a)(x-a) \\
& \text { D. } y^{2}=4(a-b)(x-b)
\end{aligned}
$$

Answer: C

D View Text Solution

17. The line $x+y+2=0$ touches $y^{2}=8 x$ at
A. $(-4,2)$
B. $(2,-4)$
C. $(6,-4)$
D. $(-4,6)$

Answer: B

D View Text Solution
18. The equation of the tangent to $y^{2}=24 x$
inclined at an angle 45° with x-axis is,
A. $y=x+2$
B. $y=x+3$

$$
\text { C. } y=x+6
$$

D. $y=x+4$

Answer: C

D View Text Solution

19. The line $x+y+1=0$ touches the
parabola $y^{2}=k x$, then the value of $k=$
A. -4
B. 4
C. 3
D. -3

Answer: B

D View Text Solution
20. The line $y=x \sqrt{2}+4 \sqrt{2}$ is a normal to
$y^{2}=4 a x$ then $a=$
A. 2
B. -2
C. 1
D. -1

Answer: D

- Watch Video Solution

21. The line $y=2 x+k$ is a normal to the
parabola $y^{2}=4 x$, then $k=$
A. 12
B. -12
C. 10
D. -10

Answer: B

D Watch Video Solution

22. The equation of the normal to the parabola $y^{2}=4 x$ which passes through the point $(3,0)$ is

$$
\text { A. } y=0
$$

$$
\begin{aligned}
& \text { В. } y=x-3 \\
& \text { С. } y=-x+3
\end{aligned}
$$

D. all of these

Answer: D

D Watch Video Solution

23. Equation of the normal of $y^{2}=20 x$ at
$(5,10)$ is

$$
\text { A. } x-y+5=0
$$

$$
\begin{aligned}
& \text { B. } x+y-15=0 \\
& \text { C. } x+y-5=0 \\
& \text { D. } x-y+15=0
\end{aligned}
$$

Answer: B

D Watch Video Solution

24. The tangent to the parabola $y^{2}=8 x$ parallel to the line $2 y+x=0$ is

$$
\text { A. } 2 y+x+6=0
$$

$$
\text { B. } 2 y+x+8=0
$$

C. $2 y+x=6$
D. $2 y+x=8$

Answer: B

D Watch Video Solution

25. The line $y=2 x-12$ is a normal to
$y^{2}=4 x$ at the point
A. $(4,4)$
B. $(-4,4)$
C. $(4,-4)$
D. $(-4,-4)$

Answer: C

D Watch Video Solution

26. Equation of the normal to the parabola
$y^{2}=4 x \quad$ which \quad is perpendicular to
$x+3 y+1=0$
A. $3 x-y-23=0$
B. $3 x-y+33=0$
C. $3 x-y-33=0$
D. $3 x+y-33=0$

Answer: C

D Watch Video Solution

27. If $y=2 x+c$ is a tangent to the parabola
$y^{2}=16 x$ then $c=$
A. 4
B. 2
C. 1
D. none of these

Answer: B

- Watch Video Solution

28. The line $x+y=k$ touches the parabola
$y=x-x^{2}$ if $k=$
A. 0
B. -1
C. 1
D. none of these

Answer: C

- Watch Video Solution

29. The line $y=2 x-12$ is a normal to
$y^{2}=4 x$ at the point
A. $a^{3}+2 a+2=0$
B. $a^{3}-2 a+2=0$
C. $a^{3}-a+2=0$
D. $a^{3}+a+2=0$

Answer: A

D Watch Video Solution
30. Focus of the parabola $y^{2}=16 x$ is at
A. $12 x+5 y-48=0$

$$
\begin{aligned}
& \text { B. } 12 x-5 y-48=0 \\
& \text { C. } 12 x-5 y+48=0 \\
& \text { D. } 12 x+5 y+168=0
\end{aligned}
$$

Answer: B

D Watch Video Solution

31. The point of intersection of the tangents at
the ends of the laturs rectum of the parabola
$y^{2}=4 x$ is
A. $(0,0)$
B. $(0,1)$
C. $(-1,0)$
D. $(1,0)$

Answer: C

D Watch Video Solution

32. If $2 x+y+a=0$ is a focal chord of the
parabola $y^{2}+8 x=0$ then $a=$
A. -4
B. 4
C. -2
D. 2

Answer: B

- Watch Video Solution

33. If $\left(x_{1}, y_{1}\right)$ and (x_{2}, y_{2}) are the ends of the focal chord of $y^{2}=4 a x$ then $x_{1} x_{2}+y_{1} y_{2}=$
A. $-3 a^{2}$
B. $3 a^{2}$
C. $-4 a^{2}$
D. $4 a^{2}$

Answer: A

D Watch Video Solution
34. The point on the parabola $y^{2}=8 x$ whose distance from the focus is 8 , has x coordinates
A. $\underline{0}$
B. 2
C. 4
D. 6

Answer: D

- Watch Video Solution

35. The co - ordinates of a point on the parabola $y^{2}=8 x$ whose focal distance is 4
A. $\left(\frac{1}{2}, \pm 2\right)$
B. $(1, \pm 2 \sqrt{2})$
C. $(2, \pm 4)$
D. none of these

Answer: C

D Watch Video Solution
36. The number of tangents that can be drawn from $(3,2)$ to the parabola $y^{2}=4 x$ are
A. 0
B. 1
C. 2
D. 4

Answer: A

D Watch Video Solution

37. The product of the abscissae of the extremities of a focal chord of a parabola $y^{2}=16 x$ is
A. 16
B. 8
C. 4
D. 1

Answer: A

D Watch Video Solution

38. The equation of the common tangent to
the parabolas $y^{2}=4 x$ and $x^{2}=4 y$ is
A. $x+y-1=0$

$$
\text { B. } x+y+1=0
$$

C. $x-y-1=0$
D. none of these

Answer: B

D Watch Video Solution

39. Two tangents are drawn from the point
$(-2,-1)$ to the parabola $y^{2}=4 x$. If α is the angle between these tangents, then $\tan \alpha=$
A. 3
B. $\frac{1}{3}$
C. 2
D. $\frac{1}{2}$

Answer: A

D Watch Video Solution
40. The angle between the two tangents
drawn from the point $(1,4)$ to the parabola
$y^{2}=12 x$ is
A. $\tan ^{-1}\left(\frac{1}{2}\right)$
B. $\tan ^{-1}\left(\frac{1}{3}\right)$
C. $\tan ^{-1}(2)$
D. none of these

Answer: A

D Watch Video Solution

41. The vertex of the parabola is $(4,0)$ and the y-axis is the directrix. Then the focus is
A. $(4,0)$
B. $(0,4)$
C. $(8,0)$
D. $(0,8)$

Answer: C

D Watch Video Solution

42. A tangent to the parabola $y^{2}=a x$ makes
an angle 45° with the x-axis, then its point of contact is
A. $\left(\frac{a}{2}, \frac{a}{4}\right)$
B. $\left(-\frac{a}{2}, \frac{a}{4}\right)$
C. $\left(\frac{a}{4}, \frac{a}{2}\right)$
D. $\left(-\frac{a}{4}, \frac{a}{2}\right)$

Answer: C

D Watch Video Solution

43. If $y=m x+4$ is a tangent to $y^{2}=6 x$,
then $m=$
A. $\frac{1}{2}$
B. $\frac{3}{2}$
C. $\frac{8}{3}$
D. $\frac{3}{8}$

Answer: D

D Watch Video Solution

44. If y_{1} and y_{2} are the ordinates of two points
P and Q on the parabola $y^{2}=4 a x$ and y_{3} is
the ordinate of the point of intersection of the
tangents at P and Q then, y_{1}, y_{3} and y_{2} are in
A. 1)(AP) ${ }^{\prime}$
B. 2)(GP) ${ }^{\prime}$
C. 3) HP
D. 4) no such relation

Answer: A
(Watch Video Solution
45. If $(0,4)$ and $(0,2)$ are respectively the vertex and focus of a parabola, then its equation is
A. $x^{2}+8 y=32$
B. $y^{2}+8 x-32$
C. $x^{2}-8 y=32$
D. $y^{2}-8 x=32$

