© 'doubtnut

MATHS

BOOKS - HIMALAYA MATHS (KANNADA ENGLISH)

SETS,RELATIONS AND FUNCTIONS

Question Bank

1. In rule method the null set, is represented by
A. $\{x \mid x \neq x\}$
B. $\{x \mid x=x\}$
C. ϕ
D. $\}$

Answer: A

2. Which of the following is the empty set?
A. $\left\{\mathrm{x} \mid \mathrm{x}\right.$ is a real number and $\left.x^{2}-1=0\right\}$
B. $\left\{\mathrm{x} \mid \mathrm{x}\right.$ is real, and $\left.x^{2}+1=0\right\}$
C. $\left\{\mathrm{x} \mid \mathrm{x}\right.$ is real, and $\left.x^{2}-9=0\right\}$
D. $\left\{\mathrm{x} \mid \mathrm{x}\right.$ is real and $\left.x^{2}-x-2=0\right\}$

Answer: B

- Watch Video Solution

3. If $A=\left\{(x, y): x^{2}+y^{2}=25\right)$ and $B=\left\{(x, y): x^{2}+9 y^{2}=144\right)$, then $A \cap B$ contains
A. one point
B. two points
C. three points
D. four points

Answer: D

- Watch Video Solution

4. If A and B are any two sets then $A-(A-B)$ is equal to
A. B-A
B. $A \cap B$
C. ϕ
D. $A \cup B$

Answer: B

5. If A and B are any two sets then $(A \cup B)-(A \cap B)=$
A. A-B
B. B-A
C. $(A-B) \cup(B-A)$
D. $(A-B) \cap(B-A)$

Answer: C

- Watch Video Solution

6. If A and B are any two sets then $A \cap(A \cup B)^{\prime}=$
A. B
B. B^{\prime}
C. A
D. ϕ

D Watch Video Solution

7. A and B are two sets, then $A-B=\phi$, if and only if
A. $A \subset B$
B. $B \subset A$
C. $A=B$
D. $A \cap B=\phi$

Answer: A

Watch Video Solution
8. If A, B and C are non -empty sets , then $(A-B) \cup(B-A)$ equals :
A. $(A \cup B)-(A \cap B)$
B. $A \cap B$
C. $A \cup B$
D. $(A \cap B)-(A \cup B)$

Answer: A

- Watch Video Solution

9. If the sets A has p elements, B has q elements, then number of elements is $A \times B$ is
A. $p+q$
B. $p+q+1$
C. $p q$
D. p^{2}

Answer: C

10. If $A=\left\{x: x \in N,\left(x^{2}-9\right)\left(x^{2}-5\right)=0\right\} \quad$ and $B=\{x: x \in N, x(x-2)(x-3)=0\}$ where N is the set of all natural numbers, then $B \times A$ is
A. $\{(2,3),(3,3)\}$
B. $\{(3,2),(3,3)\}$
C. $\{(0,3),(2,3),(3,3)\}$
D. $\{(3,0),(3,2),(3,3)\}$

Answer: A

- Watch Video Solution

11. If $\mathrm{A}\{2,4\}$ and $\mathrm{B}=\{3,4,5\}$ then $(A \cap B) \times(A \cup B)=$
A. $\{(2,2),(3,4),(4,2),(5,4)\}$
B. $\{(2,3),(4,3),(4,5)\}$
C. $\{(2,4),(3,4),(4,4),(4,5)\}$
D. $\{(4,2),(4,3),(4,4),(4,5)\}$

Answer: D

- Watch Video Solution

12. Let $\mathrm{A}=\{1,2\}, \mathrm{B}=\{3,4\}$ and $\mathrm{C}=\{4,5\}$. Then $(A-B) \times(B-C)$ is
A. $\{(1,3),(2,3)\}$
B. $\{(1,3),(1,4)\}$
C. $\{(2,3),(2,4)\}$
D. $\{(1,4),(2,3)\}$

Answer: A

13. If $A=\{1,2,3\}, B=\{3,8\}$, then $(A \cup B) \times(A \cap B)$ is
A. $\{(3,1),(3,2),(3,3),(3,8)\}$
B. $\{(1,3),(2,3),(3,3),(8,3)\}$
C. $\{(1,2),(2,2),(3,3),(8,8)\}$
D. $\{(8,3),(8,2),(8,1),(8,8)\}$

Answer: B

- Watch Video Solution

14. If $\mathrm{A}=\{1,2,3,4\}$ then the number of elements in $A \times A$ is
A. 4
B. 8
C. 12
D. 16

- Watch Video Solution

15. Let $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{2,3,4,5\}$, then $n[(A \times B) \cap(B \times A)]$ is
A. 3
B. 6
C. 9
D. 16

Answer: C

Watch Video Solution
16. If $\mathrm{A}=\{2,4\}$ and $\mathrm{B}=\{3,4,5\}$, then $(A \cap B) \times(B \cup A)]$
A. $\{(2,2),(3,4),(4,2),(5,4)\}$
B. $\{(2,3),(4,3),(4,5)\}$
C. $\{(2,4),(3,4),(4,4),(4,5)\}$
D. $\{(4,2),(4,3),(4,4),(4,5)\}$

Answer: D

- Watch Video Solution

17. If $\mathrm{A}=\left\{x: x^{2}-5 x+6=0\right\}, \mathrm{B}=\{2,4\}, \mathrm{C}=\{4,5\}$, then $A \times(B \cap C)=$
A. $\{(2,4),(3,4))\}$
B. $\{(4,2),(4,3)\}$
C. $\{(2,4),(3,4),(4,4)\}$
D. $\{(2,2),(3,3),(4,4),(5,5)\}$

Answer: A

18. If $a N=\{a n: n \in N\}$ and $b n \cap c N=d N$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ in N and b, c are relatively prime then
A. 1) $d=b+c$
B. 2) $d=b c$
C. 3)d=b-c
D. 4) $\mathrm{d}=\mathrm{b} / \mathrm{c}$

Answer: B

19. Let $N=(a n: n \in N)$, then $N \in_{6} N_{8}$ is equal to
A. N_{2}
B. N
C. N_{8}
D. $N{ }_{24}$

- Watch Video Solution

20. Sets A and B have 3 and 6 elements respectively. What can be the minimum number of elements in $A \cup B$?
A. 3
B. 6
C. 9
D. 18

Answer: B

- Watch Video Solution

21. If A and B are two finite sets such that $A \cap B \neq \phi$, then $n(A \cup B)=$
A. $n(A)+n(B)$
B. $n(A)+n(B)+n(A \cap B)$
C. $n(A)+n(B)-n(A \cap B)$
D. $n(A) \cdot n(B)$

Answer: C

- Watch Video Solution

22. If A and B are finite sets and $A \subset B$ then
A. $n(A \cup B)=n(A)$
B. $n(A \cap B)=n(B)$
C. $n(A \cup B)=n(B)$
D. none of these

Answer: C

23. If A and B are any two finite sets then $n(A)+n(B)$ is equal to
A. $n(A \cup B)$
B. $n(A \cap B)$
C. $n(A \cup B)+n(A \cap B)$
D. $n(A \cup B)-n(A \cap B)$

Answer: C

- Watch Video Solution

24. In a group of 75 persons every one takes either tea or coffee. If 45 take tea and 35 take coffee, then the Number of persons who take tea only (and not coffee) is
A. 35
B. 40
C. 45
D. 50

Answer: B

- Watch Video Solution

25. Two finite sets A and B have m and n elements. Number of subsets of
A is 56 more than that of B. The values of m and n are
A. 6,3
B. 7, 6
C. 7, 3
D. 6,4

Answer: A

26. If A and B are two sets such that $\mathrm{n}(\mathrm{A})=70, \mathrm{n}(\mathrm{B})=60$ and $n(A \cup B)=$ 110 , then $n(A \cap B)$
A. 240
B. 50
C. 40
D. 20

Answer: D

- Watch Video Solution

27. Let $\mathrm{n}(\mathrm{U})=700, \mathrm{n}(\mathrm{A})=200, \mathrm{n}(\mathrm{B})=300$ and $n(A \cap B)=100$, then $n\left(A^{\prime} \cap B^{\prime}\right)=$
A. 400
B. 600
C. 300
D. 200

Answer: C

- Watch Video Solution

28. R be the relation on the set N of natural numbers, defined by $x R y$ if and only if $x+2 y=8$. The domain of R is
A. $\{2,4,7\}$
B. $\{1,2,4\}$
C. $\{2,4,6\}$
D. $\{2,6,8\}$

Answer: C

29. Let $A=(a, b, c)$ and $R=\{(a, a),(b, b),(a, b),(b, a),(b, c)\}$ be a relation on A, then R is
A. reflexive
B. symmetric
C. transitive
D. none of these

Answer: D

- Watch Video Solution

30. Let ${ }^{\prime} X=\{1,2,3\}$ and $R=\{(1,1),(2,2),(3,3),(2,3)\}$ be a relation on the X.Then which one is not true
A. R is reflexive
B. R is tranisitive
C. R is antisymmetric
D. R is symmetric

Answer: D

- Watch Video Solution

31. Let $A=\{2,4,6,8\}$ and define $R=\{(2,4),(4,2),(4,6),(6,4)\}$ then R is
A. Reflexive
B. symmetric
C. transitive
D. anti transitive

Answer: B

(Watch Video Solution

32. Let $A=\{P, Q, R, S\}$ and $B=\{1,2,3\}$ which of the following relations from A to B is not a function.
A. $R_{1}=\{(p, 1),(q, 2),(r, 1),(s, 2)\}$
B. $R_{2}=\{(p, 1),(q, 1),(r, 1),(s, 1)\}$
C. $R_{3}=\{(p, 1),(q, 2),(p, 2),(s, 3)\}$
D. $R_{4}=\{(p, 2),(q, 3),(r, 2),(s, 2)\}$

Answer: C

- Watch Video Solution

33. Let $\mathrm{A}=(\mathrm{p}, \mathrm{q}, \mathrm{r})$ which of the following is an equvilance relation on A ?
A. $R_{1}=\{(p, q),(q, r),(p, r),(p, p)\}$
B. $R_{2}=\{(r, p),(q, p),(r, r),(q, q)\}$
C. $R_{3}=\{(p, p),(q, q),(r, r),(p, q)\}$
D. $R_{4}=\{(p, p),(q, q),(r, r)\}$

D Watch Video Solution

34. In the set $X=\{a, b, c, d\}$ which of the following relation is a function?
A. $R_{1}=\{(b, a),(a, b),(c, d),(a, c)\}$
B. $R_{2}=\{(a, d),(d, c),(b, b),(c, c)\}$
C. $R_{3}=\{(a, b),(b, c),(c, d),(b, d)\}$
D. $R_{4}=\{(a, a),(b, b),(c, c),(a, d)\}$

Answer: B

- Watch Video Solution

35. In the set of $A=\{1,2,3,4,5\}$, a relation R is defined by $R=(x, y): x, y \in A, x<y)$ Then R is
A. reflexive
B. symmetric
C. transitive
D. none of these

