©゙’ doubtnut India's Number 1 Education App

MATHS

BOOKS - HIMALAYA MATHS (KANNADA

ENGLISH)

PROGRESSIONS

Question Bank

1. In a geometric progression consisting of positive
terms, each term equals the sum of the next two terms.

Then the common ratio of this progression equals :
A. $\sin 18^{\circ}$
B. $2 \cos 18^{\circ}$
C. $2 \cos 18^{\circ}$
D. $2 \sin 18^{\circ}$

Answer: D

- Watch Video Solution

2. If x, y, z are positive integers then value of expression
$(x+y)(y+z)(z+x)$ is
A. $=8 x y z$
B. $>8 \mathrm{xyz}$
C. $\leq 8 x y z$
D. $=4 x y z$

Answer: B

- Watch Video Solution

3. In an A.P. the pth term is q and the $(p+q)$ th term is

0 . Then the qth term is :
A. $-p$
B. p
C. $p+q$
D. $p-q$

- Watch Video Solution

4. The 10th common term between the series :
$3+7+11+\ldots \ldots$ and $1+6+11+\ldots \ldots \ldots \ldots . .$. is
A. 191
B. 193
C. 211
D. none of these

Answer: A
5. Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of G.P. Then $P^{2} R^{3}: S^{3}$ is equal to :
A. 1: 1
B. (common ratio)" : 1
C. (first term) ^ (2): (common ratio) ^ (2)
D. none of these

Answer: A

- Watch Video Solution

6. The minimum value of the expression $3 x+3^{1-x}$, $x \in R$, is :
A. 0
B. $\frac{1}{3}$
C. 3
D. $2 \sqrt{3}$

Answer: D

- Watch Video Solution

7. In a G.P. of even number of terms, the sum of all terms
in 5 times the sum of the odd terms. The common ratio
of the G.P. is :
A. $-\frac{4}{5}$
B. $\frac{1}{5}$
C. 4
D. none of these

Answer: C

- Watch Video Solution

8. The length of three unequal edges of a rectangular solid block are in G.P. The volume of the block is $216 \mathrm{~cm}^{3}$ and total surface area is $252 \mathrm{~cm}^{2}$. The length of the longest edge is :
A. 12 cm
B. 6 cm
C. 6 cm
D. 3 cm

Answer: A

D Watch Video Solution
9. The minimum value of $4^{x}+4^{1-x}, x \in R$ is :
A. 2
B. 4
C. 1
D. 0

Answer: B

- Watch Video Solution

10. Let S_{n} denote the sum of the first n terms of an A.P. If $S_{2 n}=3 S_{n}$, then $S_{3 n}: S_{n}$ is equal to :
A. 4
B. 6
C. 8
D. 10

- Watch Video Solution

11. If in an A.P. $S_{n}=q n^{2}$ and $S_{m}=q m^{2}$, where S_{r} denotes the sum of r terms of the A.P., then S_{q} equals :
A. $\frac{q^{3}}{2}$
B. $m n q$
C. q^{3}
D. $(m+n) q^{2}$

Answer: C
12. If $x, 2 y, 3 z$ are in A.P. where the distinct numbers x, y, z are in G.P., then the common ratio of the G.P. is :
A. 3
B. $\frac{1}{3}$
C. 2
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

13. If 9 times the 9 th term of an A.P. is equal to 13 times the $13^{\text {th }}$ term, then 22 nd term of the A.P. is :
A. 0
B. 22
C. 220
D. 198

Answer: A

- Watch Video Solution

14. The third of G.P. is 4 . The product of its first 5 terms is
A. 4^{3}
B. 4^{4}
C. 4^{5}
D. none of these

Answer: C

- Watch Video Solution

15. If the sum of n terms of an A.P. is given by :
$S_{n}=3 n+2 n^{2}$, then the common difference of the A.P.

IS :
A. 3
B. 2
C. 6
D. 4

Answer: D

- Watch Video Solution

16. If t_{n} denotes the nth term of the series:
$2+3+6+11+18+\ldots \ldots \ldots$, then t_{50} is :
A. $49^{2}-1$
B. 49^{2}
C. $50^{2}+1$
D. $49^{2}+2$