Answer: A

- Watch Video Solution

46. The distance between the directrix and latus rectum of a parabola is 4 units. The length of the latus rectum is
A. 4 units
B. 2 units
C. 8 units
D. 16 units

Answer: C

47. The directrix of the parabola $y^{2}=16 x$ is
A. $(0,-2)$
B. $(-2,0)$
C. $(0,0)$
D. $(0,3)$

Answer: C

- Watch Video Solution

48. The co - ordinates of a point on the parabola $y^{2}=8 x$ whose focal distance is 4 are :
A. $\left(\frac{1}{2}, \pm 2\right)$
B. $(1, \pm 2 \sqrt{2})$
C. $(2, \pm 4)$
D. $(3, \pm 2 \sqrt{6})$

Answer: C

D Watch Video Solution
49. If $x=m y+c$ is a normal to the parabola $x^{2}=4 a y$, then the value of c is

$$
\text { A. }-2 a m-a m^{3}
$$

B. $2 a m+a m^{3}$

$$
\begin{aligned}
& \text { C. }-\frac{2 a}{m}-\frac{a}{m^{3}} \\
& \text { D. } \frac{2 a}{m}+\frac{a}{m^{3}}
\end{aligned}
$$

Answer: A
(Watch Video Solution
50. Angle substended by the latus rectum at the origin is

$$
\begin{aligned}
& \text { A. } \pi+\frac{\tan ^{-1}(4)}{3} \\
& \text { B. } \pi-\frac{\tan ^{-4}(4)}{3} \\
& \text { C. } \frac{\tan ^{-1}(4)}{3} \\
& \text { D. } \frac{\tan ^{-1}(3)}{4}
\end{aligned}
$$

Answer: B

D Watch Video Solution
51. Locus of the point of intersection of normals to the parabola $y^{2}=4 a x$ at the end points of its focal chord is

$$
\begin{aligned}
& \text { A. } y^{2}=a(x-3 a) \\
& \text { B. } y^{2}=a(x+3 a) \\
& \text { C. } y^{2}=a(x+a) \\
& \text { D. } y^{2}=a(x-a)
\end{aligned}
$$

Answer: A

- Watch Video Solution

52. The tangent to a parabola at the vertex A and any point P meet at Q if S is the focus
then SP ,SQ SA are in
A. A. P
B. mathrm (G).P
C. mathrm (H).P
D. none of these

Answer: B

D Watch Video Solution
53. An equilateral triangle is inscribed in the
parabola $y^{2}=4 a x$, where one vertex is at the
vertex of the parabola. Find the length of the side of the triangle.
A. $4 a \sqrt{3}$
B. $6 a \sqrt{3}$
C. $2 a \sqrt{3}$
D. $8 a \sqrt{3}$

Answer: D

54. If $2 x+y+\lambda=0$ is a normal to the parabola $y^{2}=8 x$, then $\lambda=$
A. 12
B. -12
C. 24
D. -24

Answer: C
55. Two ends of the latus rectum of a parabola are $(4,6)$ and $(-2,6)$, then the equation of one of the parabola is

$$
\begin{aligned}
& \text { A. }(x-1)^{2}=6(y-6) \\
& \text { B. }(x-1)^{2}=-6\left(y-\frac{9}{2}\right) \\
& \text { C. }\left(y-\frac{9}{2}\right)^{2}=6(x-1)(. \\
& \text { D. }\left(y-\frac{9}{2}\right)^{2}-6(x-1)
\end{aligned}
$$

Answer: A
56. In each of the following find the coordinates of the focus, axis of the parabola , the equation of the directrix and the length of the latus rectum.
$y^{2}=-8 x$
A. $(3,0)$
B. $(3,2)$
C. $(3,3)$
D. $(0,3)$

Answer: C

D Watch Video Solution

57. The line $2 x-3 y+5=0$ is a tangent to
the parabola $y^{2}=4 a x$, then $a=$
A. $\frac{16}{9}$
B. $\frac{10}{9}$
C. $\frac{11}{9}$
D. $\frac{7}{9}$

Answer: B

- Watch Video Solution

58. If t is a parameter of one end of a focal chord of the parabola $y^{2}=4 a x$ then its length is

$$
\begin{aligned}
& \text { A. } a\left(t-\frac{1}{t}\right)^{2} \\
& \text { B. } a\left(t+\frac{1}{t}\right) \\
& \text { C. } a\left(t-\frac{1}{t}\right) \\
& \text { D. } a\left(t+\frac{1}{t}\right)^{2}
\end{aligned}
$$

Answer: D

- Watch Video Solution

59. The line $y=m x+2$ is a tangent to the
parabola $y^{2}=4 x$, then $m=$
A. 1
B. 2
C. $\frac{3}{2}$
D. $\frac{1}{2}$

Answer: D

D Watch Video Solution

60. The condition for the line
$L x+m y+n=0$ to be a tangent for $x^{2}=y$
is
A. $P^{2}=2 m n$
B. $P^{2}=2 m^{2} n^{2}$
C. $l^{2}=3 m n$
D. $l^{2}=4 m n$

Answer: D

D Watch Video Solution

61. The distance of the P on the parabola
$y^{2}=4 x$ from the focus is 26 . Then $P=$
A. $(4,4)$ or $(4,-4)$
B. $(3,2 \sqrt{3})$ or $(3,-2 \sqrt{3})$
C. $(25,10)$ or $(25,-10)^{\prime}$ (mathrm
D. $(16,8)^{\prime}$ or $(16,-8)$

Answer: C

- Watch Video Solution

62. Vertex of the parabola $y^{2}+2 y+x=0$
lies in the quadrant,
A. first
B. second
C. third
D. fourth

Answer: D

D Watch Video Solution

63. The equation of the tangent to the parabola $y=x^{2}-x$ at the point $x=1$, is
A. $y=x+4$
B. $y=2-x$
C. $x+y+3=0$
D. $y=x-1$

Answer: D

- Watch Video Solution

64. The vertex of a parabola is at the origin
and the directrix is $x+5=0$. The length of
the latus rectum is equal to
A. 50
B. 20
C. 40
D. 10

Answer: B

D Watch Video Solution

65. The point of intersection of the latus
rectum and the axis of the parabola
$y^{2}+4 x+2 y-7=0$ is
A. $(1,1)$
B. $(1,-1)$
C. $(-1,1)$
D. $(-1,-1)$

Answer: B

- Watch Video Solution

66. The equation of the parabola whose vertex
is $(2,-1)$, axis is vertical and passing through the point $(4,-3)$ is

$$
\begin{aligned}
& \text { A. 1) }(x-2)^{2}=2(y+1) \\
& \text { B. 2) }(x+2)^{2}-2(y-1) \\
& \text { C. 3) }(x-2)^{2}=-2(y+1) \\
& \text { D. 4) }(x+2)^{2}=-2(y-1)
\end{aligned}
$$

Answer: C

- Watch Video Solution

67. The length of the latus rectum of the
parabola is $3 y^{2}+6 y+8 x-5=0$ is
A. $\frac{8}{3}$
B. $\frac{3}{8}$
C. $\frac{8}{5}$
D. $\underline{4}$

Answer: A

D Watch Video Solution

68. The length of the latus rectum of the
parabola whose directrix is $2 x-y+3=0$
and focus is $(2,-3)$ is
A. $2 \sqrt{5}$
B. $\sqrt{5}$
C. $4 \sqrt{5}$
D. $3 \sqrt{5}$

D Watch Video Solution

69. The focal distance of the point (other than
the origin) on the parabola $y^{2}=32 x$ whose ordinate is twice the abseissa is
A. 8
B. 16
C. 32
D. 4

Answer: B

D Watch Video Solution

70. If the line $y=m x+c$ is a tangent to the
parabola $y^{2}=4 a(x+a)$, then $c=$
A. $m a+\frac{a}{m}$
B. $m a-\frac{a}{m}$
C. $\frac{a}{m}$
D. $-\frac{a}{m}$

Answer: A

- Watch Video Solution

71. The line $x+y=1$ is a tangent to the parabola $y^{2}-y+x=0$, at
A. $\left(\frac{3}{2},-\frac{1}{2}\right)$
B. $(0,1)$
C. $(1,0)$
D. $\left(-\frac{1}{2}, \frac{3}{2}\right)$

