

MATHS

BOOKS - OSWAAL PUBLICATION MATHS (KANNADA ENGLISH)

VECTOR ALGEBRA

Topic 1 Very Short Answer Type Questions

1. If the vectors $2\hat{i}+3\hat{j}-6\hat{k}$ and $4\hat{i}-m\hat{j}-12\hat{k}$ are parallel find m.

Watch Video Solution

2. Write the vector joining the points A(2,3,0) and B(1,2,4).

11. Write a unit vector in the direction of the sum of vectors $\vec{a} = 2\hat{i} + 2\hat{j} - 5\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - 7\hat{k}$.

12. Write the value of p for which the vectors $3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\hat{i} - 2p\hat{j} + 3\hat{k}$ are parallel vectors.

Watch Video Solution

13. Find a vector \overrightarrow{a} of a magnitude $5\sqrt{2}$ making an angle of $\frac{\pi}{4}$ with x-axis

, $\frac{\pi}{2}$ with y-axis and an acute angle θ with z-axis.

14. Find a vector in the direction of vector $2\hat{i} - 3\hat{j} + 6\hat{k}$ which has magnitude 21 units.

15. If $\overrightarrow{a} = x\hat{i} + 2\hat{j} - z\hat{k}$ and $\overrightarrow{b} = 3\hat{i} - y\hat{j} + \hat{k}$ are two equal vectors,

then write the value of x+y+z.

Watch Video Solution

16. If a unit vector \overrightarrow{a} makes an angle $\frac{\pi}{3}$ with \hat{i} , $\frac{\pi}{4}$ with \hat{j} and a acute angle θ with \hat{k} , then find the value of θ .

Watch Video Solution

17. Write a unit vector in the direction of the sum of vectors

$$\overrightarrow{a}=2\hat{i}-\hat{j}+2\hat{k}$$
 and $\overrightarrow{b}=-\hat{i}+\hat{j}+3\hat{k}.$

18. Consider two points P and Q with position vectors $\overrightarrow{OP} = 3\overrightarrow{a} - 2\overrightarrow{b}$ and $\overrightarrow{OQ} = \overrightarrow{a} + \overrightarrow{b}$. Find the position vector of a point R which divides the line joining P and Q in the ratio 2:1, (i) intermally, and (ii) externally.

Watch Video Solution

19. L and M are two points with position vectors $2\overrightarrow{a} - \overrightarrow{b}$ and $\overrightarrow{a} + 2\overrightarrow{b}$ respectively. Write the position vectors of a point N which divides the line segment LM in the ratio 2 : 1 externally.

Watch Video Solution

20. Find a unit vector in the direction of $\overrightarrow{A} = 3\hat{i} - 2\hat{j} + 6\hat{k}.$

21. Find the sum of vectos $a=\hat{i}-2\hat{j}+\hat{k},b=-2\hat{i}+4\hat{j}+5\hat{k}$ and $c=\hat{i}-6\hat{i}-7\hat{k}.$

Watch Video Solution

22. Find the scalar and vector components of the vector with initial point

(2,1) and terminal point (-5,7).

Watch Video Solution

23. If a line has direction ratios 2,-1,-2 then determine its direction cosines.

Watch Video Solution

24. If A, B and C are the vertices of a triangle ABC, then what is the value of $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$?

27. Write the direction cosines of the line joining the points (1,0,0) and (0,1,1).

28. For what value of 'a' the vectors $2\hat{i}-3\hat{j}+4\hat{k}$ and $a\hat{i}+6\hat{j}-8\hat{k}$ are

collinear ?

29. Write the direction cosines of the vector $2\hat{i} + \hat{j} - 5\hat{k}$.

30. Find the position vector of the mid point of the line segment joining the points $A(5\hat{i} + 3\hat{j})$ and $B(3\hat{i} - \hat{j})$.

Watch Video Solution

31. If
$$\overrightarrow{a} = 2\hat{i} - \hat{j} + 3\hat{k}$$
 and $\overrightarrow{b} = (6\hat{i} + \lambda\hat{j} + 9\hat{k})$ and \overrightarrow{a} is parallel to \overrightarrow{b} , find the value of λ .

Watch Video Solution

32. In a triangle ABC, the sides AB and BC are represented by vectors $2\hat{i} - \hat{j} + 2\hat{k}, \hat{i} + 3\hat{j} + 5\hat{k}$ respectively. Find the vector representing CA.

33. Find the position vector of the mid point of the line-segment AB,

where A is the point (3, 4, -2) and B is the point (1,2,4).

Watch Video Solution

34. Write a vector of magnitude 15 units in the direction of vector $\hat{i} - 2\hat{j} + 2\hat{k}.$

Watch Video Solution

Topic 1 Short Answer Type Questions I

1. If the position vectors of the points A and B respectively are i+2j-3k and

j-k find the direction cosines of AB

2. Find a vector of magnitue 8 units in the direction of the vector, $\overrightarrow{a}=5\hat{i}-\hat{j}+2\hat{k}$

coplanar

Watch Video Solution

Watch Video Solution

4. Find
$$\left|\overrightarrow{b}\right|$$
, if $\left(\overrightarrow{a} + \overrightarrow{b}\right)$. $\left(\overrightarrow{a} - \overrightarrow{b}\right) = 8$ and $\left|\overrightarrow{a}\right| = 8\left|\overrightarrow{b}\right|$

5. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$.