Answer: C

- Watch Video Solution

36. The relation $R=\{(1,1),(2,2),(3,3)\}$ on the set of $\{1,2,3]$ is
A. symmetric only
B. reflexive only
C. an equivalance relation
D. transitive only

Answer: C

37. If $A=\{2,3,4,5\}$, then which of the following relations is a function from A to itself
A. $f_{1}=\{(x, y): y=x+1\}$
B. ${ }^{f} _\{2\}=\{(x, y): x+Y$ gt 6$\}$
C. $f_{3}=\{(x, y): x>y\}$
D. $f_{4}=\{(x, y): x+y=7\}$

Answer: D

Watch Video Solution

38. In the set $X=\{a, b, c, d\}$ which of the following relation is a function?
A. $R_{1}=\{(b, a),(a, b),(c, d),(a, c)\}$
B. $R_{2}=\{(a, d),(d, c),(b, b),(c, c)\}$
C. $R_{3}=\{(a, b),(b, c),(c, d),(b, d)\}$
D. $R_{4}=\{(a, a),(b, b),(c, c),(a, d)\}$

Answer: B

- Watch Video Solution

39. Let $A=\{1,2,3\}$ and $B=\{2,3,4\}$, then which of the following relation from A to B is a function from A into B
A. $\{(2,2),(1,3),(2,4),(3,2)\}$
B. $\{(1,4),(2,4),(3,4)\}$
C. $\{(2,2),(3,4)\}$
D. $\{(1,2),(2,3),(3,4),(3,3)\}$

Answer: B

40. Let $A=\{P, Q, R, S\}$ and $B=\{1,2,3\}$ which of the following relations from A to B is not a function.
A. $R_{1}=\{(p, 1),(q, 2),(r, 1),(s, 2)\}$
B. $R_{2}=\{(p, 1),(q, 1),(r, 1),(s, 1)\}$
C. $R_{3}=\{(p, 1),(q, 2),(p, 2),(s, 3)\}$
D. $R_{4}=\{(p, 2),(q, 3),(r, 2),(s, 2)\}$

Answer: C

- Watch Video Solution

41. Let $A=\{1,2,3,4\}$ and $B=\{1,2\}$. Then the number of onto functions from A onto B is
A. 14
B. 16
C. 12
D. 8

Answer: A

- Watch Video Solution

42. If $n \geq 2$ then the number of onto mappings (surjections) that can be defined from the set $A=\{1,2,3 \ldots, n\} o n \rightarrow \mathrm{~B}=\{\mathrm{a}, \mathrm{b}\}^{\prime}$ is
A. n^{2}
B. 2^{n}
C. $n^{2}-2$
D. $2^{n}-2$

Answer: D

- Watch Video Solution

43. If $f: A \rightarrow B$ is surjective then
A. $n(A) \leq n(B)$
B. $n(A)=n(B)$
C. $n(A) \geq n(B)$
D. none of these

Answer: C

- Watch Video Solution

44. Let $f(x)=\frac{2 x+1}{1-3 x}$, then $f^{-1}(x)=$
A. $\frac{x-1}{3 x+2}$
B. $\frac{3 x+2}{x-1}$
C. $\frac{x+1}{3 x-2}$
D. $\frac{2 x+1}{1-3 x}$

- Watch Video Solution

45. If $\mathrm{A}=\left(\mathrm{x}: \mathrm{x}=\frac{1}{y}, y \in N\right)$, where N is the set of natural numbers, then
A. $0 \in A$
B. $1 \in A$
C. $2 \in A$
D. $\frac{2}{3} \in A$

Answer: B

Watch Video Solution

46. If $f(x)=1+x^{4}$, then $f(x) \cdot f\left(\frac{1}{x}\right)=$
A. $f(x)+f\left(\frac{1}{x}\right)$
B. $f(x)-f\left(\frac{1}{x}\right)$
C. $f(x) \div f\left(\frac{1}{x}\right)$
D. none of these

Answer: A

- Watch Video Solution

47. If $f(x)=\cos (\log x)$, then $f\left(\frac{1}{x}\right) f\left(\frac{1}{y}-\frac{1}{2}\left[f\left(\frac{x}{y}\right)+\mathrm{f}(\mathrm{xy})\right]=\right.$ '
A. $\cos (x-y)$
B. $\log [\cos (x+y)]$
C. 1
D. 0

Answer: D

48. Two functions $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined as below $f(x)= \begin{cases}0 & x \text { is rotational } \\ 1 & \text { xisirrational }\end{cases}$
A. -1
B. 0
C. 1
D. 2

Answer: A

- View Text Solution

49. The domain of the function $f(x)=\sqrt{2-2 x-x^{2}}$ is
A. 1) $-1<e x<e=\sqrt{3}$
B. 2) $-1-\sqrt{3} \leq x \leq-1+\sqrt{3}$
C. 3)-2 $\leq x \leq 2$
D. 4)none of these

Answer: B

D Watch Video Solution

50. If $g(x)=1+\sqrt{x}$ and $f(g(x))=3+2 \sqrt{x}+x$ then $\mathrm{f}(\mathrm{x})=$
A. $1+2 x^{2}$
B. $2+x^{2}$
C. $1+x$
D. $2+x$

Answer: B

- Watch Video Solution

51. The inverse of the function $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}+2$ is given by :
A. $\frac{1}{2} \log \left(\frac{x-2}{x-1}\right)$
B. $\frac{1}{2} \log \left(\frac{x-1}{3-x}\right)$
C. $\frac{1}{2} \log \left(\frac{x}{2-x}\right)$
D. $-2 \log \left(\frac{x-1}{1+x}\right)$

Answer: B

- Watch Video Solution

52. On the set Z of all integers define $f: Z-(0) \rightarrow Z$ as follows
$f(n)=\left\{\begin{array}{ll}\frac{n}{2} & n \text { is even } \\ \frac{2}{0} & n \text { is odd }\end{array}\right.$ then f is
A. onto but not one-one
B. one-one but not onto
C. one-one and onto
D. into
53. The mapping $f: R^{+} \rightarrow R$ defined by $f(x)=\log _{10} x$, (Where R^{+}is the set ofall positive real numbers) is
A. only one-one mapping
B. only onto mapping
C. both one-one and onto
D. none of these

Answer: C

- Watch Video Solution

54. The function $f(x)=10^{x}$ from the set R of real numbers to $[0, \infty)$ is
A. one-one and onto
B. one-one and into
C. a constant function
D. an identify function

Answer: B

- Watch Video Solution

55. If R denotes the set of all real numbers than the function $f: R \rightarrow R$ defined by $f(x)=|x|$
A. one-one only
B. onto only
C. both one-one and onto
D. neither one-onto nor onto

Answer: D

56. If $f: N \times N \rightarrow N$ is such that $f(m, n)=m+n$, for all $n \in N$, where N is the set of all natural numbers, then which of the following is true?
A. f is one-one but not onto
B. f is neither one-one nor onto
C. f is one-one and onto
D. f is onto but not one-one

Answer: B

- Watch Video Solution

57. If $f(x)=\frac{2^{x}-2^{-x}}{2^{x}+2^{-x}}$, then $f^{-1}(x)$ is:
A. $\frac{1}{2} \log _{2},\left(\frac{x}{1-x}\right)$
B. $\frac{1}{2} \log _{2},\left(\frac{1+x}{1-x}\right)$
C. $\frac{1}{2} \log _{2},\left(\frac{1+x}{x}\right)$
D. $\frac{1}{2} \log _{2},\left(\frac{2+x}{2-x}\right)$

Answer: B

- Watch Video Solution

58. If $f(x)=\frac{1-x}{1+x}$, then $f[f(\cos x)]=$
A. $\frac{1-\cos x}{1+\cos x}$
B. x
C. $\cos x$
D. $\tan ^{2}\left(\frac{x}{2}\right)$

Answer: C

- Watch Video Solution

59. If $f(x)=\frac{x-3}{x+1}$, then $f[f\{f(x)\}]=$
A. x
B. $-x$
C. 4 x
D. $-4 x$

Answer: A

- Watch Video Solution

60. If $f(x)=\frac{x}{x-1}=\frac{1}{y}$, then $f(y)=$
A. x
B. $x-1$
C. 1-x
D. $1+x$

Answer: C

61. If $f(x)=\frac{x-1}{x+1}$, then $f\left[\frac{1}{f(x)}\right]=$
A. 0
B. 1
C. x
D. $1 / x$

Answer: D

- Watch Video Solution

62. The number of bijective functions from the set A to itself, if A contains 108 elements is :
A. 108
B. (108)!
C. $(108)^{2}$
D. $2^{\wedge} 108^{\prime}$

Answer: B

- Watch Video Solution

63. If $f: R \rightarrow R$ be defined by, $f(x)=10 x-7$ and $g=f^{-1}$, then $\mathrm{g}(\mathrm{x})$
A. $1 / 10 x-7$
B. $1 / 10 x+7$
C. ${ }^{~} x+7 / / 10^{\prime}$
D. $x-7 / 10$

Answer: C

- Watch Video Solution

64. Let A be a set containing 10 distinct elements. Then the total number of distinct functions from A to A is :
A. 10 !
B. 10^{10}
C. 2^{10}
D. $2^{10}-1$

Answer: B

- Watch Video Solution

65. If the set A has 3 elements and the set B has 4 elements, then the number of injections (one - one) that can be defined from A to B is
A. 144
B. 12
C. 24
D. 64

Answer: C

- Watch Video Solution

66. The number of bijective functions from the set A to itself if a contains

108 elements is
A. 108
B. 108^{3}
C. 108!
D. 2^{106}

Answer: C

67. If $f(x)=\frac{3 x+2}{5 x-3}$, then :
A. $f^{-1}(x)=f(x)$
B. $f^{-1}(x)=-f(x)$
C. $f(f(x))=-x$
D. $f^{-1}(x)=\frac{1}{19} f(x)$

Answer: A

- Watch Video Solution

68. If $f(x)=4 x-x^{2}$, then $f(a+1)-f(a-1)=$
A. 4 (2-a)
B. 2(4-a)
C. $4(2+a)$
D. $2(4+a)$

D Watch Video Solution

69. If $f(x)=1-\frac{1}{x}$, then $f\left(f\left(\frac{1}{x}\right)\right)=$
A. $\frac{1}{x}$
B. $\frac{1}{1}+x$
C. $\frac{x}{x}-1$
D. $\frac{1}{x}-1$

Answer: C

- Watch Video Solution

70. If $f(x)=x^{2}-3 x+1$ and $f(2 \alpha)=2 \times \mathrm{f}(\text { alpha) })^{\prime}=$
A. $\frac{1}{\sqrt{2}}$
B. $-\frac{1}{\sqrt{2}}$
C. $\frac{1}{\sqrt{2}}$ or $-\frac{1}{\sqrt{2}}$
D. $\pm \sqrt{2}$