Answer: B

- Watch Video Solution

72. The point on the parabola $y^{2}=8 x$ where the normal is inclined at 30° with the x-axis is
A. $\left(\frac{2}{3}, \frac{4}{\sqrt{3}}\right)$
B. $\left(\frac{2}{5}, \frac{4}{\sqrt{5}}\right)$
C. $\left(\frac{2}{3},-\frac{4}{\sqrt{3}}\right)$
D. $\left(\frac{2}{5},-\frac{4}{\sqrt{5}}\right)$

D Watch Video Solution

73. t_{1} and t_{2} are the parameters of the endpoints f a focal chord of a parabola. Then
A. at angle
B. on the directrix
C. on the tangent at vertex
D. both (a) and (b)

Answer: D

- Watch Video Solution

74. The latus rectum of the parabola $y^{2}=5 x+4 y+1$ is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. π

Answer: C

- Watch Video Solution

75. The point on the parabola $y^{2}=16 x$ where the tangent makes an angle 60° with the x axis is

$$
\begin{aligned}
& \text { А. }\left(\frac{4}{3}, \frac{8}{\sqrt{3}}\right) \\
& \text { В. }\left(\frac{8}{\sqrt{3}}, \frac{4}{3}\right) \\
& \text { С. }\left(\frac{4}{\sqrt{3}}, \frac{8}{3}\right)
\end{aligned}
$$

D. $\left(\frac{4}{3},-\frac{8}{\sqrt{3}}\right)$

Answer: A

D Watch Video Solution

76. The point of intersection of the tangents at
the ends of the latus rectum of the parabola $y^{2}=8 x$ is
A. $(2,0)$
B. $(-2,0)$
C. $(0,2)$
D. $(0,-2)$

Answer: B

- Watch Video Solution

77. The equation of the common tangents to
the circle $x^{2}+y^{2}=2 a^{2}$ and the parabola
$y^{2}=8 a x$ is

$$
\text { A. } y= \pm(x+2 a)
$$

$$
\begin{aligned}
& \text { B. } y= \pm(3 x-a) \\
& \text { C. } y= \pm(x-2 a) \\
& \text { D. } y= \pm(3 x+a)
\end{aligned}
$$

Answer: A

D Watch Video Solution

78. The equation of common tangents to the parabola $y^{2}=8 x \quad$ and \quad hyperbola $3 x^{2}-y^{2}=3$ are
A. $2 x \pm y+1=0$
B. $2 x \pm y-2=0$
C. $x \pm 2 y+4=0$
D. $x \pm 2 y-3=0$

Answer: A

- Watch Video Solution

79. The common tangent to the parabolas
$y^{2}=8 x$ and $x^{2}=8 y$ is
A. $x+y-2=0$
B. $x+y+8=0$
C. $x+y+2=0$
D. $x+y-8=0$

Answer: C

- Watch Video Solution

80. The equation of the common tangent to
the curves $y^{2}=8 x$ and $x y=-1$ is:
A. $x+y-2=0$

$$
\text { B. } x+y+2=0
$$

C. $x-y+2=0$
D. $x-y-2=0$

Answer: B

- Watch Video Solution

81. The locus of the midpoints of the chords which are drawn from the vertex of the parabola $y^{2}=4 a x$ is
A. $y^{2}=4 a x$
B. $y^{2}=8 a x$
C. $y^{2}=2 a x$
D. $y^{2}=16 x$

Answer: C

- Watch Video Solution

82. The line $x-2 y+4 a=0$ is a tangent to
the parabola $y^{2}=4 a x$ at
A. $(2 a, 2 a)$
B. $(3 a, 3 a)$
C. (a, a)
D. $(4 a, 4 a)$

Answer: D

- Watch Video Solution

83. The line $y=m x+2$ is a tangent to the
parabola $y^{2}=4 x$, then $m=$
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

84. The equation of the common tangent to
$y^{2}=2 x$ and $x^{2}=16 y$ is
A. $x+2 y+2=0$

$$
\text { B. } x-2 y+2=0
$$

C. $x+2 y-2=0$
D. $x-2 y-2=0$

Answer: A

D Watch Video Solution

$$
\begin{aligned}
& \text { 85. The axis of the parabola } \\
& 9 y^{2}-16 x-12 y-57=0 \text { is }
\end{aligned}
$$

A. $3 y=2$
B. $x+3 y=3$
C. $2 x=3$
D. $y=3$

Answer: A

D Watch Video Solution

86. t_{1} and t_{2} are the parameters of the endpoints f a focal chord of a parabola. Then
A. 1
B. -1
C. 2
D. $\frac{1}{2}$

Answer: B

D Watch Video Solution
87. The length of the perpendicular from the focus of the parabola $y^{2}=8 x$ onto the tangent at $(2,-4)$ is
A. $2 \sqrt{2}$
B. $3 \sqrt{2}$
C. $4 \sqrt{2}$
D. $\sqrt{2}$

Answer: A

D Watch Video Solution

88. Two tangents are drawn from the point (h, k) to the parabola $y^{2}=4 x$, such that the slope of one tangent is twice the other, then
A. $9 k=2 h^{2}$
B. $9 h=2 k^{2}$
C. $2 h=9 k^{2}$
D. $h=k$

Answer: B

D Watch Video Solution
89. The length of the focal chord drawn to
$y^{2}=8 x$, through the point whose parametric
value is 2 is
A. 5
B. $\frac{5}{2}$
C. $\frac{25}{2}$
D. $\frac{25}{4}$

Answer: C

- Watch Video Solution

90. The vertex of the parabola

$$
(y-2)^{2}=16(x-1) \text { is }
$$

A. $6 x=11$
B. $6 x+11=0$
C. $11 x=6$
D. $11 x+6=0$

Answer: A

- Watch Video Solution

> 91. Axis of the parabola $x^{2}-4 x-4 y+10=0$ is
A. $y+3=0$
B. $y-3=0$
C. $x+2=0$
D. $x-2=0$

Answer: D

- Watch Video Solution

92. The equation of the tangent to the parabola $y^{2}=8 x$ making an angle 30° with the x-axis is

> A. $x-\sqrt{3} y-2=0$
> В. $3 x-\sqrt{3} y+4=0$
> C. $x-\sqrt{3} y+6=0$
> D. $x-\sqrt{3} y=0$

Answer: C

D Watch Video Solution

93. The equation of the tangent to the parabola $y^{2}=4 x+5$ parallel to the line $y=2 x+7$ is
A. $y=2 x+3$
B. $y=2 x-3$
C. $y=2 x+1$
D. $y=2 x+4$

Answer: A

D Watch Video Solution

94. The equation of the tangent to the
parabola $(y-2)^{2}=8(x+1)$, which is
parallel to the line $y=2 x-3$ is
A. $y=2 x-5$
B. $y=2 x+5$
C. $y=2 x-2$
D. $y=2 x+2$

Answer: B

D Watch Video Solution
95. If the focus of a parabola divides a focal chord of the parabola in segment of length 3
and 2 the length of the latus rectum of the parbola is
A. $\frac{4}{3}$
B. $\frac{7}{5}$
C. $\frac{24}{5}$
D. $\frac{12}{5}$

Answer: C
(Watch Video Solution
96. The focus of the parabola
$x^{2}-8 x+2 y+7=0$ is
A.) $\left(0,-\frac{1}{2}\right)$
B. $\left(4, \frac{9}{2}\right)$
C. $(4,4)$
D. $\left(-4,-\frac{9}{2}\right)$

Answer: C

- Watch Video Solution

97. Length of focal of the parabola $y^{2}=4 a x$ making an angle α with the axis of the parabola is
A. 8
B. 4
C. 16
D. 12

Answer: C
98. The axis of the parabola $9 y^{2}-16 x-12 y-57=0$ is
A. $3 y=2$
B. $y=3$
C. $2 x=3$
D. $x=3$

Answer: A

(Watch Video Solution
99. Consider the equation of the parabola $y^{2}+4 a x=0$ where $a>0$ which of the following is false
A. Vertex of the parabola is at the origin
B. Focus of the parabola is $(a, 0)$
C. Directrix of the parabola is $x=a$
D. Tangent at the vertex is $x=0$