- Watch Video Solution

17. The A.M and G.M of two numbers are in the ratio $3: 2$, then the ratio of the numbers is
A. $(7-3 \sqrt{5}): 2$
B. $(7+3 \sqrt{5}): 2$
C. $2:(7-3 \sqrt{5})$
D. $2:(7+3 \sqrt{5})$

Answer: B
18. If 12 and 9 are respectively A.M and G.M of two numbers, then the numbers are the roots of the equation
A. $x^{2}-24 x+81=0$
B. $x^{2}+24 x-81=0$
C. $x^{2}-81 x+24=0$
D. $x^{2}-24 x-8 I=0$

Answer: A

- Watch Video Solution

19. If one geometric mean G and two arithmetic means
A_{1} and A_{2} are inserted between two given quantities then, $\left(2 A_{1}-A_{2}\right)\left(2 A_{2}-A_{1}\right)=$
A. $2 G$
B. G
C. G^{2}
D. G^{3}

Answer: C

- Watch Video Solution

20.

isthe $\sum \rightarrow \in f \in$ ityofa G. P, withcommonratio
(1)/(3), then the first element is
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. $\frac{1}{3}$
D. $\frac{3}{4}$

Answer: C

- Watch Video Solution

21. If S is the sum to infinity of a G.P, whose first element is a, then the sum of the first n elements is
A. 1.S $\left(1-\frac{a}{S}\right)^{n}$
B. 2.S $\left(1-\left(1-\frac{a}{S}\right)^{n}\right)$
C. 3.a $\left(1-\left(1-\frac{a}{S}\right)^{n}\right)$
D. 4.None of these

Answer: B

- Watch Video Solution

22. If 2 is the sum to infinity of a G.P, whose first element is 1 , then the sum of the first n terms is
A. $1 \frac{2^{n}-1}{2^{n}}$
B. 2) $\frac{2^{n}-1}{2^{n-1}}$
С. 3) $\frac{2^{n-1}-2}{2}$
D. 4) $\frac{2^{n-1}-1}{2^{n}}$

Answer: B

- Watch Video Solution

23. The fourth seventh and tenth terms of a G.P. are p,q,r respectively, then :
A. $p^{2}=q^{2}+r^{2}$
B. $q^{2}=p r$
C. $p^{2}=q r$
D. $p q r+p q+1=0$

Answer: B

- Watch Video Solution

24. The second, third and sixth terms of an A.P are consecutive elements of a G.P. The common ratio of the G.P is
A. 1)1
B. 2)-1
C. 3)3
D. 4)-3

Answer: C

- Watch Video Solution

25. If $x, 2 x+2,3 x+3$ are in G.P, then $5^{t h}$ element is
A. 1) $\frac{9}{2}$
B. 2) $-\frac{81}{4}$
С. 3) $\frac{3}{2}$
D. 4)3

Answer: B
26. Three positive numbers froman increasing G.P. If middle term in this G.P. is doubled, the new numbers are in A.P. Then the common ratio of the G.P. is :
A. $2-\sqrt{3}$
B. $2+\sqrt{3}$
C. $\sqrt{3}-2$
D. $\sqrt{3}+2$

Answer: B
27. Let $\left(a_{n}\right)$ be a G.P. such that $\frac{a_{4}}{a_{6}}=\frac{1}{4}$ and $a_{2}+a_{5}=216$. Then $a_{1}=$
A. 7 or $\frac{54}{7}$
B. 10
C. 8 or $\frac{108}{7}$
D. 12 or $(108)(7)$

Answer: D

- Watch Video Solution

28. The fourth element of a G.P is 8 . The product of first seven elements is
A. 8^{6}
B. 8^{7}
C. 8^{5}
D. 8^{4}

Answer: B

- Watch Video Solution

29. If $a_{1}, a_{2}, a_{3} \ldots \ldots$ is an A.P. such that :

$$
a_{1}+a_{5}+a_{10}+a_{15}+a_{20}+a_{24}=225
$$

$a_{1}+a_{2}+a_{3}+\ldots \ldots a_{23}+a_{24}$ is :
A. 909
B. 75
C. 750
D. 900

Answer: D

- Watch Video Solution

30. 7 th term of an A.P. is 40 . then the sum of the first 13 terms is
A. 520
B. 53
C. 2080