Answer: C

- Watch Video Solution

71. The $f(x)$ is such that $f(x+y)=f(x)+f(y)$, for all reals x and $y \times$ then $f(0)=$
A. 1
B. 0
C. $f(x), \forall x$
D. -1

Answer: B

72. If $f(x)=3^{1}+\log x / x^{\log 3}$, then $\mathrm{f}(2005)$ is
A. $\log (2005)$
B. (2005) $\log 3$
C. $1 / 2005$
D. 3

Answer: D

Watch Video Solution

73. Let $f: I \rightarrow I$ be defined $\operatorname{by} f(x)=x+k$ where k is a fixed integer and I is the set of all integers then f is
A. one-one but not onto
B. onto but not one-one
C. does not have an inverse
D. both one-one and onto

Answer: D

- Watch Video Solution

74. If $f: R \rightarrow R$ be defined by, $f(x)=x^{2}-3 x+4$, for all x in R then $f^{-1}(2)$ is
A. a) 1
B. b)3
C. c)-1
D. d) -2

Answer: A

- Watch Video Solution

75. The functon $f: N \rightarrow N$, defined by $f(n)=2 n+3$, for all $n \in N$, is (here N is the set of natural numbers)
A. only onto
B. only one-one
C. both one-one and onto
D. none of these

Answer: B

- Watch Video Solution

76. If $f: C \rightarrow C$, where C is the set of all complex numbers, is defined by
$f(x)=x^{3}, \forall x \in C$, then $f^{-1}(64)=$
A. 4
B. $(4,-4)$
C. ϕ
D. $\left(4,4 \infty, 4 \infty^{2}\right.$

Answer: D

- Watch Video Solution

77. If $f: C \rightarrow C$, where C is the set of all complex numbers, is defined by $f(x)=x^{4}, \forall x \in C$, then $f^{-1}(256)=$
A. 4
B. $(4,-4)$
C. $(4,-4,4 i,-4 i)$
D. ϕ

Answer: C

78. If $f(x)=\frac{\left(a-x^{n}\right)^{1}}{n}, a>0, \mathrm{n}$ is a postive integer then $f[f(x)]=$
A. x
B. x^{2}
C. x^{3}
D. x^{n}

Answer: A

- Watch Video Solution

79. If $f(x)$ is a ploynomial function satisfying $f(x) \cdot f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$ and $\mathrm{f}(3)=28$, then $\mathrm{f}(2)$ is
A. 63
B. 62
C. 49
D. 9

Answer: D

- Watch Video Solution

80. The number of functions from the set A into the set B, when
$n(A)=7$ and $n(B)=5$ is
A. 7^{5}
B. 5^{7}
C. 7 !
D. $7 C_{5}$

Answer: B

81. If $n(A)=15$ and $n(B)=10$, then number of injective (one-one) mapping from A into B is
A. $15 C_{10}$
B. 15!
C. 0
D. 10 !

Answer: C

- Watch Video Solution

82. The domain of the function $f(x)=\cot 5 x$ is
A. $R-\frac{n \pi}{2}$
B. $R-n \pi$
C. $R-\frac{n \pi}{5}$
D. $R+n \pi$

- Watch Video Solution

83. The domain of the function $f(x)=\tan 3 x$ is
A. $R-\left\{(2 n+1) \frac{\pi}{3}\right\}$
B. $R-\left\{(2 n+1) \frac{\pi}{6}\right\}$
C. $R-\left\{(2 n+1) \frac{\pi}{2}\right\}$
D. $R-2 n \pi$

Answer: B

Watch Video Solution

84. The domain of $f(x)=\sqrt{(x-7)(9-x)}$ is
B. $[7,9)$
C. $[7,9)$
D. $[7,9]$

Answer: D

- Watch Video Solution

85. The domain of the function
$f(x)=\frac{1}{\sqrt{(x-6)(x-9)}}$ is
A. $(-\infty, 6] \cup(9, \infty)$
B. $(-\infty, 6] \cup[9, \infty)$
C. $(-\infty, 6) \cup[9, \infty)$
D. $(-\infty, 6) \cup(9, \infty)$

Answer: D

86. The domain of the function $f(x)=\sqrt{\frac{x-7}{x-9}}$ is
A. $(-\infty, 7] \cup(9, \infty)$
B. $(-\infty, 7) \cup[9, \infty)$
C. $(-\infty, 7) \cup(9, \infty)$
D. $(-\infty, 7] \cup[9, \infty)$

Answer: A

87. The domain of the function $f(x)=\sqrt{\frac{x-5}{x-4}}$ is
A. $(-\infty, 4] \cup(5, \infty)$
B. $(-\infty, 4] \cup(5, \infty)$
C. $(-\infty, 4] \cup[5, \infty)$
D. $(-\infty, 4] \cup[5, \infty)$

Answer: C

- Watch Video Solution

88. The function $f: N \rightarrow N$, Where N is the set of natural numbers, defined by $f(x)=3 x+4$ is
A. surjective
B. injective
C. both surjective and injective
D. neither surjective nor injective

Answer: B

- Watch Video Solution

89. If $f(x)=\log \left(\frac{1+x}{1-x}\right)$ and $g(x)=\frac{3 x+x^{3}}{1+3 x^{2}}$, then $f(g(x))$ is equal to :
A. $-f(x)$
B. $3 f(x)$
C. $(f(x))^{3}$
D. $f(3 x)$

Answer: B

- Watch Video Solution

90. The domain of the function $f(x)=\sqrt{\frac{x-7}{9-x}}$ is
A. $7 \leq x \leq 9$
B. $7 \leq x \leq 9$
C. $7 \leq x \leq 9$
D. $7<x<9$

Answer: A

- Watch Video Solution

91. The domain of the function $f(x)=\sqrt{2-2 x-x^{2}}$ is
A. R
B. $x>0$
C. $x \leq 0$
D. ϕ

Answer: A

- Watch Video Solution

92. Range of $f(x)=5 \cos x-3 \sin x+2$ is
A. $[2-\sqrt{34}, 2+\sqrt{34}]$
B. $[-\sqrt{34}, \sqrt{34}]$
C. $[\sqrt{34}-2,2+\sqrt{34}]$
D. $\left[-\frac{1}{2} \sqrt{34}, \frac{1}{2} \sqrt{34}\right]$

Answer: A

- Watch Video Solution

93. Let $f(x)=1-x^{5}$, then $f(x) \cdot f\left(\frac{1}{x}\right)=$
A. $f(1)$
B. $f(x)+f\left(\frac{1}{x}\right)$
C. $f(x)$
D. $f(0)$

Answer: B

94. If $f(x)$ is a polynomial even function such that $f(x) \cdot f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$ and $f(2)=65$, then $f(-3)=$
A. 729
B. 723
C. 730
D. 731

Answer: C

- Watch Video Solution

95.

$f(x)=\sin ^{2} x+\sin ^{2}\left(x+\frac{\pi}{3}\right)+\cos x \cdot \cos \left(x+\frac{\pi}{3}\right)$ and $g\left(\frac{5}{4}\right)=1$. Then $(g \circ f)(x)$ is :
A. 1
B. -1
C. x
D. $1 / x$

Answer: A

D Watch Video Solution

96. If $A=\phi$, then the number elements in $\mathrm{P}(\mathrm{A})$, (i.e., the number of elements in the power set of A) is
A. 0
B. 1
C. $P(A)$ not defined
D. 2

Answer: B

97. A and B are two sets such that $n(A)=22$ and $n(B)=37$, then maximum number of elements in $A \cap B$ is
A. 37
B. 22
C. 15
D. 59

Answer: B

- Watch Video Solution

98. A and B are two sets such that $n(A)=25$ and $n(B)=15$, then maximum number of elements in $A \cup B$ is
A. 40
B. 10
C. 25
D. 15

Answer: A

D Watch Video Solution

99. If A and B are two sets such that $n(A)=5, n(B)=7$, then the minimum number of elements in $A \cup B$ is
A. 5
B. 12
C. 2
D. 7

Answer: D

100. A and B are two sets such that $n(A)=30$ and $n(B)=41$, then $n(A \cup B)$ is
A. equal to 41
B. less than 70
C. greater than 41
D. less than 41

Answer: C

- Watch Video Solution

101. A and B are two sets such that $n(A)=27$ and $n(B)=32$, then $n(A \cap B)$ is
A. equal to 27
B. equal to 32
C. less than 27
D. greater than 32

Answer: C

- Watch Video Solution

102. If A_{n} is the set of first n primes then $\operatorname{big} \cap_{n=3}^{10} A_{n}=$
A. $\{3,5,7,11,13,17,19\}$
B. $\{2,3,5\}$
C. $\{2,3,5,7,11,13,17\}$
D. $\{3,5,7\}$

Answer: B

- Watch Video Solution

103. If A_{n} is the set of first n primes than, $\cup_{n=2}^{10} A_{n}=$
A. $\{2,3,5,7,11,13,17,19\}$
B. $\{2,3,5,7,11,13,17,19,23,29\}$
C. $\{3,5\}$
D. $\{2,3\}$

Answer: B

- Watch Video Solution

104. If $\mathrm{n}(\mathrm{U})=300, \mathrm{n}(\mathrm{A})=115, \mathrm{n}(\mathrm{B})=125$ and $n(A \cup B)=140$ then $n[(A \cap B)]=$
A. 100
B. 150
C. 200
D. 175

Answer: C

105. If $\mathrm{n}(\mathrm{U})=100, \mathrm{n}(\mathrm{A})=50, \mathrm{n}(\mathrm{B})=20$ and $n(A \cap B)=10$, then $n\{(A \cup B)\}=$
A. 60
B. 30
C. 40
D. 20

Answer: C

- Watch Video Solution

106. Two finite sets have m and n elements. The Number of elements is the power set of first set is 48 more than the power set of second set. Then $(m, n)=$

$$
\text { A. }(7,6)
$$

B. $(6,3)$
C. $(6,4)$
D. $(7,4)$

Answer: C

- Watch Video Solution

107. If $A=\{x: x$ is a multiple of 2$\} B=\{x: x$ is a multiple of 5$\}$, then $A-B$ is
A. $A^{\prime} \cap B$
B. $A \cap B^{\prime}$
C. $A^{\prime} \cap B^{\prime}$
D. $(A \cap B)^{\prime}$

Answer: B

108. If $\mathrm{A}=\left\{(x, y): x^{2}=y, x, y \in R\right\}$
$\mathrm{B}=\{(x, y): y=|x|, x, y \in R\}$ then
A. $A \cap B=\phi$
B. $A \cap B=$ singleton set
C. $A \cap B=$ contains two elements
D. $A \cap B$ contains three elements

Answer: D

- Watch Video Solution

109. If $\mathrm{A}=\left\{(x, y): y^{2}=x, x, y \in R\right\}, \mathrm{B}=\{(x, y): y=|x|, x, y \in R\}$, then
A. $A \cap B=\phi$
B. $A \cap B=$ singleton set
C. $A \cap B$ contains two elements
D. $A \cap B$ contains three elements

Answer: C

- Watch Video Solution

110.

