©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA
 ENGLISH)

II PUC MARCH-2016

Part A

1. Find $\int \cos e c x(\cos e c x+\cot x) d x$.

- Watch Video Solution

2. Find the values of x for which
$\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$
3. If $y=a^{\frac{1}{2} \log _{a} \cos x}$, find $\frac{d y}{d x}$

- Watch Video Solution

4. $\cos \left(\sec ^{-1} x+\operatorname{cosec}{ }^{-1} x\right),|x| \geq 1$

- Watch Video Solution

5. If vector $\overline{A B}=2 \hat{i}-\hat{j}+\hat{k}$ and $\overline{O B}=3 \hat{i}-4 \hat{j}+4 \hat{k}$, find the position vector $\overline{O A}$

- Watch Video Solution

6. Find the distance of the point $(-6,0,0)$ from the plane $2 x-3 y+6 z=2$.
7. If $\left[\begin{array}{cc}x+2 & y-3 \\ 0 & 4\end{array}\right]$ is a scalar matrix. Find x and y .

- Watch Video Solution

8. If $P(A)=0.8$ and $P(B / A)=0.4$ then find $P(A \cap B)$

- Watch Video Solution

9. An operation $*$ on Z^{*} (the set of all non-negative integers) is defined as $a * b=a-b, \forall a, b \varepsilon Z^{+}$. Is $*$ binary operation on Z^{+}?

- Watch Video Solution

10. Define feasible region in a linear programming Problem.

- Watch Video Solution

1. Write the simplest form of $\tan ^{-1}\left[\frac{3 \cos x-4 \sin x}{4 \cos x+3 \sin x}\right]$, if $\frac{3}{4} \tan x>-1$

- Watch Video Solution

2. Using determinants show that points $A(a, b+c), B(b, c+a)$ and $C(c, a+$
b) are collinear.

(Watch Video Solution

3. If functions $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=|x|$ and $g(x)=[x]$, where $[\mathrm{x}]$ is greatest integer function find $f \circ g\left(-\frac{1}{2}\right)$ and $g \circ f\left(-\frac{1}{2}\right)$.

- Watch Video Solution

4. Prove the following:
$\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=2 \cos ^{-1} x,-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$

- Watch Video Solution

5. Find $\frac{d y}{d x}$ if $y=\sec ^{-1}\left(\frac{1}{2 x^{2}-1}\right), 0<x<\frac{1}{\sqrt{2}}$

(Watch Video Solution

6. If $x^{y}=a^{x}$, prove that $\frac{d y}{d x}=\frac{x \log _{e} a-y}{x \log _{e} x}$.

(Watch Video Solution

7. find $\int \frac{1}{\sin x \cos ^{3} x} \mathrm{dx}$.

(Watch Video Solution

8. Using differentials, find the approximate value of $(25)^{\frac{1}{3}}$.

- Watch Video Solution

9. Evaluate : $\int_{0}^{\pi}\left(\sin ^{2}\left(\frac{x}{2}\right)-\cos ^{2}\left(\frac{x}{2}\right)\right) d x$

(Watch Video Solution

10. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$, prove that \vec{a} and \vec{b} are perpendicular.

- Watch Video Solution

11. Find the order and degree, it defined of the differential equation
$\frac{d^{4} y}{d x^{4}}+\frac{\sin \left(d^{3} y\right)}{d x^{3}}=0$

- Watch Video Solution

12. Find angle between the vectors $\vec{a}=\vec{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}+\hat{k}$.

Watch Video Solution

13. The random variable X has a probability distribution $P(X)$ of the following form, where K is some number $P(X)= \begin{cases}K & \text { if } \mathrm{x}=0 \\ 2 K & \text { if } \mathrm{x}=1 \\ 3 K & \text { if } \mathrm{x}=2 \\ 0 & \text { otherwise }\end{cases}$
(a) Determine the value of K.
(b) Find $P(X<2)$.

- Watch Video Solution

14. Find the Cartesian equation of the line parallel to y-axis and passing through the point $(1,1,1)$.

- Watch Video Solution

1. Show that $\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{4}{3}=\frac{\pi}{2}$

- Watch Video Solution

2. Using elementary transformations, find the inverse of the matrices
$\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]$

- Watch Video Solution

3. Show that the relation R in the set $A=\{x \in z, 0 \leq x \leq 12\}$ given by $R=\{(a, b):|a-b|$ is a multiple of 4$\}$ is an equivalence relation.