D. 1040

Answer: A

- Watch Video Solution

31. In an A.P, $7^{\text {th }}$ element is $\frac{1}{21}$ and $21^{\text {st }}$ element is $\frac{1}{7}$.

Then $147^{\text {th }}$ element is
A. 32
B. 64
C. 48
D. 96
32. If a, b, c are in A. P, then $(a-c)^{2}=$
A. $b^{2}-a c$
B. $2\left(b^{2}-a c\right)$
C. $3\left(b^{2}-a c\right)$
D. $4\left(b^{2}-a c\right)$

Answer: D
33. Let a and d are respectively first and the common difference of an A.P. The $5^{\text {th }}$ element is $\frac{1}{9}$ and the $9^{\text {th }}$ element is $\frac{1}{5}$. Then,
A. $a=\frac{1}{d}$
B. $a=d$
C. $a+d=0$
D. $\frac{a}{d}=\frac{1}{2}$

Answer: B

- Watch Video Solution

34. Let a and d are respectively first and the common difference of an A.P. The $5^{\text {th }}$ element is $\frac{1}{9}$ and the $9^{\text {th }}$ element is $\frac{1}{5}$. Then,
A. $a=\frac{9}{5}$
B. $d=\frac{5}{9}$
C. $a=\frac{1}{45}$
D. 45

Answer: C

- Watch Video Solution

35. In an A.P, $7^{\text {th }}$ element is $\frac{1}{21}$ and $21^{\text {st }}$ element is $\frac{1}{7}$. Then $147^{\text {th }}$ element is
A. a. 1
B. b. 2
C. c. 21
D. d. 147

Answer: A

D Watch Video Solution

36. The first and last element of an A.P are 7 and 55
respectively. The sum of $10^{\text {th }}$ element from the beginning
and $10^{\text {th }}$ element from the end is
A. 115
B. 25
C. 69
D. 62

Answer: D

- Watch Video Solution

37. If 5 times of the $5^{\text {th }}$ element of an A.P is equal to 9 times the $9^{t h}$ element, then $14^{\text {th }}$ element of the $A . P$ is
A. 0
B. $2\left(14^{\text {th }}\right.$. element $)$
C. $2\left(4^{\text {th }} \cdot\right.$ element $)$
D. $15^{\text {th }}$ element

Answer: A

- Watch Video Solution

38. Sum of $25^{\text {th }}$ and $5^{\text {th }}$ elements of an A.P is
A. $2\left(15^{\text {th }}\right.$. element $)$
B. $2\left(5^{\text {th }}\right.$. element $)$
C. $20^{\text {th }}$ element
D. $30^{\text {th }}$ element

Answer: A

- Watch Video Solution

39. If the sum of $4^{\text {th }}$ and $8^{\text {th }}$ elements of A.P is 24 and the sum of $6^{\text {th }}$ and $10^{\text {th }}$ elements of 34 , then the common difference is
A. $\frac{3}{2}$
B. 2
C. $\frac{5}{2}$
D. 3

Answer: C
40. The $12^{\text {th }}$ element from the end of A.P. $3,8,13, \ldots, 253$
is
A. 190
B. 194
C. 198
D. 200

Answer: C
41. The $8^{\text {th }}$ element and $20^{\text {th }}$ element of an A.P are 22 and 46 respectively. The $18^{\text {th }}$ element is
A. a. 41
B. b. 42
C. c. 43
D. d. 44

Answer: B

- Watch Video Solution

42. Which of the element of A.P $4,5 \frac{1}{3}, 6 \frac{2}{3}, \ldots .$. is 104
A. a. 75
B. b. 76
C. c. 77
D. d. 78

Answer: B

- Watch Video Solution

43. If the ratio of the sums of the n elements of two arithmetic progressions is $5 n+4: 9 n+16$, then the ratio of their $18^{\text {th }}$ elements.
A. a. $\frac{180}{332}$
B. b. $\frac{178}{330}$
C. c. $\frac{179}{331}$
D. d. $\frac{181}{333}$

Answer: C

- Watch Video Solution

44. a, b, c are in $A . P, x$ is $G . M$ between a and b, y is the G.M between b and c, then b^{2} is
A. a.the G.M between x^{2} and y^{2}
B. b.the A.M between x^{2} and y^{2}
C. c.the G.M between x and y
D. d.the A.M between x and y