$A=\left\{(x, y): y=\frac{4}{x}, x \neq 0\right\}$ and $B=\left\{(x, y): x^{2}+y^{2}=8, x, y \in R\right\}$ then
A. $A \cap B=\phi$
B. $A \cap B$ contains one point only
C. $A \cap B$ contains two points only
D. $A \cap B$ contains four point only

Answer: C

111. A survey shows that 65% of Americans like cheese where as 79% like oranges. If $\mathrm{x} \%$ of the Americans like both than
A. $x=34$
B. $x=44$
C. $x=54$
D. $x=64$

Answer: B

- Watch Video Solution

112. If $A=\{1,2,3,4,5,6\}$ then how many subsets of A contain the elements

2, 3 and 5 ?
A. 4
B. 8
C. 16
D. 32

Answer: B

- Watch Video Solution

113. If P is the set of all parallelograms and T is the set of all trapeziums then $P \cap T$ is
A. , P
B. T
C. ϕ
D. none of these

Answer: B

114. A and B are any two non-empty sets and A is a proper subset of B. If $\mathrm{n}(\mathrm{A})=5$, then find the minimum possible value of $n(A \Delta B)$
A. a.is 1
B. b.is 5
C. c. 6
D. d.can not be determined

Answer: A

- Watch Video Solution

115. In an election, two persons A and B contested. $x \%$ of the total voter voted for A and $(x+20) \%$ for B. If 20% of the voters did not vote, then $x=$
A. 30
B. 25
C. 40

D. 35

Answer: A

- Watch Video Solution

116. Let R be the real line, Consider the following subsets of the plane $R \times R:$
$S=\{(x, y): y=x+1$ and $0<x<2\}$
$T=\{(x, y): x-y$ is an integer $\}$.

Which one of the following is true?
A. S is an equivalence relation on R but T is not
B. T is an equivalence relation on R but S is not
C. Neither S nor T is an equivalence relation on R
D. Both S and T are equivalence relations on R

Answer: B

117. The number of equivalence relation that can be defined on (a, b, c) is
A. 3
B. 5
C. 7
D. 8

Answer: D

- Watch Video Solution

118. The relation 'is not equal to' is defined on R, is
A. reflexive only
B. symmetric only
C. transitive only
D. equivalence

Answer: B

- Watch Video Solution

119. The inverse of function $f: R \rightarrow\{x \in R: x<1\}$ given by $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$ is
A. $\frac{1}{2} \log \left(\frac{1+x}{1-x}\right)$
B. $\frac{1}{2} \log \left(\frac{2+x}{2-x}\right)$
C. $\frac{1}{2} \log \left(\frac{1-x}{1+x}\right)$
D. none of these

Answer: A

(Watch Video Solution

120. If $f=R \rightarrow R$ is defined by $f(x)=|x|$, then,
A. $(-1,1)$
B. $(0,1)$
C. $(-1,0)$
D. none of these

Answer: A

- Watch Video Solution

121. Let $f:[2, \infty) \rightarrow X$ be defined by $f(x)=4 x-x^{2}$. Then, f is invertible if $X=$
A. $[2, \infty)$
B. $(-\infty, 2]$
C. $(-\infty, 4]$
D. $[4, \infty)$

- Watch Video Solution

122. If the function $f: R \rightarrow A$ given by $f(x)=\frac{x^{2}}{x^{2}+1}$ is a surjective then $\mathrm{A}=$
A. R
B. $[0,1]$
C. $(0,1]$
D. $[0,1)$

Answer: D

- Watch Video Solution

123. If $f(x)=a x+b$ and $g(x)=c x+d$ then $f(g(x))=g(f(x))$ is equivalent to
A. $f(a)=g(c)$
B. $f(b)=g(b)$
C. $f(d)=g(b)$
D. $f(c)=g(a)$

Answer: C

- Watch Video Solution

124. If $f(x)$ is defined on $[0,1]$ by the rule $f(x)= \begin{cases}x & \text { if } x \text { is rational } \\ 1-x & \text { if } x \text { is irrational }\end{cases}$
A. constant
B.
C.
D.

View Text Solution

125. Let $f(x)=\frac{a x+b}{c x+d}$.Then $f o f(x)=x$, then
A. $d=-a$
B. $d=a$
C. $a=b=c=d=1$
D. $a=b=1$

Answer: A

- Watch Video Solution

126. If $f(x)=x^{n}, n \in N$ and $g o f(x)=n g(x)$, then $\mathrm{g}(\mathrm{x})$ can be
A. $n|x|$
B. $3 \frac{x^{1}}{3}$
C. e^{x}
D. $\log |x|$

Answer: D

- Watch Video Solution

127. The function $f: R \rightarrow R$ given by
$f(x)=5-3 \sin x$
A. only one-one
B. only onto
C. both one-one and onto
D. neither one-one nor onto

Answer: D

View Text Solution
128. If $g(x)=1+\sqrt{x}$ and $f(g(x))=3+2 \sqrt{x}+x$ then $\mathrm{f}(\mathrm{x})=$
A. $1+2 x^{2}$
B. $2+x^{2}$
C. $1+x$
D. $2+x$

Answer: B

- Watch Video Solution

129. The inverse of the function $f: R \rightarrow R$ given by $f(x)=\log _{-}\{a\}$ $\left(x+\operatorname{sqrt}\left(x^{\wedge} 2+1\right)(\text { a gt } 0 \text {, a ne } 1)^{\prime}\right.$ is
A. $\frac{1}{2}\left(a^{x}+a^{-x}\right)$
B. $\frac{1}{2}\left(a^{x}-a^{-x}\right)$
C. $\frac{1}{2}\left(\frac{a^{x}+a^{-x}}{a^{x}-a^{-x}}\right)$
D. $\frac{1}{2}\left(\frac{a^{x}-a^{-x}}{a^{x}+a^{-x}}\right)$

D Watch Video Solution

130. If $f(x)=\log \left(\frac{1+x}{1-x}\right)$, then $f\left(\frac{2 x}{1+x^{2}}\right)$
A. $[f(x)]^{2}$
B. $[f(x)]^{3}$
C. $2 f(x)$
D. $3 f(x)$

Answer: C

- View Text Solution

131. If $f(x)=\frac{\sin ^{4} x+\cos ^{2} x}{\sin ^{2} x+\cos ^{4} x}$ for $x \in R$, then $\mathrm{f}(2013)=$
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution

132. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=3 x+2$ and $g(x)=x^{2}-3$, then the value of x such that $g(f(x))=4$ are
A. a. $-\frac{1}{3}, 1$
B. b. $-\frac{1}{3},-1$
C. $c .1 / 3,-1$
D. d.1/3, 1

Answer: B

133. The function $f: R \rightarrow R$ defined by $f(x)=7^{x}+7^{|x|}$ is
A. a.one- one and onto
B. b.many one and onto
C. c.one-one and onto
D. d.many one and into

Answer: C

- Watch Video Solution

134. . If $A_{1}, A_{2}, \ldots \ldots, A_{100}$ are sets such that
$n\left(A_{i}\right)=i+2, A_{1} \subset A_{2} \subset A_{3} \subset \ldots \subset A_{100} \quad$ and $\quad A=b i g \cap_{i=3}^{100} A_{l}$ then
A. 3
B. 4
C. 5
D. 6

Answer: C

- View Text Solution

135. If $A_{1} \subset A_{2} \subset A_{3} \subset \ldots \subset A_{70}$ and $n\left(A_{i}\right)=\mathrm{i}-3$ then, n(bignn_(i=10)^(70))=`
A. 5
B. 7
C. 9
D. 11

Answer: B

136. If $A_{1} \subset A_{2} \subset A_{3} \subset \ldots \subset A_{79}$ and $n\left(A_{i}\right)=i+2$ then, $n\left(\bigcup_{i=1}^{79} A_{i}\right)$ $=$
A. 80
B. 81
C. 90
D. 91

Answer: B

- View Text Solution

137. Let F_{1} be the set of parallelograms, F_{2} the set of rectangles, F_{3} the set of rhombuses, F_{4} the set of squares and F_{5} the set of trapeziums in a plane. Then F_{1} may be equal to :
A. $F_{2} \cap F_{3}$
B. $F_{3} \cap F_{4}$
C. $F_{2} \cup F_{5}$
D. $F_{2} \cup F_{3} \cup F_{4} \cup F_{5}$

Answer: D

- Watch Video Solution

138. Let, $\mathrm{S}=$ set of points inside the square
$\mathrm{T}=$ set of points inside the triangle
$\mathrm{C}=$ set of points inside the circle, If the triangle and circle intersect each other and are contained in a square, then
A. $S \cap T \cap C=\phi$
B. $S \cup T \cup C=C$
C. $S \cup T \cup C=S$
D. $S \cup T=S \cap C$

Answer: C

139. Two finite sets have m and n elements. The number of subsets of the first set is 112 more than that of the second set. The values of m and n are , respectively:
A. 4,7
B. 7, 4
C. 4,4
D. 7, 7

Answer: B

- Watch Video Solution

140. Suppose $A_{1}, A_{2} \ldots, A_{30}$ are thirty sets, each having 5 elements and $B_{1}, B_{2}, \ldots \ldots, B_{n}$ are n sets , each with 3 elements, let
$\cup_{i=1}^{30} A_{i}=\cup_{j=1}^{n} B_{j}=S$ and each element of S belongs to exactly 10 of
A_{i}^{\prime} and exactly 9 of $B_{j}{ }_{j}$. Then n is equal to :
A. 15
B. 3
C. 45
D. 35

Answer: C

- Watch Video Solution

141. Let R be the set of points inside a rectangle of sides a and b with two sides along the positive directions of x -axis and y -axis. Then :
A. $R=\{(x, y): 0 \leq x \leq a, 0 \leq y \leq b\}$
B. $R=\{(x, y): 0 \leq x \leq a, 0 \leq y \leq b\}$
C. $R=\{(x, y): 0 \leq x \leq a, 0<y<b\}$
D. $R=((x, y): 0<x<a, 0<y<b)$

Answer: D

- Watch Video Solution

142. In a class of 60 students, 25 students play cricket, 20 students play tennis, and 10 students play both the games, then the number of students who play neither is
A. 0
B. 25
C. 35
D. 45

Answer: B

- Watch Video Solution

143. In a town of 840 persons, 450 persons read Hindi, 300 read English and 200 read both. Then the number of persons who read neither is :
A. 210
B. 290
C. 180
D. 260

Answer: B

- Watch Video Solution

144. If $X=\left\{8^{n}-7 n-1: n \in N\right\}$ and $Y=\{49(\mathrm{n}-1) \mid \mathrm{n} \in \mathrm{N}\}$, then
A. $X \subset Y$
B. $Y \subset X$
C. $X=Y$
D. $X \cap Y=\phi$

D Watch Video Solution

145. If the sets A and B are defined as:
$A=\left\{(x, y): y=\frac{1}{x}, 0 \neq x \in R\right\}, \mathrm{B}=\{(\mathrm{x}, \mathrm{y}): \mathrm{y}=-\mathrm{x}, \mathrm{x} \in \mathrm{R}\}$, then :
A. $A \cap B=A$
B. $A \cap B=B$
C. $A \cap B=\phi$
D. $A \cup B=A$

