©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - HIMALAYA MATHS (KANNADA ENGLISH)

THREE DIMENSIONAL GEOMETRY

Question Bank

1. The direction cosines of the line making angles $45^{\circ}, 30^{\circ}$ and
120° with the coordinate axes are
A. $\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}, \frac{1}{2}$
B. $\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2},-\frac{1}{2}$
C. $-\frac{1}{\sqrt{2}}, \frac{\sqrt{3}}{2}, \frac{1}{2}$
D. $\frac{1}{\sqrt{2}},-\frac{\sqrt{3}}{2},-\frac{1}{2}$

Answer: B

D View Text Solution

2. The direction cosines of the line making angles $135^{\circ}, 1200^{\circ}$ and 30° with the coordinate axes are
A. $-\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{\sqrt{2}}{2}$
B. $-\frac{1}{\sqrt{2}},-\frac{1}{2},-\frac{\sqrt{2}}{2}$
C. $-\frac{1}{\sqrt{2}},-\frac{1}{2}, \frac{\sqrt{2}}{2}$
D. $\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{\sqrt{2}}{2}$

Answer: C

3. The direction cosines of a line are $1 / 2,1 / 2, \mathrm{k}$ and $k>0$, then k
$=$
A. 44228
B. $\frac{1}{\sqrt{2}}$
C. 1
D. 44256

Answer: C

- View Text Solution

4. The direction ratios of a line are $1,-1,0$ then the angle of inclination of the linw with y-axis is
A. $\frac{3 \pi}{4}$
B. $-\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $-\frac{\pi}{6}$

Answer: A

D View Text Solution

5. The direction cosines of the line joining $A(2,-3,1)$ and $B(3,-1,2)$ are
A. $/ 1 \sqrt{6}, \frac{-2}{\sqrt{6}}, \frac{1}{\sqrt{3}}$
B. $2 /$ sqrt6,-3/sqrt6,1/sqrt6
C. $\frac{3}{\sqrt{6}},-\frac{3}{\sqrt{6}}, \frac{2}{\sqrt{6}}$
D. $\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}$

Answer: D

- View Text Solution

6. Angle between the lines whose direction ratios are $3,4,5$ and $2,2,1$ is
A. 45°
B. 60°
C. $\left(\cos ^{-1}\right) \frac{\sqrt{3}}{4}$
D. $\left(\cos ^{-1}\right) \frac{2}{3}$

Answer: A

D View Text Solution
7. The angle between the lines whose direction ratios are $1,-2,1$ and $4,3,2$ is
А. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. $\frac{2 \pi}{3}$

Answer: C

D View Text Solution
8. The points $(6,-1,2),(5,2,4)$ and $(8,-7, k)$ are collinear, then $k=$
A. 2
B. 3
C. -2
D. 1

Answer: C

- Watch Video Solution

9. The acute angle between the lines whose direction cosines are proportional to $3,-1,2$ and $2,1,-3$ is
A. $\left(\cos ^{-1}\right) \frac{2}{\sqrt{14}}$
B. $\left(\cos ^{-1}\right)-\frac{1}{14}$
C. $\left(\cos ^{-1}\right) \frac{\sqrt{3}}{\sqrt{14}}$
D. $\left(\cos ^{-1}\right) \frac{3}{\sqrt{14}}$

- Watch Video Solution

10. $\mathrm{l}=\mathrm{m}=\mathrm{n}=1$ represent direction cosines of
A. the line one unit from x-axis
B. the line one unit from y-axis
C. the line one unit from z-axis
D. no line

Answer: D

D Watch Video Solution

11. If a line lies in the octant $O X Y Z$ and it makes equal angles with the axes, then its d.c's are such that
A. $l=m=n=\frac{1}{\sqrt{3}}$
B. $l=m=n= \pm \frac{1}{\sqrt{3}}$
C. $l=m=n=-\frac{1}{\sqrt{3}}$
D. $l=m=n= \pm \frac{1}{\sqrt{2}}$

Answer: A

- Watch Video Solution

12. The direction cosines of the line joining ($4,3,-5$) and ($-2,1,-8$) are
A. 6/7,2/7,3/7
B. 2/7,3/7,6/7
C. 6/7,3/7,2/7
D. $-6 / 7,3 / 7,-2 / 7$

Answer: A

D Watch Video Solution

13. The coordinates of the point $P=(3,4,5)$, then the direction cosines of 'vec OP are
A. $3,4,5$
B. $1 / 3,1 / 4,1 / 5$
C. $3 / 50,4 / 50,1 / 10$
D. $\frac{3}{5 \sqrt{2}}, \frac{4}{5 \sqrt{2}}, \frac{1}{\sqrt{2}}$

- Watch Video Solution

14. A vector \vec{r} is inclined at equal angles to O X , OY and OZ. If the magnitude of \vec{r} is 6 units, then $\vec{r}=$
A. $2 \sqrt{3}(i+j+k)$
B. $-2 \sqrt{3}(i+j+k)$
C. $2 \sqrt{3}(-i+j+k)$
D. $2 \sqrt{3}(i-j+k)$

Answer: A

- Watch Video Solution

15. The direction cosines of a normal to the yz-plane are
A. $(0,0,1)$
B. $(1,0,0)$
C. $(0,1,0)$
D. $(1,1,0)$

Answer: B

- Watch Video Solution

16. If $(1 / 3,1 / 4, k)$ are the direction cosines of a line then the value of k is
A. 119/12
B. $\frac{\sqrt{119}}{12}$
C. 119/114
D. 44541

Answer: B

- Watch Video Solution

17. The direction ratios of $\vec{P} Q$ are $1,2,2$ and $\mathrm{P}(2,-1,4)$. If $|\vec{P} Q|=5$ units, the coordinates of Q are
A. $(11,7,22)$
B. $(11 / 3,7 / 3,22 / 3)$
C. $(11 / 5,7 / 5,22 / 5)$
D. $(11 / 2,-7,22 / 4)$
18. If the direction cosines of two lines are proportional to $2,3,-6$ and $3,-4,5$, then the acute angle between then
A. $\left(\cos ^{-1}\right)\left(\frac{49}{36}\right)$
B. ${ }^{\prime}\left(\cos ^{\wedge}(-1)\right)(18$ sqrt2 $) / 35$
C. 90°
D. $\left(\cos ^{-1}\right) \frac{18}{35}$

Answer: B

- Watch Video Solution

19. A line making anlges 45° and 60° with the positive direction of the axis of x and y makes with the positive direction of z axis
angle of
A. 30° or 150°
B. 60° or 120°
C. 45° or 135°
D. 90°

Answer: B

- Watch Video Solution

20. The distance of the point $(4,3,5)$ from the y-axis is
A. $\sqrt{34}$
B. 5
C. $\sqrt{41}$
D. $\sqrt{15}$

Answer: C

- Watch Video Solution

21. The distance of the point $A(2,3,4)$ from z-axis is
A. 5
B. $\sqrt{13}$
C. $2 \sqrt{5}$
D. $5 \sqrt{2}$

Answer: B

22. Coordinates of the foot of the perpendicular from the point
$(3,4,7)$ on y-axis is
A. $(3,0,0)$
B. $(0,4,0)$
C. $(0,0,7)$
D. $(0, \sqrt{5}, 0)$

Answer: B

- Watch Video Solution

23. If the points $(7,-2),(5,1)$ and $(3,5)$ are collinear. Find the value of k.
A. 1
B. minus 1
C. 2
D. minus 2

Answer: A

D Watch Video Solution

24. The points $A(4,5,1), B(0,-1,-1), C(3,9,4)$ and $D(-4,4,4)$ are
A. collinear
B. coplanar
C. non coplanar
D. non collinear and non coplanar
25. The direction cosines $\mathrm{I}, \mathrm{m}, \mathrm{n}$ of two lines are connected by the relation $\mathrm{I}+\mathrm{m}+\mathrm{n}=0$ and $\mathrm{I} . \mathrm{m}=0$ then the angle between them is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. 0