Answer: B

- Watch Video Solution

45. If $(a-1)$ is the G.M between $(a-2)$ and $(a+1)$
then $a=$
A. a. 2
B. b. 3
C. c. 4
D. d. 1

- Watch Video Solution

46. If a, b, c are in geometric progression then $\log a^{n}, \log b^{n}, \log c^{n}$ are
A. a.A.P
B. b.G.P
C. c.H.P
D. d.none of these

Answer: A

- Watch Video Solution

47. The first term of a G.P is 3 and $6^{\text {th }}$ element is $\frac{3}{32}$, then if P is the product of 6 elements, then $P^{2}=$
A. a. $\left(\frac{3}{16}\right)^{6}$
B. b. $\left(\frac{32}{9}\right)^{6}$
C. c. $\left(\frac{16}{3}\right)^{6}$
D. d. $\left(\frac{9}{32}\right)^{6}$

Answer: D

- Watch Video Solution

48. The first and the $n^{\text {th }}$ elements of a G.P are respectively a and b and P is the product of n elements,
then $P^{2}=$
A. $a . a b$
B. b. $(a b)^{n-1}$
C. c. $(a b)^{n}$
D. d. $(a b)^{-n}$

Answer: C

- Watch Video Solution

49. a, b, c are in A.P, b, c, d are in G.P and c, d, e are in H.P, then a, c, e are in
A. a.A.P
B. b. G. P
C. c.H. P
D. d.none of these

Answer: B

- Watch Video Solution

50. For what values of x , the numbers $-\frac{2}{7}, x,-\frac{7}{2}$ are in G.P ?
A. 1
B. ± 1
C. 2
D. ± 2

Answer: B

- Watch Video Solution

51. The value of n for which $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ is the A.M. between a and b is :
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

52. If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is an G.M between a and b then the value of n is
A. a. 0
B. b. 1
C. c. $\frac{1}{2}$
D. d.none of these

Answer: C
53. If the sum of first p terms of an A.P is equal to the sum of the first q terms, then find the first $(p+q)$ terms.
A. 0
B. 1
C. 2
D. 3

Answer: A

D Watch Video Solution

54. Find the sum to n terms of the A.P., whose $k^{\text {th }}$ term is
$5 k+1$.
A. 401
B. 402
C. 404
D. 403

Answer: B

- Watch Video Solution

55. If the sum of n terms of an $\mathrm{A} . \mathrm{P}$ is $3 n^{2}+5 n$ and its $m^{\text {th }}$ term is 164 , find the value of m.
A. 9
B. 27
C. 81
D. 36

Answer: B

- Watch Video Solution

56. The $12^{\text {th }}$ common terms between the series $3+7+11+\ldots$ And $1+6+11+\ldots+$ is
A. a. 220
B. b. 231
C. c. 232
D. d. 233

- Watch Video Solution

57. Find the sum of all two digit numbers which when divided by 4 , yields 1 as remainder.
A. 1012
B. 1201
C. 1212
D. 1210

Answer: D

58. The number of common elements to the two sequences $17,21,25, \ldots \ldots 417$ are $16,21,26, \ldots \ldots, 466$ is
A. $a, 21$
B. b. 19
C. c. 20
D. d. 91

Answer: C
59. The sum of first 10 terms of the series :

$$
\begin{aligned}
& \left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\left(x^{3}+\frac{1}{x^{3}}\right)^{2}+\ldots \ldots \text { is : } \\
& \text { A. }\left(\frac{x^{20}-1}{x^{2}-1}\right)\left(\frac{x^{22}+1}{x^{20}}\right)+20 \\
& \text { B. }\left(\frac{x^{18}-1}{x^{2}-1}\right)\left(\frac{x^{11}+1}{x^{9}}\right)+20 \\
& \text { C. }\left(\frac{x^{18}-1}{x^{2}-1}\right)\left(\frac{x^{11}-1}{x^{9}}\right)+20 \\
& \text { D. }\left(\frac{x^{20}-1}{x^{2}-1}\right)\left(\frac{x^{22}-1}{x^{20}}\right)
\end{aligned}
$$

Answer: A

(D) Watch Video Solution

60. The sum of the serieslebrge

$$
(1+2)+\left(1+2+2^{2}\right)+\left(1+2+2^{2}+2^{3}\right)+\ldots \text { to } n
$$

term is
A. $2^{n+2}-n-4$
B. $2\left(2^{n}-1\right)-n$
C. $2^{n+1}-n$
D. $2^{n+1}-1$