Answer: C

D Watch Video Solution

146. A survey shows that 63% of the people watch at news channel whereas 76% watch another channel. If $x \%$ of the people watch both
channels, then :
A. $x=35$
B. $x=63$
C. $39 \leq x \leq 63$
D. $x=39$

Answer: C

- Watch Video Solution

147. If A and B are two sets, then $A \cap(A \cup B)$ equals :
A. A
B. B
C. ϕ
D. $A \cap B$

Answer: A

148. If $A=\{1,3,5,7,9,1,13,15,17\}, B=\{2,4, \ldots, 18\}$ and N is the universal set, then $A^{c} \cup\left((A \cup B) \cap B^{c}\right)$ is :
A. ϕ
B. N
C. A
D. B

Answer: B

(Watch Video Solution

149. If X and Y are two sets and X^{c} denotes the complement of X, then $X \cap(X \cup Y)^{c}$ is equal to :
A. X
B. Y
C. ϕ
D. $X \cap Y$

Answer: C

- Watch Video Solution

150. Let $\mathrm{S}\{\mathrm{x} \mid \mathrm{x}$ is a positive multiple of 3 less then 100$\}$,
$P=\{x \mid x$ is a prime number less than 20$\}$
Then $n(S)+n(P)$ is
A. 34
B. 41
C. 33
D. 30
151. Let $n(A)=m$ and $n(B)=n$. Then the total number of non-empty relations that can be defined from A to B is
A. m^{n}
B. $n^{m}-1$
C. $\mathrm{mn}-1$
D. $2^{m n}-1$

Answer: D

- Watch Video Solution

152. Let T be the set of all trianges in the Euclidean plane and let a relation R on T be defined as a R b , if a is congruent to b , for all $a, b \in T$ Then R is
A. reflexive but not transitive
B. transitive but not symmetric
C. equivalence relation
D. none of these

Answer: C

- Watch Video Solution

153. Consider the non-empty set consisting of children in a family and a relation R defined by $a R$ if a is brother of b. Then R is
A. symmetric but not transitive
B. transitive but not symmetric
C. neither symmetric nor transitive
D. both symmetric and trannsitive
154. If a relation R on the set $\{1,2,3\}$ be defined by $R=\{(1,2)\}$, then R is
A. reflexive
B. transitive
C. symmetric
D. none of these

Answer: B

- Watch Video Solution

155. Let us define a relation R on the set R of real numbers as $a \operatorname{b}$ if $a \geq b$. Then R is
A. an equivalence relation
B. reflexive, transitive but not symmetric
C. symmetric, transitive but not reflexive
D. neither transitive nor reflexive but symmetric

Answer: B

D Watch Video Solution

156. Let $A=\{1,2,3\}$ and consider the relation $R=\{(1,1),(2,2),(3,3),(1,2),(2$, $3),(1,3)$ \}. Then R is
A. reflexive but not symmetric
B. reflexive but not transitive
C. symmetric and transitive
D. neither symmetric nor transitive

Answer: A

157. If a set A contains 5 elements and the set B contains 6 elements, then the number of one-one and onto mapping from A to B is
A. 720
B. 120
C. 0
D. none of these

Answer: C

- Watch Video Solution

158. Let $A=\{1,2,3, \ldots \ldots, n\}$ and $B=\{a, b\}$. Then the number of surjection from A into B is
A. $n P_{2}$
B. $2^{n}-2$
C. $2^{n}-1$
D. none of these

Answer: B

- Watch Video Solution

159. If $[x]^{2}-5[x]+6=0$, where [.] denotes the greatest integer function, then :
A. $x \in[3,4]$
B. $x \in[2,3]$
C. $x \in[2,3]$
D. $x \in[2,4)$

Answer: D

- Watch Video Solution

160. Range of $f(x)=\frac{1}{1-2 \cos x}$ is
A. 1) $\left[\frac{1}{3}, 1\right]$
B. 2) $\left[-1, \frac{1}{3}\right]$
C. 3) $(-\infty,-1) \cup\left[\frac{1}{3}, \infty\right)$
D. 4) $\left[-\frac{1}{3}, 1\right]$

Answer: C

- Watch Video Solution

161. Let $f(x)=\sqrt{1+x^{2}}$, then :
A. $f(x y)=f(x) \cdot f(y)$
B. $f(x y) \geq f(x) \cdot f(y)$
C. $f(x y) \leq f(x) \cdot f(y)$
D. none of these

D Watch Video Solution

162. Domain of $\sqrt{a^{2}-x^{2}}(a>0)$ is :
A. $(-a, a)$
B. $[-a, a]$
C. $[0, \mathrm{a}]$
D. $(-a, 0]$

Answer: B

- Watch Video Solution

163. If $f(x)=a x+b$ where a and b are integers,
$f(-1)=-5$ and $f(3)=3$, then a and b are equal to :
A. $a=-3, b=-1$
B. $a=2, b=-3$
C. $a=0, b=2$
D. $a=2, b=3$

Answer: B

- Watch Video Solution

164. The domain of the function f defined by:
$f(x)=\sqrt{4-x}+\frac{1}{\sqrt{x^{2}-1}}$ is equal to :
A. $(-\infty,-1) \cup(1,4]$
B. $(-\infty,-1) \cup(1,4)$
C. $(-\infty,-1) \cup[1,4]$
D. $(-\infty,-1) \cup[1,4)$
165. The domain and range of real function f defined by:
$f(x)=\frac{4-x}{x-4}$ is given by :
A. Domain $=R$, Range $=[-1,1]$
B. Domain $=R-\{1\}$, Range $=R$
C. Domain $=R-\{4\}$, Range $=\{-1\}$
D. Domain $=R-\{-4\}$, Range $=\{-1,1\}$

Answer: C

Watch Video Solution

166. The domain and range of real function f defined by
$f(x)=\sqrt{x-1}$ is given by:
A. Domain $=(1, \infty)$, Range $=(0, \infty)$
B. Domain $=[1, \infty)$, Range $=(0, \infty)$
C. Domain $=[1, \infty)$, Range $=[0, \infty)$
D. Domain $=[1, \infty)$, Range $=[0, \infty]$

Answer: C

- Watch Video Solution

167. Find the domain of the function $f(x)=\frac{x^{2}+3 x+5}{x^{2}-5 x+4}$
A. $\mathrm{R}-(3,-2)$
B. R-(-3, 2)
C. $\mathrm{R}-[3,-2]$
D. $\mathrm{R}-(3,-2)$

Answer: A

168. The domain and range of the function f given by :
$f(x)=2-|x-5|$ is:
A. Domain $=R^{+}, \operatorname{Ran} \geq=(-\infty, 1]$
B. Domain = R, Range $=(-\infty, 2]$
C. Domain = R, Range $=(-\mathrm{oo}, 2]$
D. Domain $=R^{+}, \operatorname{Ran} \geq=(-\infty, 2]$

Answer: B

- Watch Video Solution

169. The domain for which the function defined by $f(x)=3 x^{2}-1$ and $g(x)=3+x$ are equal is
A. 1) $\left\{-1, \frac{4}{3}\right\}$
в. 2) $\left\{-1,-\frac{4}{3}\right\}$
C. 3) $\left\{1,-\frac{4}{3}\right\}$
D. 4) $\left\{1,-\frac{4}{3}\right\}$

Answer: A

- Watch Video Solution

170. Let $f: R \rightarrow R$ be defined by $f(x)=\frac{1}{x} \forall x \in R$, then f is
A. one-one
B. onto
C. bijective
D. f is not defined

Answer: D

- Watch Video Solution

171. Let $f: R \rightarrow R$ be defined by $f(x)=3 x^{2}-5$ and $g: R \rightarrow R$ by $g(x)=\frac{x}{x^{2}+1} \times$ Then gof is
A. 1) $\frac{3 x^{2}-5}{9 x^{4}-30 x^{2}+26}$
B. 2) $\frac{3 x^{2}-5}{9 x^{4}-6 x^{2}+26}$
C. 3) $\frac{3 x^{2}}{x^{4}+2 x^{2}-4}$
D. 4) $\frac{3 x^{2}}{9 x^{4}+30 x^{2}-2}$

Answer: A

- Watch Video Solution

172. Which of the following functions from Z into Z is a bijection?
A. 1) $f(x)=x^{3}$
B. 2) $f(x)=x+2$
C. 3) $f(x)=2 x+1$
D. 4) $f(x)=x^{2}+1$

D Watch Video Solution

173. Let $f: R \rightarrow R$ be a function defined by $f(x)=x^{3}+5$. Then $f^{-1}(x)$ is
A. $(x+5)^{\frac{1}{3}}$
B. $(x-5)^{\frac{1}{3}}$
C. $(5-x)^{\frac{1}{3}}$
D. $5-x$

Answer: B

- Watch Video Solution

174. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be the bijective funtions. Then $(g o f)^{-1}$ is
A. 1. $f^{-1} o g^{-1}$
B. 2.fog
C. $3 . g^{-1} o f^{-1}$
D. 4.gof

Answer: A

- Watch Video Solution

175. If $f(x)=\frac{3 x+2}{5 x-3}$, then :
A. $f^{-1}(x)=f(x)$
B. $f^{-1}(x)=-f(x)$
C. (fof) $x=-x$
D. $f^{-1}(x)=\frac{1}{19} f(x)$

Answer: A

176. Let, $f:[0,1] \rightarrow[0,1]$ be defined by
$f(x)=\left\{\begin{array}{ll}x & \text { if } x \text { is rational } \\ 1-x & \text { if } \quad x \text { isirrational }\end{array}\right.$ Then (fof) x is
A. 1)constant
B. 2) $1+x$
C. 3) x
D. 4)none of these

Answer: C

- Watch Video Solution

177. Let $f:[2, \infty) \rightarrow R$ be the function defined by $f(x)=x^{2}-4 x+5$.

Then the range of f is
A. 1)R
B. 2) $[1, \infty)$
C. 3) $[4, \infty)$
D. 4) $[5, \infty)$

Answer: B

- Watch Video Solution

178. Let, $f: N \rightarrow R$ be the function defined by $f(x)=\frac{2 x-1}{2}$ and $g: Q \rightarrow R$ be another function defined by $g(x)=x+2$ Then $\operatorname{gof}\left(\frac{3}{2}\right)$ is
A. 1) 1
B. 2)3
C. 3) $\frac{7}{2}$
D. 4)none of these

Answer: D

179. Let $\mathrm{f}: R \rightarrow R$ be defined by $f(x)= \begin{cases}2 x & x>3 \\ x^{2} & 1<x \leq 3 \\ 2 x & x \leq 1\end{cases}$