Answer: A

- Watch Video Solution

26. The ratio in which the line joining points $(2,4,5),(3,5,-4)$ is divided by yz-plane is :
A. 0.085416666666667
B. 0.12638888888889
C. minus $2: 3$
D. 4:-3

Answer: C

- Watch Video Solution

27. The projection of a line segment on x, y, z axes are respectively $\sqrt{2}, 5,3$. The length of the line segment is
A. 6
B. 11
C. 8
D. 5

Answer: A

D View Text Solution

28. If the projection of a line segment $P Q$ on the coordinate axes are $3,4,5$, then the length of the line segment is
A. $3 \sqrt{2}$
B. $7 \sqrt{2}$
C. $6 \sqrt{2}$
D. $5 \sqrt{2}$

- Watch Video Solution

29. If the projection a of a line segment PQ on the coordinate as are $2,3,6$, then its direction cosines are
A. 2/7,3/7,6/7
B. $-2 / 7,3 / 7,6 / 7$
C. $-2 / 7,-3 / 7,6 / 7$
D. 2/7, -3/7,-6/7

Answer: A

(D) Watch Video Solution
30. The projection of the line segment joining $P(2,-1,0)$ and $Q(3,-2,1)$ on the line whose direction ratios are $2,3,4$ is
A. $\frac{2}{\sqrt{29}}$
B. $\frac{3}{\sqrt{29}}$
C. $\frac{4}{\sqrt{29}}$
D. $\frac{1}{\sqrt{29}}$

Answer: B

- Watch Video Solution

31. The ratio in which the line joining $(3,4,-7)$ and $(4,2,1)$ is divided by xy -plane
A. 0.1428555555555555
B. 0.084027777777778
C. 0.29236111111111
D. 0.16875

Answer: C

- Watch Video Solution

32. The points $(3,4,-3)$ divides the line joining the points $(2,3,-1)$ and $(5,6,7)$ is
A. 2:3
B. $4: 3$
C. 1:2
D. 2:1

- Watch Video Solution

33. The area of triangle whose vertices are (1,2,3), (2,5,-1) and
$(-1,1,2)$ is
A. 150 sq. units
B. 145 sq. units
C. $\frac{\sqrt{155}}{2}$ sq. units
D. $\frac{155}{2}$ sq.units

Answer: C

- Watch Video Solution

34. If α, β, γ and δ be four angles of a cyclic qardrilateral, then the value of : $\cos \alpha+\cos \beta+\cos \gamma+\cos \delta$ is :
A. 44259
B. 44263
C. 44262
D. 1

Answer: B

- Watch Video Solution

35. The equation ${ }^{\wedge} x^{\wedge}(2)+y^{\wedge}(2)+z^{\wedge}(2)=0$ represents
A. a plane
B. pair of planes
C. a line
D. the origin

Answer: D

- Watch Video Solution

36. The equation $a \mathrm{x}+\mathrm{b} \mathrm{y}+\mathrm{c}=0$ represents a plane perpendicular to the
A. yz-plane
B. xy-plane
C. zx-plane
D. $a x+b y+d=0$
37. The equation of the line passing through the points ($4,-5,-2$) and $(-1,5,3)$ is
A. $(x-4) / 1=(y+5) /-2=(z+2) /-1$
B. $(x+4) / 1=(y-5) / 2=(z-3) /-1$
C. $x /-1=y / 5=z / 3$
D. $x / 4=y /-5=z /-2$

Answer: A

- Watch Video Solution

38. Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the
straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is:
A. $x-2 y-2 z+2=0$
B. $2 x+2 y-z+4=0$
C. $5 x-8 y-9 z+10=0$
D. $x+y-2=0$

Answer: C

- Watch Video Solution

39. Find the equation of the plane through the line of intersection of the
planes
$x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$.
A. $x-2 y-5 z=0$
B. $x-y-z=0$
C. $2 x-y+2 z=0$
D. $6 x-7 y-10 z=0$

Answer: D

D Watch Video Solution

40. The equation of the plane passing through ($1,-1,1$) and through the line of intersection of the planes, $x+2 y-3 z+1=0$ and $3 x-2 y+4 z+3=0$ is
A. $3 x-4 y+2 z-9=0$
B. $2 x-s y+z-6=0$
C. $7 x+6 y-8 z+7=0$
D. $7 x-6 y-8 z-5=0$

(D) Watch Video Solution

41. The equation of the plane through the points $(1,-1,0),(0,-2,1)$ and $(2,0,-3)$ is
A. $2 x+2 y-1=0$
B. $x+z-1=0$
C. $x-y-2=0$
D. $y+z+1=0$

Answer: C

- Watch Video Solution

42. Equation of the line passing through (1, 1,1) and perpendicular to $2 x+3 y+z=5$ is:
A. $2 x-4 y+3 z-12=0$
B. $2 x+4 y+3 z-4=0$
C. $2 x+4 y-3 z+8=0$
D. $2 x-4 y-3 z=0$

Answer: A

- Watch Video Solution

43. Equation of the plane through $\mathrm{P}(2,2,-3)$ and perpendicular to $O P$, where O is the origin, is
A. $2 x+2 y-3 z-17=0$
B. $2 x-2 y-3 z-9=0$
C. $2 x+2 y+3 z-11=0$
D. $2 x-2 y+3 z+9=0$

Answer: A

- Watch Video Solution

44. Equation of the plane through the points ($3,-1,2$) and $(2,1,3)$ and parallel to x -axis is
A. $y+2 z+5=0$
B. $x+y-5=0$
C. $y-2 z+5=0$
D. $2 x+y-5=0$

(D) Watch Video Solution

45. Equation of the plane passing through the points ($3,-1,2$) and
(2,2,-1) and parallel to the z-axis is
A. $2 x+z-1=0$
B. $3 x+y-8=0$
C. $3 x-z-7=0$
D. $3 x+z-7=0$

Answer: C

- Watch Video Solution

46. Write the direction cosines of x-axis.
A. $l x+m y+n z=1+2 m+3 n$
B. $(x-1) / l+(y-2) / m+(z-3) / n=0$
C. $l x+m y+n z=\sqrt{14}$
D. $(\mathrm{lx}) / 1+(\mathrm{my}) / 2+(\mathrm{nz}) / 3=0$

Answer: A

- Watch Video Solution

47. The equation of the line passing through the intersection of the lines $x+2 y+3=0$ and $3 x+4 y+7=0$ and parallel to $y-x=8$ is
B. 44230
C. 1
D. minus $1 / 2$

Answer: C

D Watch Video Solution

48. Find the equation of the line passing through $(2,3) \&(4,-5)$
A. $4 x+8 y+7 z=41$
B. $4 x-8 y+7 z=41$
C. $4 x-8 y-7 z=41$
D. $4 x-8 y+7 z=39$
49. Equation of the plane passing through $(2,3,4)$ and parallel to the plane $5 x-6 y+7 z=3$ is
A. $5 x-6 y+7 z+20=0$
B. $5 x-6 y+7 z-20=0$
C. $-5 x+6 y+7 z-3=0$
D. $5 x+6 y+7 z+3=0$

Answer: A

- Watch Video Solution

50. The angle between two lines $\frac{x+1}{2}=\frac{y+3}{2}=\frac{z-4}{-1}$ and $\frac{x-4}{1}=\frac{y+4}{2}=\frac{z+1}{2}$ is :
A. $13 x+4 y+19=0$
B. $13 y+4 z+19=0$
C. $13 x+4 z+19=0$
D. $4 x+1 y-4 z-19=0$