Answer: B

- Watch Video Solution

100. If $x+y=k$ is a normal to the parabola $y^{2}=12 x$ then it touches the parabola

> A. $y^{2}=-9 x$
> B. $y^{2}=-12 x$
> C. $y^{2}=-16 x$
> D. $y^{2}=-36 x$

Answer: D
(Watch Video Solution
101. Range of values of k for which the point (k -

1) is exteriro to both the parabolas $y^{2}=|x|$ is
A. $-1<k<0$
B. $-1<k<1$
C. $0<k<1$
D. $-1<k<1$

Answer: B

- Watch Video Solution

102. If $P S P^{\prime}$ is a focal chord of the parabola
$y^{2}=4 a x$ and $S L$ is its semi latus rectum then
$S P, S L, S P^{\prime}$ are in
A. a
B. $2 a$
C. $3 a$
D. $4 a$

Answer: B

- Watch Video Solution

103. A triangle formed by the tangents to the
parabola $y^{2}=4 a x$ at the ends of the latus
rectum and the double ordinate through the focus is
A. isosceles
B. equilateral
C. angled isosceles
D. dependent on ' a ' for its nature

Answer: C
104. If b and c are the length of the segments
of any focal chord of a parabola $y^{2}=4 a x$
then the length of the semi latus rectum is

> A. $\frac{b+c}{2}$
> B. $\frac{b c}{b+c}$
> C. $\frac{2 b c}{b+c}$
D. $\sqrt{b c}$

Answer: C
105. The focus of the parabola $y=2 x^{2}+x$ is
A. $(0,0)$
B. $\left(\frac{1}{2}, \frac{1}{4}\right)$
C. $\left(-\frac{1}{4}, 0\right)$
D. $\left(-\frac{1}{4}, \frac{1}{8}\right)$

Answer: C

D Watch Video Solution
106. The tangents from the origin to the parabola $y^{2}=4(x-1)$ are inclined at an angle

> A. $\frac{\pi}{4}$
> B. $\frac{\pi}{2}$
> C. $\frac{\pi}{3}$
> D. $\frac{\pi}{6}$

Answer: B

D Watch Video Solution
107. The tangents from the point $(-2,5)$ to the parabola $y^{2}=8 x$ are inclined at an angle
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{3}$

Answer: C
(Watch Video Solution
108. Given the ends of latus rectum, the number of parabolas that can be drawn is
A. 0
B. 1
C. 2
D. ≥ 3

Answer: C

D Watch Video Solution
109. The equation of the lines joining the vertex of the parabola $y^{2}=6 x$ to the points on ti which have abscissa 24 are
A. $y \pm 2 x=0$
B. $2 y \pm x=0$
C. $x \pm 2 y=0$
D. $2 x \pm y=0$

Answer: B

- Watch Video Solution

110. The area of the triangle formed by the
lines joining the vertex of the parabola $x^{2}=12 y$ to the ends of latus rectum is
A. $12 s q$, units
B. 16 sq. units
C. 18 sq. units
D. 24 sq. units

Answer: C

D Watch Video Solution
111. If the focus of a parabola is $(0,-3)$ and its directrix is $y=3$ then its equation is

$$
\begin{aligned}
& \text { А. } x^{2}=-12 y \\
& \text { B. } x^{2}=12 y \\
& \text { C. } y^{2}=-12 x \\
& \text { D. } y^{2}=12 x
\end{aligned}
$$

Answer: A

- Watch Video Solution

112. If the vertex of a parabola is the point $(-3$,

0) and the directrix is the line $x+5=0$, then
its equation is
A. $y^{2}=8(x+3)$
B. $x^{2}=8(y+3)$
C. $y^{2}=-8(x+3)$
D. $y^{2}=8(x+5)$

Answer: A
113. The equation of the tangent to the parabola $y^{2}=16 x$ at $(1,4)$ is
A. $x=4 y$
B. $y=4 x$
C. $2 x+y+2=0$
D. $2 x-y+2=0$

Answer: D
(Watch Video Solution
114. t_{1} and t_{2} are the parameters of the endpoints f a focal chord of a parabola. Then
A. $t_{1}+t_{2}=-1$
B. $t_{1} t_{2}=-1$
C. $t_{1} t_{2}=1$
D. $t_{1}+t_{2}=1$

Answer: B
(Watch Video Solution
115. The vertex of the parabola $y^{2}=x+4 y+3$ is
A. $(-7,2)$
B. $(7,-2)$
C. $(7,2)$
D. $(-7,-2)$

Answer: A

- Watch Video Solution

116. The equation of the parabola with focus
$(2,0)$ and directirix $x+3=0$ is

> A. $y^{2}-10 x+5=0$
> B. $y^{2}-10 x-5=0$
> C. $x^{2}-10 y+5=0$
> D. $x^{2}-10 y-5=0$

Answer: B
(Watch Video Solution
117. If $2 y=5 x+k$ is a tangent to the parabola $y^{2}=6 x$ then $\mathrm{k}=$
A. $\frac{2}{3}$
B. $\frac{4}{5}$
C. $\frac{3}{5}$
D. none of these

Answer: D

D Watch Video Solution

118. The focus of the parabola $y^{2}-4 y-8 x+4=0$ is

A. $(1,1)$
B. $(1,2)$
C. $(2,1)$
D. $(2,2)$

Answer: D

D Watch Video Solution
119. The tangents at the points $\left(a t_{1}^{2}, 2 a t_{1}\right),\left(a t_{2}^{2}, 2 a t_{2}\right)$ are right angles if
A. $t_{1} \cdot t_{2}=-1$
B. $t_{1} \cdot t_{2}=1$
C. $t_{1} \cdot t_{2}=2$
D. $t_{1} \cdot t_{2}=-2$

Answer: A

D Watch Video Solution
120. Focus of the parabola $y^{2}-8 x-32=0$ is at
A. $(0,2)$
B. $(4,0)$
C. $(2,0)$
D. $(-2,0)$

Answer: D

D Watch Video Solution
121. The directrix of the parabola $y^{2}=16 x$ is

$$
\begin{aligned}
& \text { А. } y=4 \\
& \text { В. } y=-4 \\
& \text { С. } x=-4 \\
& \text { D. } x=4
\end{aligned}
$$

Answer: C
(Watch Video Solution

122. The vertex of the parabola $y^{2}=5 x+4 y+1$ is

A. $(-1,2)$
B. $(1,-2)$
C. $(0,3)$
D. $(2,-2)$

Answer: A

D Watch Video Solution
123. The axis of the parabola
$2 x^{2}+5 y-3 x+4=0$ is

$$
\begin{aligned}
& \text { A. } x=\frac{3}{4} \\
& \text { B. } y=\frac{3}{4} \\
& \text { C. } x=\frac{1}{2} \\
& \text { D. } x-3 y=5
\end{aligned}
$$

Answer: A

- Watch Video Solution

124. The tangents drawn at the extremities of
a focal chord of the parabola $y^{2}=16 x$
A. intersect on the tangent at the vertex
B. intersect on the directrix
C. intersect at angle 45°
D. are parallel

Answer: B

D Watch Video Solution

125. A parabola has its focus at $(-4,0)$ and its directrix is $x=4$. Its equation is

$$
\begin{aligned}
& \text { A. } x^{2}=-8 y \\
& \text { B. } y^{2}=-16 x \\
& \text { C. } x^{2}=9 y \\
& \text { D. } y^{2}=8 x
\end{aligned}
$$

Answer: B

- Watch Video Solution

126. If two tangents drawn from a point p to
the parabola $y^{2}=4 x$ are at right angles then
the locus of p is

$$
\begin{aligned}
& \text { A. } x-1=0 \\
& \text { В. } 2 x+1=0 \\
& \text { С. } x+1=0 \\
& \text { D. } 2 x-1=0
\end{aligned}
$$

Answer: C

D Watch Video Solution
127. If $y=2 x+k$ is a tangent to $y^{2}=8 x$,
then $k=$
A. 2
B. $\frac{1}{2}$
C. 3
D. 1