Answer: A

(D) Watch Video Solution

61. If x, y, z are in A.P. and $\tan ^{-1} x, \tan ^{-1} y$ and $\tan ^{-1} z$
are also in A.P. then :
A. $x=y=z$
B. $x y=y z$
C. $x^{2}=y z$
D. $z^{2}=x y$

Answer: A

- Watch Video Solution

62. If a, b, c respectively the $p^{t h}, q^{t h}$ and $r^{t h}$ elements of a G.P, thenlebrge $\Delta=\left[\begin{array}{ccc}\log a & \log b & \log c \\ p & q & r \\ 1 & 1 & 1\end{array}\right]$ equals
A. 1
B. 0
C. -1
D. none of these

Answer: B

- Watch Video Solution

63. If $f(x)$ is a polynomial function of second degree. IF $f(1)$
$=f(-1)$ and a, b, c are in A.P., then $f^{\prime}(a), f^{\prime}(b), f^{\prime}(c)$ are in :
A. A.P
B. G.P
C. H. P
D. A.G progression

- Watch Video Solution

64. Let T_{r} be the rth term of an A.P. whose first term is a and common difference is d . If for some positive integers, $m, n, m \nearrow n, T_{n}=\frac{1}{n}$ and $T_{n}=\frac{1}{m}$, then a -d equals
A. $\frac{1}{m}+\frac{1}{n}$
B. 1
C. (1)/(mn)
D. 0

Answer: D

- Watch Video Solution

65. Let a, b, c be in A.P and $|a| \leq 1,|b| \leq 1,|c| \leq 1$. If
$x=1+a+a^{2}+\ldots \rightarrow \infty$
$y=1+b+b^{2}+\ldots . \rightarrow \infty \quad \mathrm{z}=1+\mathrm{c}+\mathrm{c}^{\wedge}(2)+\ldots$. tends to infinity ` then x, y, z are in
A. A.P
B. $G . P$
C. H. P
D. none of these

Answer: C

- Watch Video Solution

66. If $a_{1}, a_{2}, \ldots \ldots \ldots \ldots . a_{n}$ are in H.P., then the expression $a_{1} a_{2}+a_{2} a_{3}+\ldots \ldots \ldots+a_{n-1} a_{n}$ is equal to
A. $n\left(a_{1}-a_{n}\right)$
B. $(n-1)\left(a_{1}-a_{n}\right)$
C. $n a_{1} a_{n}$
D. $(n-1) a_{1} a_{n}$

Answer: D
67. Let $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots \ldots$ be terms of an A.P. If $\frac{a_{1}+a_{2}+\ldots \ldots .+a_{p}}{a_{1}+a_{2}+\ldots \ldots+a_{q}}=\frac{p^{2}}{q^{2}}, p \nsim q$, then $\frac{a_{6}}{a_{21}}$ equals :
A. $\frac{41}{11}$
B. $\frac{7}{2}$
C. $\frac{2}{7}$
D. $\frac{11}{41}$

Answer: D
68. The value of $2^{1 / 4} \cdot 4^{1 / 8} \cdot 8^{1 / 16} \ldots \ldots \ldots \ldots$ to ∞ is:
A. 1
B. 2
C. $\frac{3}{2}$
D. $\frac{5}{2}$

Answer: B

- Watch Video Solution

69. In a geometric progression consisting of positive terms, each term equals the sum of the next two terms.

Then the common ratio of this progression equals :
A. $\frac{\sqrt{5}-1}{2}$
B. $\frac{\sqrt{5}+1}{2}$
C. $-\left(\frac{\sqrt{5}+1}{2}\right)$
D. $\frac{1-\sqrt{5}}{2}$

Answer: A

D Watch Video Solution

70. The first two terms of a geometric progression add upto 12. The sum of the third and the fourth term is 48.If the terms of the geometric progression are alternatively positive and negative, then the first term is :
A. 12
B. 4
C. -4
D. -12

Answer: D

- Watch Video Solution

71. Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the equation :

$$
\text { A. } x^{2}-8 x-16=0
$$

B. $x^{2}-18 x+16=0$
C. $x^{2}+18 x-16=0$
D. $x^{2}+18 x+16=0$

Answer: B

- Watch Video Solution

72. A person is to count 4500 currency notes. Let a_{n} denote the number of notes he counts in the nth minute. If $a_{1}=a_{2}=\ldots \ldots \ldots=a_{10}=150 \quad$ and $a_{10}, a_{11}, \ldots \ldots \ldots$ are in an A.P. with common difference -2 , then the time taken by him to count at notes is :
A. 125 minutes
B. 135 minutes
C. 24 minutes
D. 34 minutes