Answer: B

- Watch Video Solution

51. The ratio in which the plane $4 x+5 y-3 z=8$ divides the line joining the points $(-2,1,5)$ and $(3,3,2)$ is
B. 2)1:2
C. 3)-2:1
D. 4)2:-1

Answer: A

- Watch Video Solution

52. If the straight lines $2 x+3 y-3=0$ and $x+k y+7=0$ are perpendicular, then the value of k is
A. 44266
B. 44503
C. minus $11 / 3$
D. minus 3/11

- Watch Video Solution

53. The acute angle between the planes $x+3 y-z+2=0$ and $2 x-3 y+z-$
$1=0$ is
A. $\left(\cos ^{-1}\right) \frac{2 \sqrt{2}}{\sqrt{77}}$
B. $\left(\cos ^{-1}\right) \frac{4 \sqrt{2}}{\sqrt{77}}$
C. $\left(\cos ^{-1}\right) \frac{\sqrt{2}}{\sqrt{77}}$
D. $\left(\cos ^{-1}\right) \frac{2}{\sqrt{77}}$

Answer: B

(D) Watch Video Solution
54. The angle between the two planes $3 x-4 y+5 z=0$ and $2 x-y-$ $2 z=5$ is :
A. $\left(\cos ^{-1}\right) \frac{2 \sqrt{2}}{\sqrt{21}}$
B. $\left(\cos ^{-1}\right) \frac{4 \sqrt{2}}{\sqrt{77}}$
C. $\left(\cos ^{-1}\right) \frac{\sqrt{2}}{\sqrt{21}}$
D. $\left(\cos ^{-1}\right) \frac{1}{\sqrt{21}}$

Answer: A

- Watch Video Solution

55. Distance between the parallel planes $2 x-3 y+4 z-1=0$ and $4 x-$ $6 y+8 z+8=0$ is
A. $\frac{5}{\sqrt{29}}$
B. $\frac{9}{2} \sqrt{29}$
C. $\frac{1}{\sqrt{29}}$
D. $\frac{9}{\sqrt{29}}$

Answer: B

- Watch Video Solution

56. The direction cosines of the normal to the plane $2 x-2 y+z-1=0$ are
A. $\frac{2}{\sqrt{3}},-\frac{2}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
B. $\frac{2}{3},-\frac{2}{3}, \frac{1}{3}$
C. $\frac{2}{3}, \frac{2}{3},-\frac{1}{\sqrt{3}}$
D. $-\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}, \frac{1}{\sqrt{3}}$

- Watch Video Solution

57. The intercepts of the plane $3 x+4 y-5 z-4=0$ on the coordinate axes are
A. $4 / 3,1 / 3,-4 / 5$
B. $4,1,-5$
C. $4 / 3,1,-4 / 5$
D. $3,4,-5$

Answer: C

- Watch Video Solution

58. A plane meets the coordinate axes at A, B, C such that the centroid of the triangle is $(3,3,3)$. The equation of the plane is :
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

59. If the plane $3 x+4 y-3 z+2=0$ cuts the coordinate axes at A, B, C, then the centroid of the triangle $A B C$ is
A. $(-2 / 9,-1 / 6,2 / 9)$
B. $(2 / 9,-1 / 6,2 / 9)$
C. $(-2 / 9,1 / 6,2 / 9)$
D. $(-2 / 9,-1 / 6,-2 / 9)$

Answer: A

D Watch Video Solution

60. A plane meets the coordinate axes at A, B, C such that the centroid of the triangle $A B C$ is $(3,4,5)$. Then the equation of the plane is
A. $20 x-15 y+12 z=180$
B. $20 x+15 y+12 z=180$
C. $20 x-15 y-12 z=180$
D. $20 x+15 y-12 z=180$

- Watch Video Solution

61. The plane $x / 4+y / 3-z / 5=1$ cuts the axes at A, B, C then the area of the triangle $A B C$ is
A. $\sqrt{769}$
B. $\frac{1}{2} \sqrt{51}$
C. $\sqrt{51}$
D. $\frac{1}{2} \sqrt{769}$

Answer: D

- Watch Video Solution

62. The distance of the point $(1,0,2)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=16$ is
A. $(5,15,10)$
B. $(5,-15,10)$
C. $(5,15,-10)$
D. $(-5,15,10)$

Answer: C

- Watch Video Solution

63. The length of the perpendicular from the origin to the plane
$3 x+4 y+12 z \neq 52$ is
A. 3
B. -4
C. 5
D. 4

Answer: D

D Watch Video Solution

64. Find the distance of the point $(2,3,-5)$ from the plane $r .(i+2 j-2 k)=9$.
A. 4
B. 3
C. 2
D. 1

Answer: B

(D) Watch Video Solution

65. The foot of the perpendicular from $(-2,3)$ to the line $2 x-y-3=0$ is
A. $(-3,0,2)$
B. $(-2,1,-1)$
C. $(0,2,-8)$
D. $(2,-2,0)$

Answer: A
66. The image of the point $(-1,3,4)$ in the plane:
$x-2 y=0$ is:
A. $(-1,1,-2)$
B. $(2,-3,-5)$
C. $(2,-4,0)$
D. $(-1,-1,-1)$

Answer: B

- Watch Video Solution

67. Find the image of $(2,3)$ on the line $3 x+5 y=4$.
A. $(2,-1,11)$
B. $(-1,2,1)$
C. $(-1,4,8)$
D. $(3,4,-8)$

Answer: C

D Watch Video Solution

$$
\begin{aligned}
& \text { 68. If the planes } \vec{r} \cdot(2 i+\lambda j+k)=3 \quad \text { and } \\
& \vec{r} \cdot(4 i+j+\mu k)=5 \text { are parallel, then the values of } \lambda \text { and } \mu
\end{aligned}
$$

are
A. $1 / 2,-2$
B. $-1 / 2,2$
C. $-1 / 2,-2$
D. $1 / 2,2$

(D) Watch Video Solution

69. The angle between the lines $\frac{x+1}{2}=\frac{y-2}{5}=\frac{z+3}{4}$ and $\frac{x-1}{1}=\frac{y+2}{2}=\frac{z-3}{-3}$ is
A. $\left(\cos ^{-1}\right)\left(\frac{5}{12}\right)$
B. ('pi'/3)'
C. $\left(\cos ^{-1}\right)\left(\frac{2}{13}\right)$
D. $\left(\cos ^{-1}\right)\left(\frac{4}{13}\right)$

Answer: B

70. The angle between the lines $\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-1}{2}$ and $\frac{x-1}{-\sqrt{3}-1}=\frac{y-1}{\sqrt{3}-1}=\frac{z-1}{4}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\left(\cos ^{-1}\right) \frac{1}{65}$
D. $\frac{\pi}{4}$

Answer: B

- Watch Video Solution

71. The angle between the lines $\frac{x+1}{2}=\frac{y-2}{5}=\frac{z+3}{4}$ and $\frac{x-1}{1}=\frac{y+2}{2}=\frac{z-3}{-3}$ is
A. 45°
B. 30°
C. 60°
D. 90°

Answer: D

- Watch Video Solution

72. The perpendicular distance of $P(1,2,3)$ from the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$ is
A. 0
B. 5
C. 7
D. 10

- Watch Video Solution

73. Given the line $L=\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-3}{-1}$ and the plane $\pi: x-2 y-z=0$, of the following assertions, the only one that is always true is:
A. L is perpendicular to π
B. Llies on π
C. L is parallel to π, but do not lie on π
D. L and π intersect and not perpendicular to each other

Answer: B

74. The angle between the line $(x-2) / 3=(y+1) / 1=(z-2) /(-1)$ and the plane $3 x-4 y+z=3$ is
A. $\left(\sin ^{-1}\right)\left(\frac{5}{\sqrt{286}}\right)$
B. $\left(\sin ^{-1}\right)\left(\frac{6}{\sqrt{286}}\right)$
C. $\left(\sin ^{-1}\right) \frac{4}{\sqrt{286}}$
D. $\left(\cos ^{-1}\right) \frac{3}{\sqrt{286}}$

Answer: A

- Watch Video Solution

75.

