

MATHS

BOOKS - SUNSTAR MATHS (KANNADA ENGLISH)

II PUC MATHEMATICS (SUPPLEMENTARY EXAM QUESTION PAPER JUNE -2019)

1. Let * be the binary operation on N given by

a * b = L.C.M. of a and b. Find 5 * 7.

3. Construct 2×2 matrix A=[aij] whose elements are

given by:

$$|a_{ij}=rac{1}{2}|-3i+j|$$

Watch Video Solution

4. find the value of x for which
$$\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$$

5. If
$$y=\cos^{-1}(e^x), ext{ find } rac{dy}{dx}$$

Watch Video Solution

6. Find
$$\int \sec^2(7-4x) dx$$

Watch Video Solution

7. If
$$\overrightarrow{a}=\left(2\hat{i}+3\hat{j}+\hat{k}
ight)$$
 then write the direction cosines of \overrightarrow{a}

8. Find the intercepts cutoff the plane 2x + y - z = 5.

Watch Video Solution
9. Define Feasible region in LPP.
Watch Video Solution
10. If $P(A) = \frac{3}{5}$ and $P(B) = \frac{1}{5}$ find $P(A \cap B)$.
If A and B are independent events
Watch Video Solution

1. Find the gof and fog if f(x) = $8x^3$ and $g(x) = x^{rac{1}{3}}$

3. Write
$$\cot^{-1}\left(rac{1}{\sqrt{x^2-1}}
ight), x>1$$
 in the simplest form

4. Find the area of the triangle with vertices (2, 8), (-4, 2) and (5, 1) using determinats

Watch Video Solution

5. Find
$$rac{dy}{dx}$$
 if $x^2+xy+y^2=100$

Watch Video Solution

6. Find
$$rac{dy}{dx}$$
, If $x^2 + xy + y^2 = 100$

7. Find the interval in which the function f given $f(x) = 2x^2 - 3x$ is stricitly increasing

Watch Video Solution

8. Find
$$\int \frac{\left(x^4-x\right)^{rac{1}{4}}}{x^5} dx$$

9. Integrate $x \sec^2 x$ with respect to x .

10. find the order and degree (if defined) of the differenal equation $y^{111}+y^2+e^{y^1}=0.$

12. Find the area of the parallelogram whose adjacent sides are determined by the vecor $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$

14. The probability distribution of random variable X is as follows :

Х	0	1	2
P(X)	188	32	1
	221	221	221

find expectation of X.

Part C

Watch Video Solution

2. Solve :
$$an^{-1} 2x + an^{-1} 3x = rac{\pi}{4}$$

3. By using elementary operations , find the inverse of

the matrix
$$: A = egin{bmatrix} 1 & 2 \ 2 & -1 \end{bmatrix}$$

Watch Video Solution

4. If
$$x = a(\theta + \sin \theta)$$
 and $y = a(1 - \cos \theta)$, prove
that $\frac{dy}{dx} = \tan(\theta/2)$
Watch Video Solution

5. verify mean value therem for the function
$$f(x) = x^2 - 4x - 3$$
 in the interval [1,4]

6. Find the point at which the tangent to the curve

$$y=\sqrt{4x-3}-1$$
 has its slope $rac{2}{3}$

Watch Video Solution

7. Find :
$$\int \frac{dx}{(x+1)(x+2)}$$
.

Watch Video Solution

8. Evaluate :
$$\int_2^3 rac{x dx}{x^2+1}$$

9. Find the area of the region bounded by the curve $y^2 = 9x, x = 2, x = 4$ and the x-axis in the first quadrant.

Watch Video Solution

10. Form the differential equation of family of curces $y = ae^{2x} + be^{-2x}$ by eliminating the arbitary constants a & b.

Watch Video Solution

11. Show that the position vector of the point P, which divides the line joining the points A and B having

position vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} internally in ratio m:n is

$$\frac{m\overrightarrow{b} + n\overrightarrow{a}}{m+n}$$

$$\textcircled{Vatch Video Solution}$$
12. Prove that $\left[\overrightarrow{a} + \overrightarrow{b}\overrightarrow{b} + \overrightarrow{c}\overrightarrow{c} + \overrightarrow{a}\right] = 2\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$

$$\textcircled{Vatch Video Solution}$$

13. Find the shortest distance between the following pair

of lines :

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}, \frac{x-2}{3} = \frac{y-3}{4} = \frac{z-5}{5}$$

14. A Bag I contain 3 red and 4 black balls. White bag II contains 5 red 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from bag II.

Part D

1. Prove that the function $f\!:\!R o R$ defined by

f(x) = 4x + 3 is invertible and find the inverse of 'f'.

2.

$$A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}, C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$$
calculate AC, BC and (A+B)C. Also verify that

If

(A+B)C=AC+BC

3. Solve the following system of equations by matrix method.

3x - 2y + 3z = 8

2x + y - z = 1

4x - 3y + 2z = 4

4. If
$$y=3\cos(\log x)+4\sin(\log x)$$
 show that $x^2y_2+xy_1+y=0$

Watch Video Solution

5. Sand is pouring from a pipe at the rate of $12cm^3/\sec$. The falling sand forms a cone on the ground in such a way that the height of the cone is always one-sixth of the radius of the base. How fast is the height of the sand cone increasing when the height is 4 cm?

6. Find the integral of
$$\sqrt{x^2 + a^2}$$
 with respect to x and
hence find $\int \sqrt{x^2 + 2x + 5} dx$
Watch Video Solution
7. Using integration find the area of the region in the
first quadrant enclosed by the x- axis , the line y=x , ad
circle $x^2 + y^2 = 32$

Watch Video Solution

8. Find the general solution of the differential equation

$$(x+y)rac{dy}{dx}=1$$

9. Derive the equation of a plane in normal form both in

the vector and Cartesian form .

Watch Video Solution

10. A die is thrown 6 time if getting an odd numbers is a

success. What is the probability of

a. 5 successes

b. at least 5 successes

c. at most 5 successes

Part E

1. Prove that
$$\int_a^b f(x)dx = \int_a^b f(a+b-x)dx$$
 and hence evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1+\sqrt{\tan x}}dx.$

Watch Video Solution

2.
$$f(x)=egin{cases} rac{k\cos x}{\pi-2x} ext{if} & x
eq rac{\pi}{2} \\ 3 & ext{if} x=rac{\pi}{2} \end{bmatrix}$$
 at $x=rac{\pi}{2}$, f (x) is

containuous , find the value of k .

3. Prove that
$$\begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} = \left(1-x^3\right)^2$$