Answer: D

D Watch Video Solution
128. The equation of the parabola whose vertex is $(1,-2)$ and focus is $(1,-1)$ is

$$
\begin{aligned}
& \text { A. }(x-1)^{2}=4(y+2) \\
& \text { B. }(x+1)^{2}=4(y-2) \\
& \text { C. }(x+1)^{2}=4(y+2) \\
& \text { D. } x^{2}=4(y+2)
\end{aligned}
$$

Answer: A

- Watch Video Solution

129. Focus of the parabola $(y-2)^{2}=20(x+3)$ is

A. $(2,-3)$
B. $(2,2)$
C. $(-3,2)$
D. $(3,-2)$

Answer: B

D Watch Video Solution
130. Two perpendicular tangents to $y^{2}=4 a x$ always intersect on the line
A. $x+4 a=0$
B. $x+2 a=0$
C. $x=a$
D. $x+a=0$

Answer: D

D Watch Video Solution
131. Equation of the tangent at $(-4,-4)$ on $x^{2}=-4 y$ is
A. $2 x-y+4=0$
B. $2 x+y-4=0$
C. $2 x-y-12=0$
D. $2 x+y+4=0$

Answer: A
(Watch Video Solution
132. The vertex of the parabola $(y-2)^{2}=16(x-1)$ is
A. $(1,2)$
B. $(-1,2)$
C. $(1,-2)$
D. $(2,1)$

Answer: A

- Watch Video Solution

133. Equation of the parabola with its vertex at
$(1,1)$ and focus $(3,1)$ is

$$
\begin{aligned}
& \text { A. }(x-3)^{2}=8(y-1) \\
& \text { B. }(y-1)^{2}=8(x-1) \\
& \text { C. }(y-1)^{2}=8(x-3) \\
& \text { D. }(x-1)^{2}-8(y-1)
\end{aligned}
$$

Answer: B

D Watch Video Solution

134. The equation to the parabola whose focus
is $(1,-1)$ and the directrix is $x+y+7=0$ is

$$
\begin{aligned}
& \text { A. } x^{2}-18 x-10 y-45=0 \\
& \text { B. } x^{2}+y^{2}-2 x y-18 x-10 y=0 \\
& \text { C. } x^{2}+y^{2}-2 x y-18 x-10 y-45=0 \\
& \text { D. } x^{2}+y^{2}-18 x-10 y-45=0
\end{aligned}
$$

Answer: C

D Watch Video Solution

135. The directrix of the parabola $x^{2}-4 x-8 y+12=0$
A. $y=0$
B. $x=1$
C. $y=-1$
D. $x=-1$

Answer: C

- Watch Video Solution

136. If(0, 6) and (0,3) are respectively the vertex \& focus of a parabola then its equation is
A. $x^{2}+12 y=72$
B. $x^{2}-12 y=72$
C. $y^{2}-12 x=72$
D. $y^{2}+12 x=72$

Answer: A
137. The equation of the line which is tangent to both the circle $x^{2}+y^{2}=50$ and the parabola $y^{2}=40 x$ is
A. $(3,4),(-13,4)$
B. $(5,-8),(-5,8)$
C. $(3,-4),(13,4)$
D. $(-3,-4),(13,-4)$

Answer: A

D Watch Video Solution
138. The equation of the line which is a tangent to both the circle $x^{2}+y^{2}=5$ and the parabola $y^{2}=40 x$ is

$$
\begin{aligned}
& \text { А. } 2 x-y+5=0 \\
& \text { В. } 2 x-y \pm 5=0 \\
& \text { С. } 2 x+y+5=0 \\
& \text { D. } 2 x-y-5=0
\end{aligned}
$$

Answer: A

D Watch Video Solution
139. The directrix of the parabola $x^{2}-4 x-8 y+12=0$
A. $y=0$
B. $x=1$
C. $y=-1$
D. $x=-1$

Answer: C

D Watch Video Solution
140. The equation of the common tangents to
the circle $x^{2}+y^{2}=2 a^{2}$ and the parabola $y^{2}=8 a x$ is

$$
\begin{aligned}
& \text { A. } x= \pm(y+2 a) \\
& \text { B. } y= \pm(x+2 a) \\
& \text { C. } x= \pm(y+a) \\
& \text { D. } x= \pm(y+a)
\end{aligned}
$$

Answer: B
141. The equation of the directix of the parabola $y^{2}+4 y+4 x+2=0$ is

$$
\begin{aligned}
& \text { A. } x=\frac{3}{2} \\
& \text { B. } x=-1 \\
& \text { C. } x=1 \\
& \text { D. } x=-\frac{3}{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution
142. The focal chord of $y^{2}=16 x$ is tangent to
$(x-6)^{2}+y^{2}=2$ then the possible values of
the slope of this chord are
A. 1,-1

$$
\begin{aligned}
& \text { B. }-\frac{1}{2}, 2 \\
& \text { C. }-2, \frac{1}{2} \\
& \text { D. } \frac{1}{2}, 1
\end{aligned}
$$

Answer: A

- Watch Video Solution

143. The normal at the point $\left(b t_{1}^{2}, 2 b t_{1}\right)$ on a parabola meets the parabola again in the point $\left(b t_{2}^{2}, 2 b t_{2}\right)$, then :

$$
\begin{aligned}
& \text { A. } t_{2}=-t_{1}+\frac{2}{t_{1}} \\
& \text { B. } t_{2}=t_{1}-\frac{2}{t_{1}} \\
& \text { C. } t_{2}=t_{1}+\frac{2}{t_{1}} \\
& \text { D. } t_{2}=-t_{1}-\frac{2}{t_{1}}
\end{aligned}
$$

Answer: D

- Watch Video Solution

144. A point an the parabola $y^{2}=18 x$ at which the ordinate increases at twice the rate of the abscissa is :
A. $(2,4)$
B. $(2,-4)$
C. $\left(-\frac{9}{8}, \frac{9}{2}\right)$
D. $\left(\frac{9}{8}, \frac{9}{2}\right)$

Answer: D

- Watch Video Solution

145. If $a \neq 0$ and the line $2 b x+3 c y+4 d=0$ passes through the points of intersection of the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ then

$$
\begin{aligned}
& \text { A. } d^{2}+(2 b+3 c)^{2}=0 \\
& \text { B. } d^{2}+(3 b+2 c)^{2}=0 \\
& \text { C. } d^{2}+(2 b-3 c)^{2}=0 \\
& \text { D. } d^{2}+(3 b-2 c)^{2}=0
\end{aligned}
$$

Answer: A

D Watch Video Solution

146. Let p be the point $(1,0)$ and Q a point on
the locurs $y^{2}=8 x$ the locus of mid point of $P Q$ is

$$
\begin{aligned}
& \text { A. } x^{2}+4 y+2=0 \\
& \text { B. } x^{2}-4 y+2=0 \\
& \text { C. } y^{2}-4 x+2=0 \\
& \text { D. } y^{2}+4 x+2=0
\end{aligned}
$$

Answer: C

- Watch Video Solution

147. The locus of the vertices of the family of parabolas $y=\frac{a^{3} x^{2}}{3}+\frac{a^{2} x}{2}-2 a$ is

$$
\begin{aligned}
& \text { A. } x y=\frac{35}{16} \\
& \text { B. } x y=\frac{35}{105} \\
& \text { C. } x y=\frac{105}{35} \\
& \text { D. } x y=\frac{3}{4}
\end{aligned}
$$

Answer: C

- Watch Video Solution

148. The slopes of the normal to the parabola $y^{2}=4 a x$ intersecting at a point on the axis of the parabola at a distance 4a from its vertex are in
A. H.P
B. $\operatorname{mathrm}(G) \cdot m a t h r m(P)$
C. A.P
D. none of these

Answer: C
149. If the line $x-1=0$ is the directrix of the parabola $y^{2}-k x+8=0$ then one of the values of k is
A. $\frac{1}{8}$
B. 8
C. 4
D. $\frac{1}{4}$

Answer: C
150. Equation of the common tangent touching the circle $(x-3)^{2}+y^{2}=9$ and the parabola $y^{2}=4 x$ above the x axis is

$$
\begin{aligned}
& \text { A. } \sqrt{3} y=3 x^{2}+1 \\
& \text { B. } \sqrt{3} y=-(x+3) \\
& \text { C. } \sqrt{3} y=x+3 \\
& \text { D. } \sqrt{3} y=-(3 x+1)
\end{aligned}
$$