Watch Video Solution

6. Find a vector of magnitude 11 in the direction on opposite to that of

 \overline{PQ} . Where P and Q are the points (1,3,2) and (-1,0,8), respectively.

Watch Video Solution

7. If the points (-1,-1,2), (2,m,5) and (3,11,6) are collinear, find the value of m.

Watch Video Solution

8. Obtain the projection of the vector $\overrightarrow{a}=2\hat{i}+3\hat{j}+2\hat{k}$ on the vector

$$\overrightarrow{b} = \hat{i} + 2\hat{j} + \hat{k}.$$

Topic 1 Short Answer Type Questions Ii

1. Show that the position vector of the point P, which divides the line joining the points A and B having position vectors \overrightarrow{a} and \overrightarrow{b} internally in

ratio m:n is $\frac{m \overrightarrow{b} + n \overrightarrow{a}}{m + n}$

Watch Video Solution

2. If
$$\overrightarrow{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$$
, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + 2\hat{j}$ such that $\overrightarrow{a} + \lambda \overrightarrow{b}$ is perpendicular to \overrightarrow{c} , then find the value of λ .

Watch Video Solution

3. Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, -10) are

collinear.

4. Find all vectors of magnitude $10\sqrt{3}$ that are perpendicular to the plane of $\hat{i}+2\hat{j}+\hat{k}$ and $-\hat{i}+3\hat{j}+\hat{k}$.

6. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 4\hat{i} - 2\hat{j} + 3\hat{k}$ and $\overrightarrow{c} = \hat{i} - 2\hat{j} + \hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$.

Watch Video Solution

Topic 2 Short Answer Type Questions I

1. If
$$\overrightarrow{a}$$
 is a unit vector such that $\left(\overrightarrow{x} - \overrightarrow{a}\right)$. $\left(\overrightarrow{x} + \overrightarrow{a}\right) = 8$ find $\left|\overrightarrow{x}\right|$.

2. If \overrightarrow{a} and \overrightarrow{b} are unit vectors, then find the angle between \overrightarrow{a} and \overrightarrow{b} , given that $\left(\sqrt{3}\overrightarrow{a} - \overrightarrow{b}\right)$ is a unit vector.

Watch Video Solution

3. Find the projection of vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $2\hat{i} - 3\hat{j} + 6\hat{k}$.

Watch Video Solution

4. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are perpendicular vectors $\left|\overrightarrow{a} + \overrightarrow{b}\right| = 13$ and $\left|\overrightarrow{a}\right| = 5$, find the value of $\left|\overrightarrow{b}\right|$

5. Write the projection of the vector $\hat{i}+\hat{j}+\hat{k}$ along the vector $\hat{j}.$

6. Write the value of λ so that the vectors $\overrightarrow{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ are perpendicular to each other ?

Watch Video Solution

7. Write the projection of the vector $7\hat{i}+\hat{j}-4\hat{k}$ on the vector $2\hat{i}+6\hat{j}+3\hat{k}.$

Watch Video Solution

8. Write the projection of $\overrightarrow{b} + \overrightarrow{c}$ on \overrightarrow{a} , where $\overrightarrow{a} = 2\hat{i} - 2\hat{j} + \hat{k}, \ \overrightarrow{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}.$

9. Find
$$|\vec{x}|$$
, if for a unit vector \vec{a} , $(\vec{x} + \vec{a})(\vec{x} - \vec{a}) = 15$.
Watch Video Solution
10. Find ' λ ' when the projection of $\vec{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ on $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ is 4 units.
Watch Video Solution

11. If
$$\left|\overrightarrow{a}\right| = \sqrt{3}$$
, $\left|\overrightarrow{b}\right| = 2$ and angle between \overrightarrow{a} and \overrightarrow{b} is 60° , find $\overrightarrow{a} \cdot \overrightarrow{b}$.

D Watch Video Solution

12. Find the angle between the vectors $\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k}$ and $\overrightarrow{b}=\hat{i}-\hat{j}+\hat{k}$.

13. Write the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes $\sqrt{3}$ and 2 respectively having \overrightarrow{a} . $\overrightarrow{b} = \sqrt{6}$.

Watch Video Solution

14. Find the value of λ if the vectors $\overrightarrow{a} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\overrightarrow{b} = \hat{i} + \lambda\hat{j} - 3\hat{k}$ are perpendicular to each other.

Watch Video Solution

Topic 2 Short Answer Type Questions li

1. If $\overrightarrow{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + 2\hat{j}$ such that $\overrightarrow{a} + \lambda \overrightarrow{b}$ is perpendicular to \overrightarrow{c} , then find the value of λ .