Answer: D

- Watch Video Solution

73. If $\mathrm{f}(\mathrm{x})$ is a function satisfying $f(x+y)=f(x) f(y)$
for all $\mathrm{x}, \mathrm{y} \in N$ such that $f(1)=3$ and $\sum_{x=1}^{n} f(x)=120$
Then the value of n is :
A. 4
B. 5
C. 6
D. none of these

Answer: A

- Watch Video Solution

74. Let a^{n} be the nth term of the G.P. of positive numbers. Let $\sum_{n=1}^{100} a_{2 n}=\alpha$ and $\sum_{n=1}^{100} a_{2 n-1}=\beta$, such that $\alpha \nearrow \beta$ then the common ration is :
A. $\frac{\alpha}{\beta}$
B. $\frac{\beta}{\alpha}$
C. $\sqrt{\frac{\alpha}{\beta}}$
D. $\sqrt{\frac{\beta}{\alpha}}$

Answer: A

- Watch Video Solution

75. Let $n(>1)$ be a positive integer, the largest integer m such that $\left(n^{m}+1\right)$ divides :
$\left(1+n+n^{2}+\ldots \ldots \ldots n^{127}\right)$ is :
A. 8
B. 16
C. 32
D. 64

- Watch Video Solution

76. If the fourth power of the common difference of an
A.P with integer entries is added to the product of any four consecutive of it, then the resulting sum is
A. an even integer
B. an odd integer
C. the square of an integer
D. the cube of an integer
77. Consider an infinite geometric series with first term a and common ratio r. If its sum is 4 and the second term is $\frac{3}{4}$, then :
A. $a=(4) /(7), r=(3) /(7)^{\prime}$
B. $a=2, r=\frac{3}{8}$
C. $a=\frac{3}{2}, r=\frac{1}{2}$
D. $a=3, r=\frac{1}{4}$

Answer: D

78. If the sum of the first 2 n terms of the A.P. $2,5,8$,
........... is equal to the sum of the first n terms of the A.P. $57,59,61, \ldots$. then n equals :
A. 10
B. 12
C. 11
D. 13

Answer: C

79. An infinite G.P. has first term ' x ' and sum ' 5 ' , then x belongs to :
A. $x \leq-10$
B. $-10 \leq x \leq 0$
C. $0 \leq x \leq 10$
D. $x \geq 0$

Answer: C

- Watch Video Solution

80. If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is an G.M between a and b then the
value of n is
A. 0
B. 1
C. -1
D. none of these

Answer: B

D Watch Video Solution

81. If the sum of first n terms of an A.P. is $c n^{2}$, then the sum of squares of these n terms is :
A. $\frac{n\left(4 n^{2}-1\right)}{6} c^{2}$
B. $\frac{n\left(4 n^{2}+1\right)}{3} c^{2}$
C. $\frac{n\left(4 n^{2}-1\right)}{3} c^{2}$
D. $\frac{n\left(4 n^{2}+1\right)}{6} c^{2}$

Answer: C

- Watch Video Solution

82. If $\frac{a+b}{1-a b}, b, \frac{b+c}{1-b c}$ are in A.P, then $a, \frac{1}{b}, c$ are in
A. A.P
B. G.P

C. H.P

D. none of these

Answer: C

- Watch Video Solution

83. If A_{1}, A_{2} be two A.M's and G_{1}, G_{2} be two G.M's
between a and b, then $\frac{A_{1}+A_{2}}{G_{1} G_{2}}$ is equal to
A. 1) $\frac{a+b}{2 a b}$
B. 2) $\frac{2 a b}{a+b}$
с. 3) $\frac{a+b}{a b}$
D. 4) $\frac{a+b}{\sqrt{a b}}$

Answer: C
84. The sum pf ' n ' terms of two arithmentic progressions are in the ratio $(3 n+8):(7 n+15)$. Find the ratio of their $12^{\text {th }}$ terms.
A. $16: 7$
B. $7: 16$
C. 74: 169
D. none of these