- Watch Video Solution

4. Verify Mean Value Theorem if $f(x)=x^{3}-5 x^{2}-3 x$ in the interval $[1,3]$.

Watch Video Solution

5. If $x=a \cos ^{3} 0$ and $y=a \sin ^{3}=0$, prove that $\frac{d y}{d x}=-\sqrt[3]{\frac{y}{x}}$.

- Watch Video Solution

6. Box-I contains 2 gold coins, while another Box-II contains 1 gold and 1 silver coin. A person chooses a box at random and takes out a coin. If the coin is of gold, what is the probability that the other coin in the box is also of gold?

- Watch Video Solution

7. Find $\int \frac{x}{(x-1)(x-2)} d x$.
8. Integrate $\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+2\right)}$ with respect to x .

- Watch Video Solution

9. Find two numbers whose product is 100 and whose sum is minimum.

- Watch Video Solution

10. Find the area lying between the curve $y^{2}=4 x$ and the line $y=2 x$

- Watch Video Solution

11. For any three vectors \vec{a}, \vec{b} and \vec{c}, prove that vectors $\vec{a}-\vec{b}, \vec{b}-\vec{c}$ and $\vec{c}-\vec{a}$ are coplanar.
12. Find the distance between the lines $\overrightarrow{l_{1}}$ and $\overrightarrow{l_{2}}$ given by
$\overrightarrow{l_{1}}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$ and $\overrightarrow{l_{2}}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(2 \hat{i}+3$

- Watch Video Solution

13. Find the sine of the angle between the vectors $\hat{i}+2 \hat{j}+2 \hat{k}$ and $3 \hat{i}+2 \hat{j}+6 \hat{k}$.

- Watch Video Solution

14. Find the equation of the curve passing through the point $(1,1)$, given that the slope of the tangent to the curve at any point is $\frac{x}{y}$

- Watch Video Solution

Part D

1. If $A=\left[\begin{array}{c}-2 \\ 4 \\ 5\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 3 & -6\end{array}\right]$, verify that $(A B)^{\prime}=B^{\prime} A^{\prime}$.

- Watch Video Solution

2. Solve the system of linear equations by matrix method : $2 x-3 y+5 z=11,3 x+2 y-4 z=-5, x+y-2 x=-3$.

- Watch Video Solution

3. Let $f: N \rightarrow R$ be defined by $f(x)=4 x^{2}+12 x+15$. Show that $f: N \rightarrow S$ where S is the range of function f , is invertible. Also find the inverse of f .

- Watch Video Solution

4. The length x of a rectangle is decreasing at the rate of $3 \mathrm{~cm} / \mathrm{min}$ and the width y is increasing at the rate of $2 \mathrm{~cm} / \mathrm{min}$. When $\mathrm{x}=10 \mathrm{~cm}$ and $\mathrm{y}=6 \mathrm{~cm}$,
find the ration of change (i) the perimeter and (ii) the area of the reactangle.

- Watch Video Solution

5. If $y=\left(\sin ^{-1} x\right)$. Show that $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x\left(\frac{d y}{d x}\right)=0$

- Watch Video Solution

6. Find the integral of $\frac{1}{x^{2}+a^{2}}$ w.r.t.x and hence evaluate $\int \frac{1}{x^{2}+2 x+3}$ dx .

- Watch Video Solution

7. Using integration find the area of the region bounded by the triangle whose vertices are (1,0),(2,2) and (3,1).
8. Derive the equation of a plane perpendicular to a given vector and passing through a given point in both vector form and Cartesian form.

- Watch Video Solution

9. The probability that a student is not a swimmer is $\frac{1}{5}$. Find the probability that out of 5 students.
at most three are swimmers.

- Watch Video Solution

10. Solve the differential equation $y d x+\left(x-y e^{y}\right) d y=0$

- Watch Video Solution

Part E

1. Find the value of k, if

$$
\begin{array}{ll}
f(x)=\frac{1-\cos 2 x}{1-\cos x} & x \neq 0 \\
=k & x=0
\end{array}
$$

is continuous at $x=0$.

- View Text Solution

2. Prove that $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$

- Watch Video Solution