Then $f(-1)+f(2)+f(4)$ is
A. 9
B. 14
C. 5
D. none of these

Answer: A

- Watch Video Solution

180. Let, $f: R \rightarrow R$ be given by $f(x)=\tan x$. Then $f^{-1}(1)=$
A. $\frac{\pi}{4}$
B. $\left\{n \pi+\frac{\pi}{4}: n \in Z\right\}$
C. does not exist
D. none of these

Answer: B

- Watch Video Solution

181. If a set has n elements then the total number of subsets of A is
A. n
B. n^{2}
C. 2^{n}
D. $2 n$

Answer: C

182. The number of non empty subsets of the set $\{1,2,3,4\}$ is
A. 15
B. 14
C. 16
D. 17

Answer: A

- Watch Video Solution

183. If $A=\{1,2,3,4,5\}$, then the number of proper subsets of A is
A. 120
B. 30
C. 31
D. 32

Answer: C

- Watch Video Solution

184. Sets A and B have 3 and 6 elements respectively. What can be the minimum number of elements in $A \cup B$?
A. 3
B. 6
C. 9
D. 18

Answer: B

- Watch Video Solution

185. If the sets A has p elements, B has q elements, then number of elements is $A \times B$ is
A. $p+q$
B. $p+q+1$
C. pq
D. p^{2}

Answer: C

- Watch Video Solution

186. If $A=\{a, b, c\}, B=\{b, c, d\}$ and $C=\{a, d, c\}$, then $(A-B) \times(B \cap C)=$
A. $\{(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d})\}$
B. $\{(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{d})\}$
C. $\{(a, c),(a, d),(b, d)\}$
D. $\{(c, a),(d, a)\}$
187. If A, B and C be three sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$, then :
A. $A=B$
B. $B=C$
C. $A=C$
D. $A=B=C$

Answer: B

- Watch Video Solution

188. Let $R=\{(1,3),(4,2),(2,4),(2,3),(3,1)\}$ be a relation on the set $A=\{1,2,3$,

4\}. The relation R is :
A. not symmetric
B. transitive
C. a function
D. reflection

Answer: A

D Watch Video Solution

189. Let W denote the words in the English dictionary. Define the relation R by:
$R=\{(x, y) \in W \times W$, the words x and y have at least one letter in common \}

Then R is :
A. reflexive, not symmetric and transitive
B. 2.not reflexive, symmetric and transitive
C. reflexive, symmetric and not transitive
D. reflexive, symmetric and transitive

- Watch Video Solution

190. If $\mathrm{A}=\left\{x: x^{2}-5 x+6=0\right\}, \mathrm{B}=\{2,4\}, \mathrm{C}=\{4,5\}$, then $A \times(B \cap C)=$
A. $\{(2,4),(3,4)\}$
B. $\{(4,2),(4,3)\}$
C. $\{(2,4),(3,4),(4,4)\}$
D. $\{(2,2),(3,3),(4,4),(5,5)\}$

Answer: A

Watch Video Solution

191. If two sets A and B are having 99 elements in common, then the number of elements common to each of the sets $A \times B$ and $B \times A$ is :
A. 2^{99}
B. 99^{2}
C. 100
D. 18

Answer: B

- Watch Video Solution

192. Consider $n(U)=20, n(A)=12, n(B)=9, n(A \cap B)=4$, where U is the universal set, A and B are subsets of U , then $n\left((A \cup B)^{c}\right)=$
A. 17
B. 9
C. 11
D. 3
193. A class has 175 students. The following data shows the number of students obtaining one or more subjects . Mathematics 100 , Physics 70 , Chemistry 40 , Mathematics and Physics 30 , Mathematics and Chemistry 28 , Physics and Chemistry 23 , Mathematics, Physics and Chemistry 18. How many students have offered Mathematics alone?
A. 35
B. 48
C. 60
D. 22

Answer: C

- Watch Video Solution

194. In a city 20 percent of the population travels by car, 50 per cent travels by bus and 10 percent travels by both car and bus. Then persons travelling by car or bus is :
A. 80 percent
B. 40 percent
C. 60 percent
D. 70 percent

Answer: C

- Watch Video Solution

195. If A and B are not disjoint sets, then $n(A \cup B)=$
A. 1. $n(A)+n(B)$
B. $2 . n(A)+n(B)-n(A \cap B)$
C. $3 . \mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})+\mathrm{n}(\mathrm{A} n \mathrm{n} B)$
D. $4 . n(A) . n(B)$

Answer: B

- Watch Video Solution

196. In a college of 300 students, every student reads 5 newspapers and every newspaper is read by 60 students. The number of newspaper is :
A. atleast 30
B. atmost 20
C. exactly 25
D. none of these

Answer: C

197. Two finite sets have m and n elements. The number of subsets of the first set is 112 more than that of the second set. The values of m and n are , respectively:
A. 7,6
B. 6,3
C. 6,4
D. 3,4

Answer:

- Watch Video Solution

198. If $f(x)=\left(a-x^{n}\right)^{\frac{1}{n}}$, then $f(f(x))=$
A. 1.x
B. 2. $a-x$
C. $3 . x^{n}$
D. $4 \cdot \frac{x^{1}}{n}$

Answer: A

- Watch Video Solution

199. If $f:(R) \rightarrow(R)$ and $g(R) \rightarrow(R)$ defined by $f(x)=2 x+3$ and $g(x)=x^{2}+7$,then the values of x such that $g(f(x))=8$ are
A. 1)1,2
B. 2)-3
C. 3)-3
D. 4)-1,-2

Answer: C

200. If $f(x)=2 x^{2}+x+1$ and $g(x)=3 x+1$ then $f o g(2)$
A. 1) 34
B. 2) 33
C. 3)106
D. 4) 105

Answer: C

- Watch Video Solution

201. Two functions $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=\{(0, x$ rational $)(1, x$ irrational $), g(x)=\{(-1, x$ rational $)(0, x i$ then $g o f e+\operatorname{fog}(\pi)$
A. $a,-1$
B. b. 0
C. c. 1
D. d. 2

Answer: A

- Watch Video Solution

202. If $f(x)=\left(25-x^{4}\right)^{\frac{1}{4}} f$ or $\left.0<x<\sqrt{5}\right)$, then
$f(f((1) /(2)))^{\prime}=$
A. 2^{-4}
B. 2^{-3}
C. 2^{-2}
D. 2^{-1}

Answer: D
203. If $x \neq 1$ and $f(x)=\frac{x+1}{x-1}$ is a real function then $f(f(f(2)))$ is
A. a) 1
B. b) 2
C. c) 3
D. d) 4

Answer: C

- Watch Video Solution

204. If $\mathrm{f}(\mathrm{x})=\frac{2 x+1}{3 x-2}$, then $f o f(2)$ is equal to
A. 1) 1
B. 2)3
C. 3)4
D. 4)2

Answer: D

- Watch Video Solution

205. Ifthefunctions f, g, harede $f \in$ edomthesetsofreal \ln mbers R to R sucht^
$f(x)=x^{\wedge}(2)-1 \quad g(x)=\operatorname{sqrt}\left(x^{\wedge}(2)+1\right), h(x)=\{(0$, if le 0$)$, (if x ge 0$\left.):\right\}$ thenthecompositionfunction(hofog) $(x)=$
A. $\left\{(0, x=0),\left(x^{\wedge} 2, x g t 0\right),\left(-x^{\wedge} 2, x \mid t 0\right):\right\}$
B. $\left\{\left((0, x=0),\left(x^{\wedge} 2, x n e 0\right):\right\}\right.$
C. $\left\{(0, x l e 0),\left(x^{\wedge} 2, x g e 0\right):\right\}$
D. none of these

Answer: B

D View Text Solution

206. If $f:(R) \rightarrow(R)$ and $g(R) \rightarrow(R)$ defined by $f(x)=2 x+3$ and $g(x)=x^{2}+7$,then the values of x such that $g(f(x))=8$ are
A. ± 1
B. ± 1
C. ± 3
D. ± 4

Answer: B

- Watch Video Solution

207. Let $g(x)=1+x-[x]$ and $f(x)=\left\{\begin{array}{l}-1, x<0 \\ 0, x=0 \\ 1, x>0\end{array}\right.$

Then for all $\mathrm{x}, \mathrm{f}(\mathrm{g}(\mathrm{x}))$ is equal to :
A. x
B.
C. $f(x)$
D. $g(x)$

Answer: B

- Watch Video Solution

208. If $g(f(x))=|\sin x|$ and $f(g(x))=(\sin \sqrt{x})^{2}$ then
A. $f(x)=\sin ^{2} x, g(x)=\sqrt{x}$
B. $f(x)=\sin x, g(x)=|x|$
C. $f(x)=x^{2}, g(x)=\sin \sqrt{x}$
D. f and g cannot be determined

Answer: A

D Watch Video Solution

209. Prove that $\cos ^{2} x+\cos ^{2}\left(x+\frac{\pi}{3}+\cos ^{2}\left(x-\frac{\pi}{3}\right)=\frac{3}{2}\right.$.
A. 0
B. $\frac{3}{4}$
C. 1
D. $\frac{4}{3}$

Answer: B

- Watch Video Solution

210. If $e^{f(x)}=\frac{10+x}{10-x}, x \in(-10,10)$ and
$f(x)=k f\left(\frac{200 x}{100+x^{2}}\right)$, then $\mathrm{k}=`$
A. 0.5
B. 0.6
C. 0.7
D. 0.8

Answer: A

- Watch Video Solution

211. Let $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}, x \neq 0$, then $f(x)=$
A. x^{2}
B. $x^{2}-1$
C. $x^{2}-2$
D. $x^{2}+1$

Answer: C

- Watch Video Solution

212. If $f(x)=\frac{1}{\sqrt{x+2 \sqrt{2 x-4}}}+\frac{1}{\sqrt{x-2 \sqrt{2 x-4}}}$, for $x>2$, then $f(11)={ }^{\prime}$
A. $\frac{7}{6}$
B. $\frac{5}{6}$
C. $\frac{6}{7}$
D. $\frac{5}{7}$

Answer: C

- Watch Video Solution

213. Let $X=\{1,2,3,4\}$, then one-one onto mappings $f: X \rightarrow X$ such that $f(1)=1, f(2) \neq 2$ and $f(4) \neq 4$ are given by:
A. $\{(1,1),(2,3),(3,4),(4,2)\}$
B. $\{(1,2),(2,1),(3,3),(1,2)\}$
C. $\{(1,2),(2,4),(3,2),(4,3)\}$
D. none of these

Answer: A

- Watch Video Solution

214. Let, $f: R \rightarrow R$ be given by $f(x)=(x+1)^{2}-1, x \geq-1$. Then the set of values of x for which $f(x)=f^{-1}(x)$ is given by
A. 1) $\{0\}$
B. 2) $\{0,-1\}$
C. 3) $\{-1\}$
D. 4)none of these

Answer: B
215. Let $f: R \rightarrow R$ be given by $f(x)=(x+1)^{2}-1, x \geq-1$. Then $f^{-1}(x)=$
A. $-1+\sqrt{x+1}$
B. $-1-\sqrt{x+1}$
C. does not exist as f is not one-one
D. does not exist as f is not onto