Answer: C

D Watch Video Solution
151. The equation of the directix of the parabola $y^{2}+4 y+4 x+2=0$ is
A. $x=-1$
B. $x=1$
C. $x=-\frac{3}{2}$
D. $c x=\frac{3}{2}$

Answer: D
152. The locus of the mid point of the line segment joining the focus to a moving point on the parbola $y^{2}=4 a x$ is another parabola with directix
A. $x=-a$
B. $x=-\frac{a}{2}$
C. $x=0$
D. $x=\frac{a}{2}$

- Watch Video Solution

153. The focal chord of $y^{2}=16 x$ is tangent to
$(x-6)^{2}+y^{2}=2$ then the possible values of the slope of this chord are
A. 1,-1
B. $-\frac{1}{2}, 2$
C. $-2, \frac{1}{2}$
D. $\frac{1}{2}, 1$
154. Angle between tangents drawn from the
point $(1,4)$ to the parabola $y^{2}=4 x$ is
А. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: C
155. If $x+y=k$ is normal to $y^{2}=12 x$, then k is :
A. 3
B. 9
C. -9
D. -3

Answer: B

D Watch Video Solution
156. The equation of the directix of the parabola $y^{2}+4 y+4 x+2=0$ is
A. $x-1$
B. $x=1$
C. $x=-\frac{3}{2}$
D. $x=\frac{3}{2}$

Answer: D

- Watch Video Solution

157. The equation of the common tangent to
the curves $y^{2}=8 x$ and $x y=-1$ is:

$$
\begin{aligned}
& \text { A. } 3 y=9 x+2 \\
& \text { B. } y=2 x+1 \\
& \text { C. } 2 y=x+8 \\
& \text { D. } y=x+2
\end{aligned}
$$

Answer: D

158. Focus of the parabola $y^{2}=16 x$ is at
A. ± 2
B. $\frac{1}{2},-2$
C. ${ }^{-}-(1) /(2), 2$ quad(mathrm
D. $1^{`}$

Answer: D

- Watch Video Solution

159. A tangent is drawn to the parabola $y=x^{2}+6$ at the point $(1,7)$ which also touches the
$x^{2}+t y^{2}+16 x+12 y+c=0$ at
A. $(-8,-6)$
B. $(-7,-6)^{\prime}$
C. $(-6,-7)^{\prime}($ mathrm
D. $(6,7)^{\prime}$

Answer: C
160. The equation of the common tangents
other than the x-axis to the parabola $y=x^{2}$
and $y=-(x-2)^{2}$ is
A. $y=4(x-1)$
B. $x=0$
C. $y=-4(x-1)$
D. $y=4(x+1)$

Answer: A
161. If $x+y+1=0$ touches the parabola
$y^{2}=\lambda x$ then $\lambda=$
A. 2
B. 4
C. 6
D. 8

Answer: B
162. The equation of the chord of parabola $y^{2}=8 x$ which is bisected at the point $(2,-3)$ is
A. $4 x+3 y+1=0$
B. $3 x+4 y-1=0$
C. $4 x-3 y-1=0$
D. $3 x-4 y+1=0$

Answer: A
163. The focus of the parabola

$$
y^{2}-x-2 y+2=0 \text { is }
$$

A. $\left(\frac{1}{4}, 0\right)$
B. $(1,2)$
C. $\left(\frac{5}{4}, 1\right)$
D. $\left(\frac{3}{4}, \frac{5}{2}\right)$

Answer: C

- Watch Video Solution

164. If a focal chord of the parabola $y^{2}=a x$ is
$2 x-y-8=0$ then the equation of the directrix is

$$
\begin{aligned}
& \text { A. } x+4=0 \\
& \text { B. } x-4=0 \\
& \text { C. } y-4=0 \\
& \text { D. } y+4=0
\end{aligned}
$$

Answer: A
165. The line $x+y=1$ is a tangent to the parabola $y^{2}-y+x=0$, at
A. $(0,1)$
B. $(1,0)$
C. $(0,-1)$
D. $(-1,0)$

Answer: A
(Watch Video Solution
166. The equation of the directrix of the parabola $(x-1)^{2}=2(y-2)$ is
A. $2 y-3=0$
B. $2 x+1=0$
C. $2 x-1=0$
D. $2 y-1=0$

Answer: A
(Watch Video Solution
167. The equation of the parabola with focus
$(0,3)$ and the directrix $y+3=0$ is

$$
\begin{aligned}
& \text { A. } x^{2}=-12 y \\
& \text { B. } x^{2}=12 y \\
& \text { C. } y^{2}=-12 y \\
& \text { D. } y^{2}=12 y
\end{aligned}
$$

Answer: B

D Watch Video Solution
168. The vertex of the parabola

$$
y^{2}=4\left(a^{\prime}-a\right)(x-a) \text { is }
$$

A. $\left(a^{\prime}, a\right)$
B. (a, a)
C. $(a, 0)$
D. $\left(a^{\prime}, 0\right)$

Answer: C
(Watch Video Solution
169. If the parabola $y^{2}-4 a x$ passes through
the point $(3,2)$ then the length of its latus rectum is

> A. $\frac{2}{3}$
> B. $\frac{4}{3}$
> C. $\frac{1}{3}$
> D. 4

Answer: B
170. The equation of the normal to the parabola $y^{2}=8 x$ having slope 1 is
A. $x+y+6=0$
B. $x-y-6=0$
C. $x-y+6=0$
D. $x+y-6=0$

Answer: B

D Watch Video Solution
171. The point on the parabola $y^{2}=4 x$, the normal makes equal angles with the axes is
A. $(4,4)$
B. $(9,6)$
C. (4,-4)
D. $(1,-2)$

Answer: D
(Watch Video Solution
172. The vertex of the parabola
$x^{2}+2 y=8 x-7$ is
A. $\left(4, \frac{7}{2}\right)$
B. $\left(4, \frac{9}{2}\right)$
C. $\left(4, \frac{9}{2}\right)$
D. $(1,0)$

Answer: B

D Watch Video Solution
173. The tangents drawn from the ends of latus rectum of $y^{2}=12 x$ meets at
A. directrix
B. vertex
C. focus
D. none of these

Answer: A
(D) Watch Video Solution
174. The tangent drawn at any point P to the parabola $y^{2}=4 a x$ meets the directrix at the point K, then the angle which $K P$ subtends at its focus is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: D
175. A tangent to the parabola $y^{2}=a x$ makes an angle 45° with the x-axis, then its point of contact is
A. $\left(\frac{a}{2}, \frac{a}{2}\right)$
B. $\left(\frac{a}{4}, \frac{a}{4}\right)$
C. $\left(\frac{a}{2}, \frac{a}{2}\right)$
D. $\left(\frac{a}{4}, \frac{a}{2}\right)$

Answer: D

176. The locus of the points which are equidistant from $(-a, 0)$ and $x=a$
A. $y^{2}=4 a x$
B. $y^{2}=-4 a x$
C. $x^{2}+4 a y=0$
D. $x^{2}-4 a y=0$

Answer: B
177. The vertex of the parabola $y^{2}=4 a(x+a)$ is
A. $(0,0)$
B. $(-a, 0)$
C. $(a, 0)$
D. $(0, a)$

Answer: B

D Watch Video Solution
178. If m_{1} and m_{2} are slopes of the two tangents that are drawn from $(2,3)$ to the
parabola $y^{2}=4 x$, then $\frac{1}{m_{1}}+\frac{1}{m_{2}}$ is
A. 3
B. -3
C. $\frac{2}{3}$
D. $\frac{3}{2}$

Answer: A
179. The parabola $(y+1)^{2}=a(x-2)$ passes
through the point $(1,-2)$. The equation of its directrix is
A. $4 x+1=0$
B. $4 x-1=0$
C. $4 x+9=0$
D. $4 x-9=0$

Answer: D

D Watch Video Solution
180. Two tangents are drawn from the point
$(-2,-1)$ to the parabola $y^{2}=4 x$. If α is the angle between these tangents, then $\tan \alpha=$
A. 3
B. $\frac{1}{3}$
C. 2
D. $\frac{1}{2}$