If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-3}$ are perpendicular, find the value of k.
A. minus $10 / 7$
B. 44387
C. 44476
D. minus $7 / 10$

Answer: A

D Watch Video Solution

76. The distance of the point $(2,3,-4)$ from the point of intersection of the line $\frac{x-1}{-3}=\frac{y-2}{2}=\frac{z-2}{1}$ and the plane $2 x-3 y-z-20=0$ is
A. $\sqrt{24}$
B. $\sqrt{23}$
C. $\sqrt{66}$
D. $\sqrt{19}$

Answer: C

- Watch Video Solution

77. If the lines :

$$
\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4} \quad \text { and } \quad \frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}
$$

intersect, then k is equal to :
A. 44230
B. 44234
C. minus 7/2
D. minus $3 / 2$

Answer: B
78. Equation of the plane passing through $(2,3,4)$ and parallel to the plane $5 x-6 y+7 z=3$ is
A. $(x+2) / 2=(y-3) / 3=(z-4) / 1$
B. $(x-+2) / 1=(y-3) /-2=(z-4) / 1$
C. $(x-2) / 1=(y+3) / 2=(z-4) / 1$
D. $(x+2) /-1-(y-3) /-2=(z-4) / 1$

Answer: B

D Watch Video Solution

79. Distance between the two planes $2 x+3 y+4 z=4$ and $4 x+6$ $y+8 z=12$ is
A. 2 units
B. 4 units
C. 8 units
D. $\frac{2}{\sqrt{29}}$ units

Answer: D

- Watch Video Solution

80. The planes $2 x-y+4 z=5$ and $5 x-2.5 y+10 z=6$ are
A. perpendicular
B. parallel
C. intersect y-axis
D. passes through (0,0,5/4)

- Watch Video Solution

81. The coordinates of the foot of the perpendicular drawn from
the point $(2,5,7)$ on the x-axis are given by
A. $(2,0,0)$
B. $(0,5,0)$
C. $(0,07)$
D. $(0,5,7)$

Answer: A

- Watch Video Solution

82. P is a point on the line segment joining the points ($3,2,-1$) and ($6,2,-2$). If x co-ordinate of P is 5 , then its y co-ordinate is :
A. 2
B. 1
C. minus 1
D. minus 2

Answer: A

- Watch Video Solution

83. If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis respectively, then the direction cosines of the line are
A. $\sin \alpha, \sin \beta, \sin \gamma$
B. $\cos \alpha, \cos \beta, \cos \gamma$
C. $\tan \alpha, \tan \beta, \tan \gamma$
D. $\cos ^{2} \alpha, \cos ^{2} \beta, \cos ^{2} \gamma$

Answer: B

(D) Watch Video Solution

84. The distance of the point $P(a, b, c)$ from the x-axis is
A. $\sqrt{a^{2}+c^{2}}$
B. $\sqrt{a^{2}+b^{2}}$
C. $\sqrt{b^{2}+c^{2}}$
D. $b^{2}+c^{2}$

Answer: C

- Watch Video Solution

85. The equation of x-axis in space are
A. $x=0, y=0$
B. $x=0, z=0$
C. $x=0$
D. $y=0, z=0$

Answer: D

86. A line makes equal angles with coordinate axes. Direction cosines of this line are :
A. $\pm(1,1,1)$
B. $\pm\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
C. ${ }^{`}+-(1 / 3,1 / 3,1 / 3)$
D. $\pm\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)$

Answer: B

- Watch Video Solution

87. Distance of the point (α, β, γ) from the y -axis is
A. β
B. $|\beta|$
C. $|\beta|+|\gamma|$
D. $\sqrt{\alpha^{2}+\gamma^{2}}$

Answer: D

- Watch Video Solution

88. If the direction cosines of a line are k, k, k then
A. $k>0$
B. $0<k<1$
C. $\mathrm{k}=1$
D. $k=\frac{1}{\sqrt{3}}$ or $k=\frac{-1}{\sqrt{3}}$
89. Distance of the plane $\vec{r} \cdot\left(\frac{2}{7} i+\frac{3}{7} j+\frac{6}{7} k\right)=1$ from the origin is
A. 1) 1
B. 2)7
C. 3)4
D. 4)none of these

Answer: A

- Watch Video Solution

90. The sine of the angle between the straight the $\frac{x-2}{3}=\frac{3-y}{-4}=\frac{z-4}{5}$ and the plane $2 x-2 y+z=5$ is
A. $\frac{10}{6 \sqrt{5}}$
B. $\frac{4}{5 \sqrt{2}}$
C. $\frac{2 \sqrt{3}}{5}$
D. $\frac{\sqrt{2}}{10}$

Answer: D

D Watch Video Solution

91. Reflection of the point (α, β, γ) in XY plane is
A. $(\alpha, \beta, 0)$
B. $(0,0, \gamma)$
C. $(-\alpha,-\beta, \gamma)$
D. $(\alpha, \beta,-\gamma)$

Answer: D

- Watch Video Solution

92. The area of the quadrilateral $A B C D$, where $A(0,4,1), B(2,3,-$
1), $C(4,5,6)$ and $D(2,6,2)$ is equal to :
A. 9 sq. units
B. 18 sq. units
C. 27 sq. units
D. 81 sq. units
93. The locus represented by $x y+y z=0$ is
A. a pair of perpendicular lines
B. a pair of parallel lines
C. a pair of parallel planes
D. a pair of perpendicular planes

Answer: D

- Watch Video Solution

94. The plane $2 x-3 y+6 z-11=0$ makes an angle $\sin ^{-1}(\alpha)$
with X - axis. The value of α is equal to
A. $\frac{\sqrt{3}}{2}$
B. $\frac{\sqrt{2}}{3}$
C. 44379
D. 44380

Answer: C

- Watch Video Solution

95. A line with direction cosines proportional to $2,1,2$ meets each of the lines $x=y+a=z$ and $x+a=2 y=2 z$. The coordinates of each of the points of intersection are given by
A. $(3 a, 3 a, 3 a),(a, a, a)$
B. (3a,2a,3a),(a,a,a)
C. (3a,2a,3a),(a,a,2a)
D. $(2 a, 3 a, 3 a),(2 a, a, a)$

Answer: B

- Watch Video Solution

96. A line makes some angle θ, with each of the x and z-axis. If the angle β, which it makes with y-axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta$, the $\cos ^{2} \theta$ equals:
A. 44257
B. 44317
C. 44319
D. 44318

Answer: C

97. Distance between two parallel planes: $2 x+y+2 z=8$ and $4 x+$ $2 y+4 z+5=0$ is:
A. 2/7
B. 7
C. 7/2
D. None of these

Answer: C

- Watch Video Solution

98. The distance between
$\vec{r}=2 i+2 j+3 k+\lambda(i-j+4 k) \quad$ and the line
$\vec{r} \cdot(i+5 j+k)=5$ is
A. 10
B. $10 / 3$
C. 1
D. $\frac{10}{3 \sqrt{3}}$

Answer: D

- Watch Video Solution

99. If the angle θ between the $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ is such that $\sin \theta=\frac{1}{3}$, the value of λ is:
A. 44289
B. minus $4 / 3$
C. 44260
D. minus $3 / 5$

Answer: C

- Watch Video Solution

100. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=04 z$ is
A. 45°
B. 30°
C. 0°
D. 90°
101. The image of the point $(-1,3,4)$ in the plane:
$x-2 y=0$ is:
A. $(-17 / 3,-19 / 3,1)$
B. $(8,4,4)$
C. $(-17 / 3,-19 / 3,4)$
D. $(15,11,4)$