Answer: B

- Watch Video Solution

85. If $x=1+y+y^{2}+\ldots$ to ∞, then y is
A. $x-1$
B. $\frac{x}{1-x}$
C. $\frac{x-1}{x}$
D. $\frac{1-x}{x}$

Answer: C

D Watch Video Solution

86. If $A=1+r^{a}+r^{2 a}+r^{3 a}+\ldots$ to ∞ and lebrge $B=1+r^{b}+r^{2 b}+\ldots \ldots \infty$ then $\frac{a}{b}$ is equal to
A. $\log _{(1-B)}(1-A)$
B. $\log _{\left(\frac{B-1}{B} .\right)}\left(\frac{A-1}{A}\right)$
C. $\log _{B} A$
D. none of these

Answer: B

- Watch Video Solution

87. The determinant :
$\left|\begin{array}{ccc}a & b & a \alpha+b \\ b & c & b \alpha+c \\ a \alpha+b & b \alpha+c & 0\end{array}\right|=0$ if :
A. a, b, c are in A.P
B. a, b, c are in $G . P$
C. a, b, c are in $H . P$
D. α is a-root of $a x^{2}+b x+c=0$

Answer: B

- Watch Video Solution

88. If a, b, c are in G.P.L, then the equations $a x^{2}+2 b x+c=00$ and $d x^{2}+2 e x+f=0$ have a common root if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in :
A. A.P
B. G.P

C. H.P

D. none of these

Answer: A

- Watch Video Solution

89. Every element of a G.P is positive and also every element is the sum of two preceding elements. The common ratio of the G.P is
A. 1) $\frac{1-\sqrt{5}}{2}$
B. 2) $\frac{\sqrt{5}+1}{2}$
C. 3) $\frac{\sqrt{5}-1}{2}$
D. 4)1

Answer: B

- Watch Video Solution

90. If $x>1, y>1, z>1$ are in G.P. , then
$\frac{1}{1+\log x}, \frac{1}{1+\log y}$ and $\frac{1}{1+\log z}$ are in
A. A.P
B. H. P
C. G.P
D. none of these

- Watch Video Solution

91. $a \geq 0$, then $\sum_{n=1}^{\infty}\left(\frac{a}{a+1}\right)^{n}$ equals
A. 1: $\frac{a+1}{2 a+1}$
B. 2: $\frac{a}{2 a+1}$
C. 3: $a+1$
D. 4: a

Answer: D
92. If x, y, z are in A.P. and $\tan ^{-1} x, \tan ^{-1} y$ and $\tan ^{-1} z$ are also in A.P. then :
A. $x=y=z$ or $y \neq 1$
B. $x=\frac{1}{z}$
C. $x=y=z$ but their common value is not necessarily zero
D. $x=y=z=0$

Answer: C

D Watch Video Solution
93. The sum of three numbers in A.P. is 27 and the sum of their squares is 293 . Find the numbers.
A. 10
B. 11
C. 12
D. none of these

Answer: B

D Watch Video Solution

94. If a, b, c, d and p are distinct non -zero real numbers
such that :
$\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$, then a, b, c, d :
A. A. P
B. $G . P$
C. H. P
D. $a d=c d$

Answer: B

D Watch Video Solution

95. If A.M of two numbers is twice their G.M, then the ratio of the greatest number to the smallest number is
A. 1) $7-4 \sqrt{3}: 1$
B. 2) $7+4 \sqrt{3}: 1$
C. 3) $21: 1$
D. 4)5:1

Answer: B

- Watch Video Solution

96. If $S_{n}=n P+\frac{n(n-1)}{2} \mathrm{Q}$ where S_{n} denotes the sum of the first n terms of an A.P., then the common difference is
A. $P+Q$
B. $2 P+3 Q$
C. $2 Q$
D. Q

Answer: D

- Watch Video Solution

97. The first and last elements of an A.P are a and l respectively. If S is the sum of all terms of the A.P, then the common difference is
A. 1) $\frac{l^{2}-a^{2}}{2 S-(l+a)}$
B. 2) $\frac{l^{2}-a^{2}}{2 S-(l-a)}$
C. 3) $\frac{l^{2}+a^{2}}{2 S+(l+a)}$
D. 4) $\frac{l^{2}+a^{2}}{2 S-(l+a)}$

Answer: A

- Watch Video Solution