Answer: A

D Watch Video Solution
181. The graph represented by the equations
$x=\sin ^{2} t y=2 \cos t$ is
A. a portion of a parabola
B. a parabola
C. a part of a sine graph
D. a part of hyperbola

Answer: B
(D) Watch Video Solution
182. If $P S P^{\prime}$ is a focal chord of the parabola $y^{2}=4 a x$ and $S L$ is its semi latus rectum then
$S P, S L, S P^{\prime}$ are in
A. 1) $A P$
B. 2) HP
C. 3)(GP) ${ }^{\prime}$
D. 4)none

Answer: B
183. The tangents at the points
$\left(a t_{1}^{2}, 2 a t_{1}\right),\left(a t_{2}^{2}, 2 a t_{2}\right)$ are right angles if
A. $t_{1}=t_{2}$
B. $t_{1}=-t_{2}$
C. $t_{1} t_{2}=2$
D. none of these

Answer: B

D Watch Video Solution

184. Axis of the parabola
 $x^{2}-3 y-6 x+6=0$ is

А. $x=-3$
B. $y=-1$
C. $x=3$
D. $y=1$

Answer: C
(Watch Video Solution
185. If $x+y+1=0$ touches the parabola $y^{2}=\lambda x$ then $\lambda=$
A. -4
B. 4
C. 3
D. -3

Answer: B

- Watch Video Solution

186. The equation of the directrix to the parabola $y^{2}-2 x-6 y-5=0$ is
A. $2 x+15=0$
B. $x+5=0$
C. $2 x+3=0$
D. $x+2=0$

Answer: A
(Watch Video Solution
187. The vertex of the parabola
$x^{2}+12 x-9 y=0$ is
A. $(6,-4)$
B. $(-6,4)$
C. $(6,4)$
D. $(-6,-4)$

Answer: D

D Watch Video Solution

188. The focus of the parabola $y^{2}-4 y-8 x+4=0$ is

A. $(1,1)$
B. $(1,2)$
C. $(2,0)$
D. $(2,2)$

Answer: B

D Watch Video Solution
189. If $2 y=5 x+k$ is a tangent to the parabola $y^{2}=6 x$ then $\mathrm{k}=$

> A. $\frac{2}{5}$
> B. $\frac{3}{5}$
> C. $\frac{4}{5}$
> D. $\frac{6}{5}$

Answer: D

D Watch Video Solution
190. The line $4 x+6 y+9=0$ touches the parabola $y^{2}=4 x$ at the point

$$
\begin{aligned}
& \text { А. }\left(-3, \frac{9}{4}\right) \\
& \text { В. }\left(3,-\frac{9}{4}\right) \\
& \text { С. }\left(\frac{9}{4},-3\right) \\
& \text { D. }\left(-\frac{9}{4},-3\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

191. The vertex of the parabola $x^{2}+8 x+12 y+4=0$ is
A. $(-4,1)$
B. $(4,-1)$
C. $(-4,-1)$
D. $(4,1)$

Answer: A

- Watch Video Solution

192. If the normal to the parabola $y^{2}=4 x$ at
$P(1,2)$ meets' the parabola again at Q, then
Q is
A. $(-6,9)$
B. $(9,-6)$
C. $(-9,-6)$
D. $(-6,-9)$

Answer: B

D Watch Video Solution
193. The length of the latus rectum of the parabola $y^{2}+8 x-2 y+17=0$ is
A. 2
B. 4
C. 8
D. 16

Answer: C

D Watch Video Solution
194. The equation of the parabola with the
focus $(3,0)$ and the directrix $x+3=0$ is
A. $y^{2}=3 x$
B. $y^{2}=6 x$
C. $y^{2}=12 x$
D. $y^{2}=2 x$

Answer: C

- Watch Video Solution

195. The equation of the parabola with focus
$(0,0)$ and directrix $x+y=4$ is

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-2 x y+8 x+8 y-16=0 \\
& \text { B. } x^{2}+y^{2}-2 x y+8 x+8 y=0 \\
& \text { C. } x^{2}+y^{2}+8 x+8 y-16=0 \\
& \text { D. } x^{2}+y^{2}+8 x+8 y-16=0
\end{aligned}
$$

Answer: A

- Watch Video Solution

196. The parabola with the directrix $x+2 y-1=0$ and focus $(1,0)$ is
A. $4 x^{2}-4 x y+y^{2}-8 x+4 y+4=0$
B. $4 x^{2}+4 x y+y^{2}-8 x+4 y+4=0$
C. $4 x^{2}+4 x y+y^{2}+8 x-4 y+4=0$
D. $4 x^{2}-4 x y+y^{2}-8 x-4 y+4=0$

Answer: A

D Watch Video Solution
197. The line among the following, that touches the parabola $y^{2}=4 a x$ is
A. $x+m y+a m^{2}=0$
B. $x-m y+a m^{2}=0$
C. $x+m y-a m^{2}=-0$
D. $y+m x+a m^{2}=0$

Answer: B

D Watch Video Solution
198. If a point P moves such that its distance
from the point $A(1,1)$ and the line $x+y+2$ are equal then the locus is
A. a straight line
B. a pair of lines
C. a parabola
D. an ellipse

Answer: C

199. Let O be the origin and A be a point on
the curve $y^{2}=4 x$. Then the locus of the midpoint of $O A$ is

$$
\begin{aligned}
& \text { A. } x^{2}=4 y \\
& \text { B. } x^{2}=2 y \\
& \text { C. } y^{2}=16 x \\
& \text { D. } y^{2}=2 x
\end{aligned}
$$

Answer: D

- Watch Video Solution

200. The length of latus rectum of the parabola $y^{2}=4 a x$ whose focal chord $P S Q$
such $S P=3$ and $S Q=2$ is given by

> A. $\frac{24}{5}$
> B. $\frac{12}{5}$
> C. $\frac{6}{5}$
> D. $\frac{1}{5}$

Answer: A

D Watch Video Solution
201. The equation of a line drawn through the focus of the parabola $y^{2}=-4 x$ at an angle of 120° to the x-axis is

$$
\begin{aligned}
& \text { A. } y+\sqrt{3}(x-1)=0 \\
& \text { B. } y-\sqrt{3}(x-1)=0 \\
& \text { C. } y+\sqrt{3}(x+1)=0 \\
& \text { D. } y-\sqrt{3}(x+1)=0
\end{aligned}
$$

Answer: C

202. Let the directrix of a parabola $y^{2}=2 a x$ is
a tangent to a circle which has its centre coinciding with the focus of the parabola.

Then the point of intersection of the parabola and circle is/are
A. $(a,-a)$
B. $\left(\frac{a}{2}, \frac{a}{2}\right)$
C. $\left(\frac{a}{2}, \pm a\right)$
D. $\left(\pm a, \frac{a}{2}\right)$

Answer: C
203. The equation of the parabola which passes through the intersection of a line $x+y=0$ and the circle $x^{2}+y^{2}+4 y=0$ is
A. $y^{2}=4 x$
B. $y^{2}=x$
C. $y^{2}=2 x$
D. none of these
204. $y^{2}-2 x-2 y+5=0$ is
A. a circle with centre (1,1)
B. a parabola with vertex (1,2)
C. a parabola with directrix $x=\frac{3}{2}$
D. a parabola with directrix $x=-\frac{1}{2}$

Answer: C

205. The length of the latus rectum of the parabola $x^{2}-4 x-8 y+12=0$ is
A. 4
B. 6
C. 8
D. 10

Answer: C

D Watch Video Solution
206. An equation of the tangent to $y^{2}=9 x$ which passes through $(4,10)$ is
A. $x+4 y+1=0$
B. $9 x+4 y+4=0$
C. $x+4 y+36=0$
D. $9 x-4 y+4=0$

Answer: D

D Watch Video Solution
207. The equation of the parabola with its
vertex at the origin, axis on the y-axis and passing through $(6,-3)$ is

$$
\begin{aligned}
& \text { A. } y^{2}=12 x+6 \\
& \text { B. } x^{2}=12 y \\
& \text { C. } x^{2}=-12 y \\
& \text { D. } y^{2}=-12 x+6
\end{aligned}
$$