Answer:

- Watch Video Solution

102. The two lines $x=a y+b, z=c y+d$ and $x=a^{\prime} y+b ', z=c^{\prime} y+d^{\prime}$ are perpendicular to each other if :
A. $\frac{a}{a^{\prime}}=\frac{c}{c^{\prime}}=-1$
B. $\frac{a}{a^{\prime}}=\frac{c}{c^{\prime}}=1$
C. $a a^{\prime}+{ }^{\wedge}\left({ }^{\prime}\right)=-1$
D. $a a^{\prime}+{ }^{\wedge}(\prime)=1$

Answer: C

(D) Watch Video Solution

103. A variable plane is at a constant distance k from the origin and meets the coordinate axes at $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Then the locus of the centroid of the triangle $A B C$ is
A. $x^{-2}+y^{-2}+z^{-2}=k^{-2}$
B. $x^{-2}+y^{-2}+z^{-2}=4 k^{-2}$
C. $x^{-2}+y^{-2}+z^{-2}=16 k^{-2}$
D. $x^{-2}+y^{-2}+z^{-2}=9 k^{-2}$

Answer: D

- Watch Video Solution

104. If $\mathrm{P}=(0,1,2)$ and $\mathrm{Q}=(4,-2,1), \mathrm{O}=(0,0,0)$ then $P \widehat{O} Q=$
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

105. If a line makes angles $\frac{\pi}{3}$ and $\frac{\pi}{4}$ with the x-axis and y-axis respectively. Then the angle made by the line with z -axis is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{5 \pi}{12}$

Answer: B

- Watch Video Solution

106. The foot of the perpendicular from $(0,0,0)$ to the plane is $(1,2,2)$. Then equation of the plane is

$$
\text { A. }-x+2 y+8 y-9=0
$$

B. $x+2 y+2 z-9=0$
C. $x+y+z-5=0$
D. $x+2 y-3 y+1=0$

Answer: B

D Watch Video Solution

107. If the plane $7 x+11 y+13 z=3003$ meets the axes A, B, C then the centroid of the triangle $A B C$ is
A. $(143,91,77)$
B. $(143,77,91)$
C. $(91,143,77)$
D. $(143,66,91)$

(D) Watch Video Solution

108. A plane π passes through the point $(1,1,1)$. If b, c, a are the direction ratios of a normal to the plane where $a, b, c(a<b<c)$ are the prime power factors of 2001, then the equation of the plane π is
A. $29 x+31 y+3 z=63$
B. $23 x+29 y-29 z=23$
C. $23 x+29 y+3 z=55$
D. $31 x+37 y+3 z=71$

Answer: C

109. The direction ratios of a normal to the plane passing through ($0,0,1$),(0,1,2) and (1,2,3) are
A. $0,1,-1$
B. 1,0,-1
C. 0,0,-1
D. 1,0,0

Answer: A

- Watch Video Solution

110. The angle between the lines whose direction cosines satisfy the equation $l+m+n=0$ and $l^{2}=m^{2}+n^{2}$ is
A. 0
B. $-\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: D

D Watch Video Solution

111. In the space the equation $b y+c z+d=0$ represents a plane perpendicular to the plane
A. YOZ
B. $Z=K$
C. XOZ
D. XOY

Answer: A

- Watch Video Solution

112. If $P=(0,1,0), Q=(0,0,1)$, then the projection of $P Q$ on the plane $x+y+z=3$ is
A. $\sqrt{3}$
B. 3
C. $\sqrt{2}$
D. 2

Answer: C

113. If the direction ratios of two lines are given by 3lm$4 \ln +m n=0$ and $1+2 m+3 n=0$ then the angle between the lines is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: A

- Watch Video Solution

114. Equation of the plane passing through $(1,1,1)$ and $(1,-1,-1)$ and perpendicular to $2 x-y+z+5=0$ is
A. $2 x+5 y+z-8=0$
B. $x+y-z-1=0$
C. $2 x+5 y+z+4=0$
D. $x-y+z-1=0$

Answer: B

D Watch Video Solution

115. A plane pi makes intercepts 3 and 4 respectively on z-axis and x-axis. If the plane is parallel to y-axis then its equation is
A. $3 x+4 z=12$
B. $3 z+4 x=12$
C. $3 y+4 z=12$
D. $3 z+4 y=1$

Answer: A

- Watch Video Solution

116. XOZ plane divides the join of $(2,3,1)$ and $(6,7,1)$ in the ratio
A. 0.1298
B. 0.088194
C. - 3:7
D. $-2: 7$

Answer: C
117. The point collinear with $(1,-2,-3)$ and $(2,0,0)$ among the following is
A. $(0,4,6)$
B. $(0,-4,-5)$
C. $(0,-4,-6)$
D. $(0,-4,6)$

Answer: C

- Watch Video Solution

118. The direction cosines of the line passing through $\mathrm{P}(2,3,-1)$ and the origin are
A. $\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}$
B. $\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}$
C. $-\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}$
D. $\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}},-\frac{1}{\sqrt{14}}$

Answer: C

- Watch Video Solution

119. If $O A$ is equally inclined to $O X, O Y$ and $O Z$ and if A is $\sqrt{3}$ units from the origin, then A is
A. $(3,3,3)$
B. $(-1,1,-1)$
C. $(-1,1,1)$
D. $(1,1,1)$

- Watch Video Solution

120. The equation of the plane passing through the intersection of the planes $x+2 y+3 z+4=0$ and $4 x+3 y+2 z+1=0$ and the origin is
A. $3 x+2 y+z+1=0$
B. $3 x+2 y+z=0$
C. $2 x+3 y+z=0$
D. $x+y+z=0$

Answer: D

- Watch Video Solution

121. The equation of the right bisector plane of the segment joining $(2,3,4)$ and $(6,7,8)$ is
A. $x-y-z-15=0$
B. $x-y+z-15=0$
C. $x+y+z-15=0$
D. $x+y+z+15=0$

Answer: C

(D) Watch Video Solution

122. A line makes acute α, β and γ with the coordinate axes such that $\quad \cos \alpha \cdot \cos \beta=\cos \beta \cdot \cos \gamma=\frac{2}{9} \quad$ and $\cos \gamma \cdot \cos \alpha=\frac{4}{9}$, then $\cos \alpha+\cos \beta+\cos \gamma=$
A. $\frac{5}{3}$
B. $\frac{2}{3}$
C. $\frac{1}{3}$
D. $\frac{3}{7}$

Answer: C

D Watch Video Solution

123. If the direction ratios of two lines are $(5,-12,13)$ and $(-3,4,5)$ then the angle between them is
A. $\left(\cos ^{-1}\right)\left(\frac{1}{65}\right)$
B. $\left(\cos ^{-1}\right)\left(\frac{2}{65}\right)$
C. $\left(\cos ^{-1}\right)\left(\frac{3}{65}\right)$
D. $\frac{\pi}{2}$

Answer: A

- Watch Video Solution

124.