Answer: A

- Watch Video Solution

216. Suppose $f(x)=(x+1)^{2}$ for $x \geq-1$. If $\mathrm{g}(\mathrm{x})$ is the function whose graph is reflection of the graph of $\mathrm{f}(\mathrm{x})$ with respect to the line $y=x$, then $g(x)$ equals :
A. $-\sqrt{x}-1$
B. $\frac{1}{(x+1)^{2}}, x>-1$
C. $\sqrt{x+1}, x \geq-1$
D. $\sqrt{x}-1, x \geq 0$

Answer: D

- Watch Video Solution

217. Let $f: R \rightarrow R$ be defined by $f(x)=2 x+|x|$ then $f(2 x)+f(-x)-f(x)=$
A. a. $2 x$
B. b. $2|x|$
C. c. -2 x
D. d. $-2|x|$

Answer: B

218. If $f:[1, \infty) \rightarrow[1, \infty)$ is given by $f(x)=x+\frac{1}{x}$, then $f^{-1}(x)$ equals :
A. $\left(\frac{1}{2}\right)^{x(x-1)}$
B. $\frac{1}{2}\left(1+\sqrt{1+\log _{2} x}\right)$
C. $\left(\frac{1}{2}\right)\left(1-\sqrt{1+4 \log _{2} x}\right)$
D. not defined

Answer: B

- Watch Video Solution

219. If $f:[1, \infty) \rightarrow[2, \infty)$ is given by $f(x)=x+\frac{1}{x}$, then $f^{-1}(x)$ equals :
A. $\frac{x+\sqrt{x^{2}-4}}{2}$
B. $\frac{x}{1+x^{2}}$
C. $\frac{x-\sqrt{x^{2}-4}}{2}$
D. $1+\sqrt{x^{2}-4}$

Answer: A

- Watch Video Solution

220. Let $f(\theta)=\sin \theta(\sin \theta+\sin 3 \theta)$ then $f(\theta)$:
A. ≥ 0 only when $\theta \geq 0$
B. ≤ 0 for all θ
C. ≥ 0 for all real θ
D. ≤ 0 only when $\theta \leq 0$

Answer: C

- Watch Video Solution

221. If $f(x)=3 x-5$, then $f^{-1}(x)=$
A. a. $\frac{1}{3 x-5}$.
B. . $\frac{x+5}{3}$
C. c.does.not exist because f is not one-one
D. d. does not exist because f is not onto

Answer: B

- Watch Video Solution

222. If $f(1)=1$ and $f(n+1)=2 f(n)+1$, then $f(n)$ is
A. A. 2^{n+1}
B. B. 2^{n}
C. C. $2^{n}-1$
D. D. $2^{n-1}-1$

Answer: C

223. If $f(x)=\alpha x^{2}+b x+c$, then the values of a and b for which the identity $f(x+1)-f(x)=8 x+3$ is satisfied are
A. $1 . a=1 b=4$
B. $2 . a=1 b=-4$
C. $3 . a=4 b=1$
D. $4 . a=4 b=-1$

Answer: D

- Watch Video Solution

224. If $f(x)=1+\alpha x, \alpha \neq 0$ is the inverse of itself, then the value of α is :
A. -2
B. -1
C. 0
D. 2

Answer: B

- Watch Video Solution

225. Let $f:[0.1] \rightarrow[0,1]$ and $g:[0,1] \rightarrow[0,1]$ be two functions defined by $f(x)=\frac{1-x}{1+x}$ and $g(x)=4 x(1-x)$, then f. og $(x)=$
A. a. $\frac{8 x(1-x)}{(1+x)^{2}}$
B. b. $\frac{4(1-x)}{1+x}$
C. c. $\frac{1-4 x+4 x^{2}}{1+4 x-4 x^{2}}$
D. d. $n o \neq$ ofthese

Answer: C

- Watch Video Solution

226. If $f: R \rightarrow R \quad$ satisfies $\quad f(x+y)=f(x)+f(y) \quad$ for \quad all $x, y \in R$ and $f(1)=7$, then $\sum_{r=1}^{n} f(r)$ is :
A. $\frac{7 n(n+1)}{2}$
B. $-\frac{7 n}{2}$
C. $\frac{7(n+1)}{2}$
D. $7 n(n+1)$

Answer: A

Watch Video Solution

227. If $f(x)=\sin ^{-1}\left(\log _{2}\left(\frac{x^{2}}{2}\right)\right)$, then thedomain of the function is`
A. a. $[-2,-1] \cup[1,2]$
B. b. $[1,2] \cup(-2,-1]$
C. c. $[-2,-1] \cup(-1,2]$
D. d. $[-2,-1] \cup(-1,2]$

D Watch Video Solution

228. The domain of the function
$y=\sqrt{x-2}+\sqrt{1-x}$ is
A. $[1, \infty)$
B. $(-\infty, 6)$
C. $[1,6]$
D. $(-\infty, 6]$

Answer: C

- Watch Video Solution

229. The domain of the function $f(x)=\frac{1}{\sqrt{|x|-x}}$ is :
A. $[0, \infty)$
B. $(-\infty, 0)$
C. $(-\infty, 0]$
D. $[1, \infty)$

Answer: B

- Watch Video Solution

230. The domain of the function : $f(x)=\log _{2}\left[\log _{3}\left[\log _{4} x\right]\right]$ is :
A. $x<4$
B. $x>4$
C. $0<x<2$
D. $2<x<4$

Answer: B

231. The domain of the function $f(x)=\sqrt{\log _{0.5} x}$ is :
A. $(0,1]$
B. $(0, \infty)$
C. $(0.5, \infty)$
D. $[1, \infty)$

Answer: A

- Watch Video Solution

232. The domain of the function $f(x)=\sqrt{\log _{0.5} x}$ is:
A. $x \geq 0$
B. $|x| \geq 1$
C. $|x| \leq 1$
D. $|x| \geq 4$

Answer: B

- Watch Video Solution

233. The domain of the definition of the function $y(x)$ given by the equation $2^{x}+2^{y}=2$ is:
A. $0<x<1$
B. $0 \leq x_{n} \leq 1$
C. $-\infty<x<0$
D. $-\infty<x<1$

Answer: D
234. The domain of definition of $f(x)=\frac{\log _{2}(x+3)}{x^{2}+3 x+2}$ is:
A. $R-(-1,-2)$
B. $(-2, \infty)$
C. $R-(-1,-2,-3)$
D. $(-3, \infty)-(-1,-2)$

Answer: D

- Watch Video Solution

235. Range of the function $f(x)=\frac{x^{2}+x+2}{x^{2}+x+1}, x \in R$ is:
A. $R-\left(-\frac{1}{2}, 1\right)$
B. R
C. $R-(1)$
D. none of these

D Watch Video Solution

236. Domain of $\sin ^{-1}\left(\frac{2 x+1}{3}\right)$ is
A. 1$)(-2,1)$
B. 2) $[-2,1]$
C. 3)R
D. 4) $[-1,1]$

Answer: B

- Watch Video Solution

237. Range of the function $f(x)=\frac{x^{2}+x+2}{x^{2}+x+1}, x \in R$ is:
A. $(3,5)$
B. $[1,3]$
C. $\left[1, \frac{7}{5}\right]$
D. $\left(1, \frac{7}{3}\right]$

Answer: D

- Watch Video Solution

238. The natural domain of the function $\sqrt{\sin ^{-1}(2 x)+\frac{\pi}{6}}, x \in R$ is:
A. $\left[-(1)(4), \frac{1}{2}\right]$
B. $\left[-(1)(4), \frac{1}{4}\right]$
C. $\left[-(1)(2), \frac{1}{2}\right]$
D. $\left[-(1)(2), \frac{1}{4}\right]$

Answer: A

- Watch Video Solution

239. Domain of definition of the function :
$f(x)=\frac{3}{4-x^{2}}+\log _{10}\left(x^{3}-x\right)$ is :
A. $(-1,0) \cup(1,2) \cup(2, \infty)$
B. $(1,2)$
C. $(-1,0) \cup(1,2)$
D. $(1,2) \cup(2, \infty)$

Answer: A

- Watch Video Solution

240. The range of the function : $f(x)={ }^{7-x} P_{x-3}$ is:
A. $(1,2,3,4)$
B. $(1,2,3,4,5,6)$
C. $(1,2,3)$
D. $(1,2,3,4)$

- Watch Video Solution

241. The domain of the function : $f(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^{2}}}$ is :
A. $(1,2)$
B. $[2,3]$
C. $[2,3]$
D. [1,2]

Answer: B

- Watch Video Solution

242. Which of the following functions is an even function:
A. $f(x)=\frac{a^{x}+a^{-x}}{a^{x}-a^{-x}}$
B. $f(x)=\frac{a^{x}+1}{a^{x}-1}$
C. $f(x)=x\left(\frac{a^{x}-1}{a^{x}+1}\right)$
D. $f(x)=\log _{2}\left(x+\sqrt{x^{2}+1}\right)$

Answer: C

- Watch Video Solution

243. If the real valued function $f(x)=\frac{a^{x}-1}{x^{n}\left(a^{x}+1\right)}$ is even then n equals
A. 2
B. $\frac{2}{3}$
C. $\frac{1}{4}$
D. $-\frac{1}{3}$

Answer: D

- Watch Video Solution

244. If $f(x)$ is an odd periodic function with period 2 then $f(4)=$
A. 0
B. 2
C. 4
D. -4

Answer: A

Watch Video Solution

245. The function $f: X \rightarrow Y$ defined by $f(x)=\sin x$ is one-one but not onto, if X and Y are respectively equal to
A. 1) $[0, \pi]$ and $[0,1]$
B. 2) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $[-1,1]$
C. 3) $\left[0, \frac{\pi}{2}\right]$ and $[-1,1]$
D. 4) R and R

- Watch Video Solution

246. Let the function $g:(-\infty, \infty) \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ be given by $g(u)=2 \tan ^{-1}\left(e^{u}\right)-\frac{\pi}{2}$. Then g is :
A. 1: onto but not one-one
B. 2: one-one but not onto
C. 3: one-one and onto
D. 4: neither one-one nor onto

Answer: C

D Watch Video Solution

247. Let X and Y be subsets of R, the set of all real numbers. The function $f: X \rightarrow Y$,
defined by $f(x)=x^{2} f$ or $x \in X$, is one-one but not onto if (Here R^{+}is the set of all +ve real numbers)
A. $X=Y=R^{+}$
B. $X=R, Y=R^{+}$
C. $X=R^{+}, Y=R$
D. $X=Y=R$

Answer: C

- Watch Video Solution

248. Function $f: R \rightarrow R$, defined by $f(x)=x^{2}+x$ is
A. one-one, onto
B. one-one, into
C. many one, onto
D. many one, into

D View Text Solution

249. Which one of the following is the bijective function on the set of real numbers
A. 1) $2 x-5$
B. 2) $[\mathrm{x}]$
C. 3) x^{2}
D. 4) $x^{2}+1$

