©゙’ doubtnut

MATHS

BOOKS - SUNSTAR MATHS (KANNADA

ENGLISH)

II PUC MATHEMATICS (SUPPLEMENTARY EXAM QUESTION PAPER JUNE -2019)

Part A

1. Let * be the binary operation on N given by
$a * b=$ L.C.M. of a and b. Find 5 * 7.
2. Find the principal value of $\cot ^{-1}\left(-\frac{1}{\sqrt{3}}\right)$

- Watch Video Solution

3. Construct 2×2 matrix $\mathrm{A}=[\mathrm{aij}]$ whose elements are given by:
$a_{i j}=\frac{1}{2}|-3 i+j|$

- Watch Video Solution

4. find the value of x for which $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$
5. If $y=\cos ^{-1}\left(e^{x}\right)$, find $\frac{d y}{d x}$

- Watch Video Solution

6. Find $\int \sec ^{2}(7-4 x) d x$

- Watch Video Solution

7. If $\vec{a}=(2 \hat{i}+3 \hat{j}+\hat{k})$ then write the direction cosines of \vec{a}
8. Find the intercepts cutoff the plane $2 x+y-z=5$.

- Watch Video Solution

9. Define Feasible region in LPP.

- Watch Video Solution

10. If $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5}$ find $P(A \cap B)$.

If A and B are independent events

- Watch Video Solution

1. Find the gof and fog if $\mathrm{f}(\mathrm{x})=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$

D Watch Video Solution

2. Prove that $\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}$

D Watch Video Solution

3. Write $\cot ^{-1}\left(\frac{1}{\sqrt{x^{2}-1}}\right), x>1$ in the simplest form
4. Find the area of the triangle with vertices
$(2,8),(-4,2)$ and $(5,1)$ using determinats

(D) Watch Video Solution

5. Find $\frac{d y}{d x}$ if $x^{2}+x y+y^{2}=100$

(D) Watch Video Solution

6. Find $\frac{d y}{d x}$, If $x^{2}+x y+y^{2}=100$
7. Find the interval in which the function f given $f(x)=2 x^{2}-3 x$ is stricitly increasing

- Watch Video Solution

8. Find $\int \frac{\left(x^{4}-x\right)^{\frac{1}{4}}}{x^{5}} d x$

- Watch Video Solution

9. Integrate $x \sec ^{2} x$ with respect to x .
10. find the order and degree (if defined) of the differenal equation $y^{111}+y^{2}+e^{y^{1}}=0$.

- Watch Video Solution

11. If \vec{a} is a unit vector such that
$(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$, find $|\mathrm{x}|$.

- Watch Video Solution

12. Find the area of the parallelogram whose adjacent sides are determined by the vecor $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$
13. Find the angle between the pair of lines
$\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and $\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$

- Watch Video Solution

14. The probability distribution of random variable X is
as follows :

find expectation of X.

Part C

1. Determine whether the relation R in the set
$A=\{1,2,3, \ldots . .13,14\}$ defined as
$R=\{(x, y): 3 x-y=0\}$ is reflexive symmetric and transitive.

- Watch Video Solution

2. Solve : $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$
3. By using elementary operations, find the inverse of the matrix : $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$

- Watch Video Solution

4. If $x=a(\theta+\sin \theta)$ and $y=a(1-\cos \theta)$, prove that $\frac{d y}{d x}=\tan (\theta / 2)$

- Watch Video Solution

5. verify mean value therem for the function $f(x)=x^{2}-4 x-3$ in the interval $[1,4]$
6. Find the point at which the tangent to the curve
$y=\sqrt{4 x-3}-1$ has its slope $\frac{2}{3}$

D Watch Video Solution

7. Find: $\int \frac{d x}{(x+1)(x+2)}$.

D Watch Video Solution

8. Evaluate : $\int_{2}^{3} \frac{x d x}{x^{2}+1}$
9. Find the area of the region bounded by the curve $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.

- Watch Video Solution

10. Form the differential equation of family of curces $y=a e^{2 x}+b e^{-2 x}$ by eliminating the arbitary constants $\mathrm{a} \& \mathrm{~b}$.

- Watch Video Solution

11. Show that the position vector of the point P, which divides the line joining the points A and B having
position vectors \vec{a} and \vec{b} internally in ratio m:n is $\frac{m \vec{b}+n \vec{a}}{m+n}$

- Watch Video Solution

12. Prove that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

13. Find the shortest distance between the following pair of lines:

$$
\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}, \frac{x-2}{3}=\frac{y-3}{4}=\frac{z-5}{5}
$$

- Watch Video Solution

14. A Bag I contain 3 red and 4 black balls. White bag II contains 5 red 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from bag II.

- Watch Video Solution

Part D

1. Prove that the function $f: R \rightarrow R$ defined by
$f(x)=4 x+3$ is invertible and find the inverse of ' f '.
2.

$A=\left[\begin{array}{ccc}0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right], B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right], C=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$
calculate $A C, B C$ and $(A+B) C$. Also verify that $(A+B) C=A C+B C$

- Watch Video Solution

3. Solve the following system of equations by matrix method.
$3 x-2 y+3 z=8$
$2 x+y-z=1$
$4 x-3 y+2 z=4$
4. If $y=3 \cos (\log x)+4 \sin (\log x)$ show that $x^{2} y_{2}+x y_{1}+y=0$

D Watch Video Solution

5. Sand is pouring from a pipe at the rate of $12 \mathrm{~cm}^{3} / \mathrm{sec}$. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm ?
6. Find the integral of $\sqrt{x^{2}+a^{2}}$ with respect to x and hence find $\int \sqrt{x^{2}+2 x+5} d x$

- Watch Video Solution

7. Using integration find the area of the region in the first quadrant enclosed by the x - axis, the line $y=x$, ad circle $x^{2}+y^{2}=32$

D Watch Video Solution

8. Find the general solution of the differential equation
$(x+y) \frac{d y}{d x}=1$
9. Derive the equation of a plane in normal form both in the vector and Cartesian form .

D Watch Video Solution

10. A die is thrown 6 time if getting an odd numbers is a success. What is the probability of
a. 5 successes
b. at least 5 successes
c. at most 5 successes

Watch Video Solution

1. Prove that $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$ and hence evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\tan x}} d x$.

- Watch Video Solution

2. $f(x)=\left\{\begin{array}{ll}\frac{k \cos x}{\pi-2 x} \text { if } & x \neq \frac{\pi}{2} \\ 3 & \text { if } x=\frac{\pi}{2}\end{array}\right.$ at $x=\frac{\pi}{2}, \mathrm{f}(\mathrm{x})$ is containuous, find the value of k.
3. Prove that $\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$