Verify

that
the
points
$(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are the vertices of an isosceles triangle
A. equilateral
B. isosceles
C. right angled
D. right angled isosceles

Answer: D

125. The coordinates of the foot of the perpendicular from the point $(2,3)$ on the line $x+y-11=0$ is
A. $(5,7,1)$
B. $(5 / 3,7 / 3,17 / 3)$
C. $(2 / 3,5 / 3,7 / 3)$
D. $(5 / 3,2 / 3,7 / 3)$

Answer: B

- Watch Video Solution

126. A line which makes angle 60° with y-axis and z-axis, then the angle which it makes with x -axis is
A. 45°
B. 60°
C. 75°
D. 30°

Answer: A

- Watch Video Solution

127. The points $(5,-4,2),(4,-3,1),(7,-6,4),(8,-7,5)$ are vertices of a :
A. a rectangle
B. a square
C. a parallelogram
D. none of these

- Watch Video Solution

128. The line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ is parallel to the plane
A. parallel to x-axis
B. parallel to y-axis
C. parallel to z-axis
D. perpendicular to z-axis

Answer: D

- Watch Video Solution

129. The point equidistant from (a, 0, 0), ($0, a, 0$), ($0,0, a$) and (0 , $0,0)$ is:
A. $(a / 4, b / 4, c / 4)$
B. $(a / 2, b / 4, c / 4)$
C. $(a / 2, b / 2, c / 2)$
D. (a, b, c)

Answer: C

- Watch Video Solution

130. The line joining the points $(3,5,-7)$ and $(-2,1,8)$ meets the $y z$ plane at the point
A. $(0,13 / 5,2)$
B. $(2,0,13 / 5)$
C. $(0,2,13 / 5)$
D. $(2,2,0)$

Answer: A

D Watch Video Solution

131. If the coordinates of the vertices of a triangle $A B C$ be $\mathrm{A}(-1,3,2), \mathrm{B}(2,3,5), \mathrm{C}(3,5,-2)$ then $\widehat{A}=$
A. 45°
B. 60°
C. 90°
D. 30°

- Watch Video Solution

132. The equation of the plane in which the lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$ lie is
A. $17 x-47 y-24 z+172=0$
B. $17 x+47 y-24 z+172=0$
C. $17 x+47 y+24 z+172=0$
D. $17 x-47 y+24 z+172=0$

Answer: A

133. If P be the point $(2,6,3)$ then the equation of the plane through P at right angle to OP, O being the origin is
A. $2 x+6 y+3 z=7$
B. $2 x-6 y+3 z=7$
C. $2 x+6 y-3 z=49$
D. $2 x+6 y+3 z=49$

Answer: D

- Watch Video Solution

134. The plane $x / 2+y / 3+z / 4=1$ cuts the axes A, B, C then the area of the triangle $A B C$ is
A. $\sqrt{29}$
B. $\sqrt{41}$
C. $\sqrt{61}$
D. none

Answer: C

D Watch Video Solution

135. The intercepts of the plane $5 x-3 y+6 z=60$ on the co-ordinate axes are
A. $10,20,-10$
B. $10,-20,12$
C. $12,-20,10$
D. $12,20,-12$

Answer: C

- Watch Video Solution

136. Equation of x-axis is
A. $\mathrm{x} / 1=\mathrm{y} / 1=\mathrm{z} / 1$
B. $x / 0=y / 1=z / 1$
C. $x / 1=y / 0=z / 0$
D. $x / 0=y / 0=z / 1$

Answer: C

137. The angle between the line $x / 2=y / 3=z / 4$ and the plane $3 x+2 y-3 z=4$ is
A. 45°
B. 0°
C. $\cos ^{-1}\left(\left(\frac{24}{\sqrt{29}} \cdot \sqrt{22}\right)\right)$
D. 90°

Answer: B

- Watch Video Solution

138. The equation of a line of intersection of planes $4 x+4 y-5 z=12$
and $8 x+12 y-13 z=32$ can be written as
A. $(x-1) / 2=(y+2) /-3=z / 4$
B. $(x-1) / 2=(y-2) / 3=z / 4$
C. $x / 2=(y+1) / 3=(z-2) / 4$
D. $x / 2=y / 3=(z-2) / 4$

Answer: B

D Watch Video Solution

139. The equation of the plane which makes with coordinate axes a triangle with its centroid (α, β, γ) is
A. $\alpha x+\beta y+\gamma z=3$
B. $\alpha x+\beta y+\gamma z=1$
C. $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=3$
D. $\frac{x}{\alpha}+\frac{y}{\beta}+\frac{z}{\gamma}=1$

- Watch Video Solution

140. A variable plane moves, so that the sum of the reciprocals of its intercepts on the coordinate axes is $1 / 2$. Then the plane passes through
A. $(1 / 2,1 / 2,1 / 2)$
B. $(-1,1,1)$
C. $(2,2,2)$
D. $(0,0,0)$

Answer: C

141. Equation of the plane passing through the line of intersection of the planes $P=a x+b y+c z+d=0$, $P^{\prime}=a^{\prime} x+b^{\prime} y+c^{\prime} z+d^{\prime}=0$ and parallel to x-axis it
A. $p a-p^{\prime} a^{\prime}=0$
B. $\frac{p}{a}=\frac{p^{\prime}}{a^{\prime}}=0$
C. $p a+p^{\prime} a^{\prime}=0$
D. $\frac{p}{a}=\frac{P^{\prime}}{a^{\prime}}$

Answer: D

D Watch Video Solution

142. The point of intersection of the line $(x-5) / 3=(y-7) /(-1)=$ $(z+2) / 1,(x+3) /(-36)=(y-3) / 2=(z-6) / 4$ is
A. $(2,10,4)$
B. $(21,5 / 3,10 / 3)$
C. $(5,7,-2)$
D. $(-3,3,6)$

Answer: B

- Watch Video Solution

143. The angle between the planes $x+2 y+2 z=3$ and $-5 x+3 y+4 z=9$
is
A. $\left(\cos ^{-1}\right) \frac{9 \sqrt{2}}{20}$
B. $\left(\cos ^{-1}\right) \frac{3 \sqrt{2}}{5}$
C. $\left(\cos ^{-1}\right) \frac{3 \sqrt{2}}{10}$
D. $\left(\cos ^{-1}\right) \frac{19 \sqrt{2}}{30}$

Answer: C

- Watch Video Solution

144. The distance of the point $A(2,3,4)$ from x-axis is
A. 5
B. $\sqrt{13}$
C. $2 \sqrt{5}$
D. $5 \sqrt{2}$

Answer: A

D Watch Video Solution
145. The value of k such that the line $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z-k}{2}$ lies on the plane $2 x-4 y+z=7$ is
A. 7
B. minus 7
C. no real value
D. 4

Answer: A

D Watch Video Solution

146. A variable plane at a distance of 1 unit from the origin cuts the coordinate axes at A, B and C satisfies the relation $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=k$, then the value of k is :
A. 9
B. 3
C. 44440
D. 44256

Answer: A

- Watch Video Solution

147. A plane passes through $(1,-2,1)$ and is perpendicular to the planes $2 x-2 y+z=0$ and $x-y+2 z=4$. The distance of the plane from the point $(1,2,2)$ is:
A. 0
B. 1
C. $\sqrt{2}$
D. $2 \sqrt{2}$

Answer: D

- Watch Video Solution

148. The point (α, β, γ) lies on the plane $x+y+z=2$. Let, $\vec{a}=\alpha i+\beta j+\gamma k$ and $k \times(k \times \vec{a})=\overrightarrow{0}$ then $\gamma=$
A. 0
B. 1
C. 2
D. 3

Answer: C

149. Let \vec{A} be a vector parallel to the line of intersection of planes P_{1} and P_{2} through the origin. P_{1} is parallel to the vectors $2 \mathrm{j}+3 \mathrm{k}$ and $4 \mathrm{j}-3 \mathrm{k}$ and P_{2} is parallel to $\mathrm{j}-\mathrm{k}$ and $3 \mathrm{i}+3 \mathrm{j}$, then the angle between \vec{A} and $2 \mathrm{i}+\mathrm{j}-2 \mathrm{k}$ is
A. $\frac{\pi}{4}$ or $\frac{3 \pi}{4}$
B. $\frac{\pi}{2} o \frac{f(3 \pi)}{2}$
C. $\frac{\pi}{6}$ or $\frac{\pi}{3}$
D. $\frac{\pi}{3}$ or $\frac{2 \pi}{3}$

Answer: A

150.