Answer: A

D Watch Video Solution

250. Which of the following functions is not periodic ?
A. $|\sin 3 x|+\sin ^{2} x$
B. $\cos \sqrt{x}+\cos ^{2} x$
C. $\cos 4 x+\tan ^{2} x$
D. $\cos 2 x+\sin x$

Answer: B

- Watch Video Solution

251. If $f(x)=\log \left(\frac{1+x}{1-x}\right)$, then
A. 1) $f(x)$ is even
B. 2) $f\left(x_{1}\right) \cdot f\left(x_{2}\right)=f\left(x_{1}+x_{2}\right)$
C. 3) $\frac{f\left(x_{1}\right)}{f\left(x_{2}\right)}=f\left(x_{1}+x_{2}\right)$
D. 4) $f(x) i s o d d$

Answer: D

252. Let function $f: R \rightarrow R$ be defined by $f(x)=2 x+\sin x$ for $x \in R$. Then f is :
A. one-one and onto
B. one-one but not onto
C. onto but not one-one
D. neither one-one nor onto

Answer: A

- Watch Video Solution

253. A function $f:[0, \infty) \rightarrow[0, \infty)$ defined as $f(x)=\frac{x}{1+x}$ is :
A. one-one and onto
B. one-one but not onto
C. onto but not one-one
D. neither one-one nor onto

Answer: B

- Watch Video Solution

254. The function $f(x)=\log \left(x+\sqrt{x^{2}+1}\right)$ is:
A. neither an even nor an odd function
B. an even function
C. an odd function
D. a periodic function

Answer: C

- Watch Video Solution

255. A function f from the set of natural numbers to integers defined by: $f(n)=\left[\begin{array}{l}\frac{n-1}{2}, \text { when } \mathrm{n} \text { is odd } \\ -\frac{n}{2}, \text { when } \mathrm{n} \text { is even }\end{array}\right.$
A. neither one-one nor onto
B. one-one but not onto
C. onto but not one-one
D. both one-one and onto

Answer: D

- Watch Video Solution

256. Let R be the set of all real numbers. A relation R has been defined on R by $\mathrm{aRb} \Leftrightarrow|a-b| \leq 1$, then R is
A. reflexive and symmetric
B. symmetric only
C. transitive only
D. anti symmetric

Answer: A

- Watch Video Solution

257. If $f=R \rightarrow R$ is defined by $f(x)=|x|$, then,
A. $f^{-1}(x)=\frac{1}{|x|}$
B. $f^{-1}(x)=-x$
C. $f^{-1}(x)=\frac{1}{x}$
D. $f^{-1}(x)$ does not exist(

Answer: D

- Watch Video Solution

258. A set A has 5 element. Then the maximum number of relations on A (including empty relation) is
A. 5
B. 2^{5}
C. 2^{25}
D. 25

Answer: C

- Watch Video Solution

259. If $f: R \rightarrow R$ is defined by $f(x)=x^{3}$ then $f^{-1}(8)=$
A. $\left(2,2 w, 2 w^{2}\right)$
B. (2)
C. $(2,2)$
D. $(2,-2)$

D Watch Video Solution

260. R is a relation on N given by $R=\{(x, y) \mid 4 x+3 y=20\}$. Which of the following belongs to R?
A. $(5,0)$
B. $(-4,12) c(2,4)$
C. $(2,4)$
D. $(3,4)$

Answer: C

- Watch Video Solution

261. On the set Z of all integers define $f: Z-(0) \rightarrow Z$ as follows
$f(n)=\left\{\begin{array}{ll}\frac{n}{2} & n \text { is even } \\ \frac{2}{0} & n \text { is odd }\end{array}\right.$ then f is
A. surjective but not injective
B. bijective
C. injective but not surjective
D. neither injective nor surjective

Answer: A

- Watch Video Solution

262. Define a relation R on $A=\{1,2,3,4\}$ as $x R y$ iff x divides y. Then R is :
A. Reflexive and transitive
B. Reflexive and symmetric
C. Symmetric and transitive
D. Equivalence

Answer: A

263. Let R be an equivalence relation defined on a set containing 6 elements. The minimum number of ordered pairs that R should contain is
A. 36
B. 64
C. 6
D. 12

Answer: C

- Watch Video Solution

264. The range of the function $f(x)=\sin [x],-\frac{x}{4}<x<\frac{x}{4}$ where [x] denotes the greatest integer $\leq x$, is
A. 0
B. (0,-1)
C. $(0, \pm \sin 1)$
D. $(0,-\sin 1)$

Answer: D

- Watch Video Solution

265. The value of $\alpha(\neq 0)$ for which the function $f(x)=1+\alpha x$ is the inverse of itself is :
A. -2
B. 2
C. -1
D. 1

Answer: C

266. The number of one-one and onto mapping from A to B, where $n(A)=6$ and $n(B)=7$ is:
A. 1000
B. 42
C. 13
D. 0

Answer: D

- Watch Video Solution

267. If $f(x)=\frac{3 x+2}{5 x-3}$, then :
A. $f^{-1}(x)=f(x)$
B. $f^{-1}(x)=-f(x)$
C. $f^{-1}(f(x))=-x$
D. $f^{-1}(x)=\frac{1}{19} f(x)$

- Watch Video Solution

268. If $f: R \rightarrow S$ defined by : $f(x)=\sin x-\sqrt{3} \cos x+1$, is onto, then the interval of S is :
A. [0,1]
B. $[-1,1]$
C. $[0,3]$
D. $[-1,3]$

Answer: D

- Watch Video Solution

269. Let $f:(-1,1) \rightarrow B$ be a function defined by :
$f(x)=\tan ^{-1} \frac{2 x}{1-x^{2}}$,
then f is both one-one and onto when B is the interval :
A. $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
B. $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right)$
C. $\left[0, \frac{\dot{\pi}}{2}\right)$
D. $\left(0, \frac{\pi}{2}\right)$

Answer: A

- Watch Video Solution

270. If A, B and C be three sets such that $A \cup B=A \cup C$ and $A \cap B=A \cap C$, then :
A. $A=B$
B. $B=C$
C. $A=C$
D. $A=B=C$

- Watch Video Solution

271. For real x , let $f(x)=x^{3}+5 x+1$, then :
A. f is neither one-one nor onto on R
B. f is one-one but not onto on R
C. f is onto on R but not one-one on R
D. f is one-one and onto on boldsymbol (R)

Answer: D

- Watch Video Solution

272. The domain of the function $f(x)=\frac{1}{\sqrt{|x|-x}}$ is :

$$
\text { A. }(-\infty, \infty)-(0)
$$

B. $(-\infty, \infty)$
C. $(0, \infty)$
D. $(-\infty, 0)$

Answer: D

- Watch Video Solution

273. Let $g(x)=1+x-[x]$ and $f(x)=\left\{\begin{array}{l}-1, x<0 \\ 0, x=0 \\ 1, x>0\end{array}\right.$

Then for all $\mathrm{x}, \mathrm{f}(\mathrm{g}(\mathrm{x}))$ is equal to :
A. x
B. 1
C. $f(x)$
D. $g(x)$

Answer: B

274. Let $f(x)=\frac{\alpha x}{x+1}, x \neq 0$, then for what value of α is $f[f(x)]=x$?
A. $\sqrt{2}$
B. $-\sqrt{2}$
C. 1
D. -1

Answer: D

- Watch Video Solution

275. Suppose $f(x)=(x+1)^{2}$ for $x \geq-1$. If $\mathrm{g}(\mathrm{x})$ is the function whose graph is reflection of the graph of $\mathrm{f}(\mathrm{x})$ with respect to the line $y=x$, then $g(x)$ equals :

$$
\text { A. }-\sqrt{x}-1, x \geq 0
$$

B. $\frac{1}{(x+1)^{2}}, x>-1$
C. $\sqrt{x+1}, x \geq-1$
D. $\sqrt{x}-1, x \geq 0$

Answer: D

- Watch Video Solution

276.

 then $f-g$ is
A. 1)one-one and into
B. 2) neither one-one nor onto
C. 3)many one and onto
D. 4)one-one and onto

Answer: D

277. Let, $f:(0,1) \rightarrow R$ be defined by
$f(x)=\frac{b-x}{1-b x}$ where b is a constant such that $0<b<1$. Then,
A. f is not invertible on $(0,1)$
B. $f \neq f^{-1}$ on $(0,1)$ and $f^{\prime}(b)=\frac{1}{f^{\prime}(0)}$
C. $f=f^{-1}$ on $(0,1)$ and $f^{\prime}(b)=\frac{1}{f^{\prime}(0)}$
D. $f^{-1} i s d \Leftrightarrow$ erentiab $\leq o n(0,1)$

Answer: A

- Watch Video Solution

278. Which of the following is $(A-B) \cup(B-A)$
A. $(A \cup B) \cup(A-B)$
B. $(A \cup B) \cup(A \cap B)$
C. $(A \cup B)-(A \cap B)$
D. $(A-B) \cap(B \cap A)$

Answer: C

- Watch Video Solution

279. If A and B are any two sets then $A \cap(A \cup B)^{\prime}=$
A. X
B. Y
C. ϕ
D. $X \cup Y$

Answer: C

280. Let $f: N \rightarrow N$ be defined by $f(x)=x^{2}+x+1$ then f is
A. one-one, onto
B. many one onto
C. one-one but not onto
D. onto but not one-one

Answer: C

- Watch Video Solution

281. The image of the interval $[-1,3]$ under the mapping $f: R \rightarrow R$ given by $f(x)=4 x^{3}-12 \mathrm{x}$ is
A. $[8,72]$
B. $[0,72]$
C. $[-8,72]$
D. $[0,8]$

- Watch Video Solution

282. The number of functions that can be formed from the set $A=\{a, b, c, d\}$ into the set $B=\{1,2,3\}$ is equal to`
A. 12
B. 24
C. 64
D. 81

Answer: D

D Watch Video Solution

283. Let $R=\{(3,3),(6,6),(9,9),(12,12),(6,12),(3,9),(3,12),(3,6)\}$ be a relation on the set $A=\{3,6,9,12\}$.

The relation is:
A. reflexive and symmetric
B. an equivalence relation
C. reflexive only
D. reflexive and transitive only

Answer: D

- Watch Video Solution

284. Let $Y=\{1,2,3,4,5\}, A=\{1,2\}, B=\{3,4,5\}$
and ϕ denotes the null set. If $A \times B$ denotes the Cartesian product of sets A and B then $(Y \times A) \cap(Y \times B)$ is
A. Y
B. A
C. B
D. ϕ

Answer: D

- Watch Video Solution

285. Let $A=\{2,3,4,5, \ldots, 17,18\}$. Let~ ' be the equivalence relation on A \times A, cartesian product of A with itself defined by (a.b) $\sim(c . d)$,iff $a d=b c$ then the number of ordered pairs of the equivalence class of $(3,2)$ is
A. a) 4
B. b)5
C. c) 6
D. d) 7

Answer: A

- Watch Video Solution