Answer: C

208. The equation of the parabola whose focus
is $(5,3)$ and the directrix $3 x-4 y+1=0$ is

$$
\begin{aligned}
& \text { A. }(4 x+3 y)^{2}-256 x+142 y+849=0 \\
& \text { B. }(4 x+3 y)^{2}-256 x-142 y+849=0 \\
& \text { C. }(3 x+4 y)^{2}-142 x-256 y+849-0 \\
& \text { D. }(3 x-4 y)^{2}-256 x-142 y+849=0
\end{aligned}
$$

Answer: A

D Watch Video Solution

209. The point of the parabola $y^{2}=18 x$ for which the ordinate is three times the abscissa is
A. $(6,2)$
B. $(-7,-6)$
C. $(3,18)$
D. $(2,6)$

Answer: D

D Watch Video Solution
210. The tangents drawn at the extremeties of
a focal chord of the parabola $y^{2}=16 x$
A. intersect on the line $x+4=0$
B. intersect on $x=0$
C. intersect at an angle of 45°
D. intersect at an angle of 60°

Answer: A
(D) Watch Video Solution
211. For the parabola $y^{2}=4 x$ the point P whose focal distance is 17 is
A. $(2,8)$ or $(2,-8)$
B. $(16,8)$ or $(16,-8)$
C. $(8,8)$ or $(8,-8)$
D. $(4,8)$ or $(4,-8)$

Answer: B

D Watch Video Solution
212. The angle between the tangents drawn to
the parabola $y^{2}=12 x$ from the point $(-3,2)$ is
A. 30°
B. 45°
C. 90°
D. 60°

Answer: C

D Watch Video Solution
213. The tangents drawn at the extremeties of a focal chord of the parabola $y^{2}=16 x$

$$
\begin{aligned}
& \text { A. } y=-2 \\
& \text { B. } y=2 \\
& \text { C. } x=-2 \\
& \text { D. } x=2
\end{aligned}
$$

Answer: B

- Watch Video Solution

214. The length of the latus rectum of

$$
3 x^{2}-4 y+6 x-3=0 \text { is }
$$

A. $\frac{3}{4}$
B. $\frac{4}{3}$
C. 2
D. 3

Answer: B

D Watch Video Solution
215. The sum of the reciprocals of focal distances of a focal chord PQ of $y^{2}=4 \mathrm{ax}$ is

$$
\begin{aligned}
& \text { A. } \frac{1}{a} \\
& \text { B. } a \\
& \text { C. } 2 a \\
& \text { D. } \frac{1}{2 a}
\end{aligned}
$$

Answer: A

D Watch Video Solution
216. The ends of the latus rectum of the parabola $x^{2}+10 x-16 y+25=0$ are
A. $(3,4),(-13,4)$
B. $(5,-8),(-5,8)$
C. $(3,-4),(13,4)$
D. $(-3,-4),(13,-4)$

Answer: A

- Watch Video Solution

217. The length of the latus rectum of the parabola $b x^{2}-4 a y+d x+e=0$

> A. $\frac{a}{b}$
> B. $4 a$
> C. $\frac{4 d}{b}$
> D. $\frac{4 a}{b}$

Answer: D

- Watch Video Solution

218. The directrix of the parabola $x^{2}-4 x-8 y+12=0$
A. $y=0$
B. $x-1$
C. $y=-1$
D. $x=-1$

Answer: A

D Watch Video Solution
219. If the normals at points ' t_{1} " and ' t_{2} ' to the parabola $y^{2}=4 a x$ meet on the parabola, then

$$
\begin{aligned}
& \text { A. } t_{1} t_{2}=-1 \\
& \text { B. } t_{2}=-t_{1}-\frac{2}{t_{1}} \\
& \text { C. } t_{1} t_{2}=2
\end{aligned}
$$

D. none of these

Answer: C

220. The equation of a tangent to the parabola $y^{2}=8 x$ is $\mathrm{y}=\mathrm{x}+2$ the point on this line for which the other tangent to the parabola is perpendicular to the given tangent is
A. $(2,4)$
B. $(-2,0)$
C. $(-1,1)$
D. $(0,2)$

- Watch Video Solution

221. If two tangents drawn from a point p to
the parabola $y^{2}=4 x$ are at right angles then
the locus of p is

$$
\begin{aligned}
& \text { A. } x=-1 \\
& \text { В. } 2 x-1=0 \\
& \text { С. } x=1 \\
& \text { D. } 2 x+1=0
\end{aligned}
$$

222. The equation of the common tangent to
the curves $y^{2}=8 x$ and $x y=-1$ is:

$$
\begin{aligned}
& \text { A. } 3 y=9 x+2 \\
& \text { B. } y=2 x+1 \\
& \text { C. } 2 y=x+8 \\
& \text { D. } y=x+2
\end{aligned}
$$

Answer: D
223. The equation of the common tangents to the parabolas $y=x^{2}$ and $y=-(x-2)^{2}$ are

$$
\begin{aligned}
& \text { A. } y=0, y=4(x-1) \\
& \text { B. } y=0, y=-4(x-1) \\
& \text { C. } y=0, y=-30 x-50 \\
& \text { D. none of these }
\end{aligned}
$$

Watch Video Solution

224. Let a and b two distinct points on the parabola $y^{2}=4 x$ if the axis fo the parabola touches a circle of raidus r haiving then the slope of the line joining a and b can be
A. $\pm \frac{1}{r}$
B. $\pm \frac{2}{r}$
C. $\pm \frac{3}{r}$
D. $\pm \frac{1}{2 r}$

Answer: B

D Watch Video Solution

225. Let (x, y) be any point on the parabla $y^{2}=4 x$ let P be the point that divides the line segment from $(0,0)$ to (x, y) in the ratio $1: 3$ then the locus of p is
A. $x^{2}=y$
B. $y^{2}=2 x$
C. $y^{2}=x$
D. $x^{2}=2 y$

Answer: C

D Watch Video Solution

226. If the parabola $y^{2}=4 a x$ passes through
$(3,2)$ then the length of the latus rectum is
A. $\frac{2}{3}$
B. $\frac{4}{3}$
C. $\frac{1}{3}$
D. 4

Answer: B

D Watch Video Solution

227. If the line $y=m x+c$ is a tangent to the

parabola $y^{2}=4 a(x+a)$, then $c=$

> A. $c=a+\frac{a}{m}$
> B. $c=a m+\frac{a}{m}$
> C. $c=a m+a$

D. none of these

Answer: B

D Watch Video Solution

228. If the segment intercepted by the parabola $y^{2}=4 a x$ with the line $l x+m y+n=0$ subtends a right angle at the vertex, then

$$
\text { A. } 4 a l+n=0
$$

B. $4 a l+4 a m+n=0$
C. $4 a m+n=0$
D. $a l+n=0$

Answer: A

- Watch Video Solution

229. The focus of the parabola
$y^{2}-4 y-8 x+4=0$ is
A. $(1,1)$
B. $(1,2)$
C. $(2,1)$
D. $(2,2)$

Answer: D

D Watch Video Solution

230. We are given with two ends of the latus
rectum of a parabola then the maximum number of parabolas which can be draw is
A. 1
B. 2
C. 0
D. infinite

Answer: B

- Watch Video Solution

231. The point of intersection of the curves

$x=t^{2}+1, y=2 t$ and $x=2 s, y=\frac{2}{s}$
given by :
A. $(1,-3)$
B. $(2,2)$
C. $(-2,4)$
D. $(1,2)$

Answer: B
(Watch Video Solution
232. If t is a parameter of one end of a focal
chord of the parabola $y^{2}=4 a x$ then its
length is

$$
\begin{aligned}
& \text { A. } a\left(t+\frac{1}{t}\right)^{2} \\
& \text { B. } a\left(t-\frac{1}{t}\right)^{2} \\
& \text { C. } a\left(t+\frac{1}{t}\right) \\
& \text { D. } a\left(t-\frac{1}{t}\right)
\end{aligned}
$$

Answer: A
233. The normal to the parabola $y^{2}=8 x$ at
the point $(2,4)$ meets the parabola again at the point
A. $(-18,-12)$
B. $(-18,12)$
C. $(18,12)$
D. $(18,-12)$

Answer: D

D Watch Video Solution