$L_{1}=\frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}, L_{2}=\frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$
The unit vector perpendicular to L_{1} and L_{2} is
A. ${ }^{1} 1 /$ sqrt $99(-i+7 j+7 k)$
B. $\frac{1}{5 \sqrt{3}}(-i-7 j+5 k)$
C. $\frac{1}{5 \sqrt{3}}(-i+7 j+5 k)$
D. $\frac{1}{\sqrt{99}}(7 i-7 j-k)$

Answer: B

(D) Watch Video Solution

151. The shortest distance between the lines
$L_{1}: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2} L_{2}=\frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ is
A. 0
B. $\frac{17}{\sqrt{3}}$
C. $\frac{41}{5 \sqrt{3}}$
D. $\frac{17}{5 \sqrt{3}}$

Answer: D

D Watch Video Solution

152. The equation of the line passing through the point $(3,2)$ and perpendicular to the line $y=x$ is
A. $\frac{2}{\sqrt{75}}$
B. $\frac{7}{\sqrt{75}}$
C. $\frac{13}{\sqrt{75}}$
D. $\frac{23}{\sqrt{75}}$

Answer: C

- Watch Video Solution

153. Let $(P(3,2,6)$ be a point in space and Q be point on the line $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of μ for which the vector $\overrightarrow{P Q}$ is parallel to the plane $x-4 y+3 z=1$ is :
A. 44287
B. minus $1 / 4$
C. 44409
D. minus $1 / 8$

(D) Watch Video Solution

154. If the distance of the point $P(1,-2,1)$ from the plane $x+2 y-$ $2 z=\alpha$ where $\alpha>0$, is 5 , then the foot of the perpendicular from P to the plane is:
A. $(8 / 3,4 / 3,7 / 3)$
B. $(4 / 3,4 / 3,1 / 3)$
C. $(1 / 3,2 / 3,10 / 3)$
D. $(2 / 3,-1 / 3,5 / 2)$

Answer: A

155. Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is :
A. $x+2 y-2 z=0$
B. $3 x+2 y-2 z=0$
C. $z-2 y+z=0$
D. $5 x+2 y-4 z=0$

Answer: C

D Watch Video Solution

156. If the distance between the plane $A x+2 y+z=d$ and the plane containing the lines $(x-1) / 2=(y-2) / 3=(z-3) / 4$ and $(x-2) / 3=(y-3) / 4$ $=(z-4) / 5$ is $\sqrt{6}$, then $|d|$ is equal to
A. 3
B. 4
C. 6
D. 1

Answer: C

- Watch Video Solution

157. A line from the origin meets the lines $\frac{x-2}{1}=\frac{y-1}{-2}=\frac{z+1}{1}$ and $\frac{x-\frac{8}{3}}{2}=\frac{y+3}{-1}=\frac{z-1}{1}$ at

P and Q respectively. If length $P Q=d$ then d^{2} is equal to
A. 3
B. 4
C. 5
D. 6

Answer: D

- Watch Video Solution

158. The direction ratios of a normal to the plane thro' $(1,0,0),(0$, $1,0)$, which makes an angle of with $\frac{\pi}{4}$ the plane $x+y=3$ are :
A. $1, \sqrt{2}, 1$
B. $1,1, \sqrt{2}$
C. 1,1,2
D. $\sqrt{2}, 1,1$
159. The plane, which passes through the point $(3,2,0)$ and the line $\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}$ is :
A. $x-y+z=1$
B. $x+y+z=5$
C. $x+2 y-z=1$
D. $2 x-y+z=5$

Answer: A

D Watch Video Solution

160. The two lines $x=a y+b, z=c y+d$ and $x=a^{\prime} y+b ', z=c ' y+d^{\prime}$ are perpendicular to each other if:
A. $a a^{\prime}+\mathrm{cc}^{\wedge}\left({ }^{\prime}\right)=1$
B. ${ }^{`} a a^{\wedge}(')+c c^{\wedge}(')=-1$
C. $a b+c d=a^{\prime} b^{\prime}+c^{\prime} d^{\prime}$
D. $a a^{\prime}+\wedge\left({ }^{\prime}\right)=\wedge(\prime)+d d^{\prime}$

Answer: B

(D) Watch Video Solution

161. Two system of rectangular axes have the same origin. If a plane cuts them at distance a, b, c and $a^{\prime}, b^{\prime}, c^{\prime}$ from the origin , then :
A. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}=0$
B. $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=0$
C. $\frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{2}}+\frac{1}{b^{2}}-\frac{1}{c^{2}}=0$
D. $\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}-\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}=0$

Answer: A

- Watch Video Solution

162. A line with direction cosines proportional to $2,1,2$ meets each of the lines $x=y+a=z$ and $x+a=2 y=2 z$. The coordinates of each of the points of intersection are given by
A. $(2 a, 3 a, a)(2 a, a, a)$
B. (3a,2a,3a),(a,a,a)
C. (3a,2a,3a),(a,a,2a)
D. (3a, 3a, 3a), (a,a, a)

Answer: B

163. If the straight line, $x=1+s, y=3-\lambda s, z=1+\lambda s$ and $x=\frac{t}{2}, y=1+t, z=2-t$, with parameters s and t and respectively, are coplanar, then λ equals:
A. 0
B. minus 1
C. minus $1 / 2$
D. minus 2

Answer: D

164.

$\vec{r}=2 i+2 j+3 k+\lambda(i-j+4 k) \quad$ and the plane $\vec{r} \cdot(i+5 j+k)=5$ is
A. 44265
B. 44472
C. $\frac{10}{3} \sqrt{3}$
D. 44449

Answer: C

D Watch Video Solution

165. If the angle θ between the $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ is such that $\sin \theta=\frac{1}{3}$, the value of λ is:
A. minus $4 / 3$
B. 44289
C. minus $3 / 5$
D. 44260

Answer: D

- Watch Video Solution

166. The image of the point $(-1,3,4)$ in the plane:
$x-2 y=0$ is:
A. $(-17 / 3,-19 / 3,4)$
B. $(15,11,4)$
C. $(-17 / 3,-19 / 3,1)$
D. none of these

Answer: D

- Watch Video Solution

167. Let L be the line of intersection of the planes:
$2 x+3 y+z=1$ and $x+3 y+2 z=2$.
If L makes an angle α with the positive x-axis, then $\cos \alpha$ equals
A. 1
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{\sqrt{3}}$
D. 44228

Answer: C

168. If the line passing through the point $(5,1, a)$ and $(3, b, 1)$ crosses the yz-plane, at the point ($0,17 / 2,-13 / 2$) then
A. $a=6, b=4$
B. $a=8, b=2$
C. $a=2, b=8$
D. $a=4, b=6$

Answer: A

(D) Watch Video Solution

169. If the straight lines:

$$
\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3} \quad \text { and } \quad \frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}
$$

intersect at a point, then the integer k is equal to :
A. 2
B. minus 2
C. minus 5
D. 5

Answer: C

- Watch Video Solution

170. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lie in the plane $x+3 y-\alpha z+\beta=0$. Then (α, β) equals :
A. $(6,-17)$
B. $(-6,7)$
C. $(5,-15)$
D. $(-5,5)$

Answer: B

- Watch Video Solution

171. A line $A B$ in three-dimensional space makes angles 45° and 120° with the positive x-axis and the positive y-axis respectively.

If $A B$ makes an acute angle θ with the positive z-axis, then θ equals :
A. 60°
B. 75°
C. 30°
D. 45°

- Watch Video Solution

172. The shortest distance between the lines $(x-1) / 2=(y-2) / 3=(z-$
$3) / 4$ and $(x-2) / 3=(y-4) / 4=(z-5) / 5$ is
A. $\frac{1}{\sqrt{6}}$
B. 44348
C. 44256
D. $\frac{1}{\sqrt{3}}$

Answer: A

- Watch Video Solution

173.

The distance
$\vec{r}=2 i+2 j+3 k+\lambda(i-j+4 k) \quad$ and the plane $\vec{r} \cdot(i+5 j+k)=5$ is
A. 44449
B. $\frac{10}{3 \sqrt{3}}$
C. 44265
D. none of these

Answer: B

D Watch Video Solution

174. Equation of the line passing through $(1,1,1)$ and parallel to the plane $2 x+3 y+z+5=0$
A. $\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{1}$
B. $\frac{x-1}{-1}=\frac{y-1}{1}=\frac{z-1}{-1}$
C. $\frac{x-3}{3}=\frac{y-1}{2}=\frac{z-1}{1}$
D. $\frac{x-1}{2}=\frac{y-1}{3}=\frac{z-1}{1}$

Answer: B

D Watch Video Solution

175. The line of intersection of the planes $\vec{r} \cdot(3 i-j+k)=1$ and $\vec{r} \cdot(i+4 j-2 k)=2$ is parallel to the vector
A. $2 i+7 j+13 k$
B. $-2 i-7 j+13 k$
C. $2 i-7 j+13 k$
D. $-2 i+7 j+13 k$

Answer: D

- Watch Video Solution

176. Given the line $L=\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-3}{-1}$ and the plane π : $x-2 y-z=0$, of the following assertions, the only one that is always true is:
A. Lisperpendicualar $\rightarrow \pi$
B. Llies $\in \pi$
C. L is paralle to π
D. none of these
177. The ratio in which the plane $\vec{r} \cdot(i-2 j+3 k)=17$ divides the line joining the points $-2 i+4 j+7 k$ and $3 i-5 j+8 k$ is
A. 1)3:5
B. 2)1:10
C. 3)3:10
D. 4)1:5

Answer: C

D Watch Video Solution

$$
\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2} \text { and } \frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-3} \text { are }
$$

perpendicular, find the value of k.
A. $-\frac{7}{10}$
B. $-\frac{10}{7}$
C. -10
D. 4

Answer: B

- Watch Video Solution

179. Equation of the plane containing the line

$$
\vec{r}=i+j+\lambda(2 i+j+4 k) \text { is }
$$

A. $\vec{r} \cdot(-I-2 j+k)=3$
B. $\vec{r} \cdot(i+2 j-k)=0$
C. $\vec{r} \cdot(i+2 j-k)=3$
D. none of these

Answer: C

- Watch Video Solution

180. The sine of the angle between the straight line $(x-2) / 3=(y-$
$3) / 4=(z-4) / 5$ and the plane, $2 x-2 y+z=5$ is
A. $\frac{10}{6 \sqrt{5}}$
B. $\frac{4}{5 \sqrt{2}}$
C. $\frac{\sqrt{2}}{10}$
D. $\frac{2 \sqrt{5}}{5}$
181. If the direction cosines of a line are $1 / c, 1 / c, 1 / c$ then,
A. $0<c<1$
B. $c>2$
C. $c>0$
D. $c= \pm \sqrt{3}$

Answer: D

(D) Watch Video Solution

182. The equation of the right bisector plane of the segment joining ($2,3,4$) and ($6,7,8$) is
A. $x+y+z+15=0$
B. $x-y-z-15=0$
C. $x-y+z-15=0$
D. $x+y+z-15=0$

Answer: D

D Watch Video Solution

183. The angle between a line with direction ratio proportional to $2,2,1$ and a line joining $(3,1,4)$ and $(7,2,12)$ is
A. $\left(\cos ^{-1}\right)\left(\frac{2}{3}\right)$
B. $\left(\cos ^{-1}\right)\left(-\frac{2}{3}\right)$
C. $\left(\tan ^{-1}\right)\left(\frac{2}{3}\right)$
D. none of these

Answer: A

- Watch Video Solution

184. Equation of the plane through $P(1,2,3)$ and parallel to the plane $x+2 y+5 z=0$ is
A. $(x-1)+2(y-2)+5(z-3)=0$
B. $x+2 y+5 z=14$
C. $x+2 y+5 z=6$
D. none of these

Answer: A

185. Equation of the plane passing through the mid point of the line segment of join of the points $P(1,2,3)$ and $Q(3,4,5)$ and perpendicular to it is
A. $x+Y+z=9$
B. $x+y+z=-9$
C. $2 x+3 y+4 z=9$
D. $2 x+3 y+4 z=-9$

Answer: A

- Watch Video Solution

186. If M denotes the midpoint of the line segment joining $A(4$
$i+5 j-10 k)$ and $B(-i+2 j+k)$, then the equation of the plane through
M and perpendicular to $A B$, is
A. $\vec{r} \cdot(-5 i-3 j+11 k)+\frac{135}{2}=0$
B. $\vec{r} \cdot(4 i+5 j-10 k)+4=0$
C. $\vec{r} \cdot\left(\frac{3}{2} i+\frac{7}{2} j-\frac{9}{2} k\right)+\frac{135}{2}=0$
D. $\vec{r} \cdot(-i+2 j+k)+4=0$

Answer: A

- Watch Video Solution

187. The angle between the lines $(x+1) / 1=(y-3) / 2=(z+2) / 3$ and $x / 3=(y-1) /(-2)=z / 1$ is
A. $\left(\sin ^{-1}\right) \frac{1}{7}$
B. $\cos ^{-1}\left(\frac{2}{7}\right)$
C. $\left(\cos ^{-1}\right) \frac{1}{7}$
D. none of these

Answer: C

- Watch Video Solution

188. A non-zero vector \vec{a} is parallel to the line of intersection of the planes determined by the vectors $\mathrm{i}, \mathrm{i}+\mathrm{j}$ and the plane determined by the vectors $i-j, j+k$. The angle between \vec{a} and $i-$
$2 j+2 k$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$

- Watch Video Solution

189. The projection of the line joining the points $(3,4,5)$ and $(4,6,3)$ on the line joining the points $(-1,2,4)$ and $(1,0,5)$ is
A. $4 / 3$
B. $2 / 3$
C. $1 / 3$
D. $1 / 2$

Answer: A

- Watch Video Solution

190. The projection of a line segment on the coordinate axes are $2,3,6$. Then the length of the line segment is
A. 7
B. 5
C. 1
D. 11

Answer: A

- Watch Video Solution

191. The equation of the plane through the intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$ and parallel to $x-a x i s$ is
A. $y-z+6=0$
B. $3 y-z+6=0$
C. $y-3 z+6=0$
D. $3 y-2 z+6=0$

Answer: A

D Watch Video Solution

192. The distance of the point $(3,8,2)$ from the line $(x-1) / 2=(y-3) / 4$
$=(z-2) / 3$ measured parallel to the plane $3 x+2 y-2 z+15=0$ is
A. 2
B. 3
C. 6
D. 7

- Watch Video Solution

193. If the position vectors of the points A and B are $3 i+j+2 k$ and $i-2 j-4 k$ respectively, then the equation of the plane through B and perpendicular to $A B$ is
A. $2 x+3 y+6 z+28=0$
B. $3 x+2 y+6 z+28$
C. $2 x-3 y+6 z+28=0$
D. $3 x-2 y+6 z=28$

Answer: A

194. Equation of the plane passing through the point $(1,1,1)$ and perpendicular to each of the planes $x+2 y+3 z-7=0$ and $2 x-3 y+4$ $\mathrm{z}=0$ is
A. $17 x-2 y+7 z=12$
B. $17 x+2 y-7 z=12$
C. $17 x+2 y+7 z=12$
D. $17 x-2 y-7 z=12$

Answer: B

D Watch Video Solution