2. If two vectors \overrightarrow{a} and \overrightarrow{b} such that $\left|\overrightarrow{a}\right| = 2\left|\overrightarrow{b}\right| = 3$ and \overrightarrow{a} . $\overrightarrow{b} = 6$, find $\left|\overrightarrow{a} - \overrightarrow{b}\right|$.

Watch Video Solution

3. If $\overrightarrow{a} = \hat{i} - \hat{j} + 7\hat{k}$ and $\overrightarrow{b} = 5\hat{i} - \hat{j} + \lambda\hat{k}$, then find the value of λ so that $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are perpendicular vectors.

Watch Video Solution

4. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three mutually perpendicular vectors of equal magnitude, then the angle θ which $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ makes with any one of three given vectors is given by

5. Vectors $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ and $\left|\overrightarrow{a}\right| = 3, \left|\overrightarrow{b}\right| = 5$ and $\left|\overrightarrow{c}\right| = 7$. Find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

6. The scalar product of the vector $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $\overrightarrow{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\overrightarrow{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ and hence find the unit vector along $\overrightarrow{b} + \overrightarrow{c}$.

Watch Video Solution

7. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \left|\overrightarrow{a}\right|$, then prove tat $2\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to \overrightarrow{b} .

8. If the sum of the unit vectors \hat{a} and $\stackrel{\longrightarrow}{b}$ is a unit vector. Show that the magnitude of their difference is $\sqrt{3}$.

Watch Video Solution

9. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three vectors such that $|\overrightarrow{a}| = 5, |\overrightarrow{b}| = 12$ and $|\overrightarrow{c}| = 13$ and $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$, find the value of $\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{b}, \overrightarrow{c} + \overrightarrow{c}, \overrightarrow{a}$.

Watch Video Solution

10. If two vectors $|\vec{a}| = 2$, $|\vec{b}| = 1$ and $\vec{a} \cdot \vec{b} = 1$, then find the value of $(3\vec{a} - 5\vec{b}) \cdot (2\vec{a} + 7\vec{b})$.

11. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vectors such that $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 4$ and $\left|\overrightarrow{c}\right| = 3$ and each one of them is perpendicular to the sum of the other two, then find $\left|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right|$.

Watch Video Solution

12. The dot product of a vector with the vectors $\hat{i} - 3\hat{k}$, $\hat{i} - 2\hat{k}$ and $\hat{i} + \hat{j} + 4\hat{k}$ are 0, 5 and 8 respectively. Find the vector.

Watch Video Solution

Topic 3

1. If
$$\overrightarrow{a} = 2\hat{i} - 3\hat{j} + \hat{k}$$
, $\overrightarrow{b} = -\hat{i} + \hat{k}$, $\overrightarrow{c} = 2\hat{j} - \hat{k}$ are three vectors, find the area of the parallelogram having diagonals $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{b} + \overrightarrow{c}$.

2. Find the unit vector perpendicular to both the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ where $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$.

Watch Video Solution

3. If
$$\overrightarrow{a} = 3\hat{i} - \hat{j}$$
 and $\overrightarrow{b} = 2\hat{i} + \hat{j} - 3\hat{k}$ then express \overrightarrow{b} in the form of $\overrightarrow{b} = \overrightarrow{b_1} + \overrightarrow{b_2}$ where $\overrightarrow{b_1} \mid \overrightarrow{a}$ and $\overrightarrow{b_2}$ perpendicular to \overrightarrow{a} .

Watch Video Solution

4. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{j} - \hat{k}$, find a vector \overrightarrow{c} , such that $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b}$ and $\overrightarrow{a} \cdot \overrightarrow{c} = 3$.

Watch Video Solution

5. Using vectors, find the area of the triangle with vertices are A(1,2,3), B(2,

-1, 4) and C(4,5,-1).

6. Find the unit vector perpendicular to the plane of ΔABC whose vertices are

A(3,-1,2), B(1,-1,-3) and C(4,-3,1)

Watch Video Solution

7. Let
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}$$
, $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find
a vector \overrightarrow{p} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and \overrightarrow{p} . $\overrightarrow{c} = 18$.

Watch Video Solution

8. Find the area of the triangle with vertices A(1,1,2), B(2,3,5) and C(1,5,5).

9. Find the unit vector perpendicular to each of the vectors

$$\overrightarrow{a}+\overrightarrow{b} \;\; ext{and}\;\; \overrightarrow{a}-\overrightarrow{b} \;\; ext{where}\;\; \overrightarrow{a}=3\hat{i}+2\hat{j}+2\hat{k} \;\; ext{and}\;\; \overrightarrow{b}=\hat{i}+2\hat{j}-2\hat{k}$$

Watch Video Solution

10. Find the vector \overrightarrow{p} which is perpendicular to both $\overrightarrow{\alpha} = 4\hat{i} + 5\hat{j} - \hat{k}$ and $\overrightarrow{\beta} = \hat{i} - 4\hat{j} + 5\hat{k}$ and $\overrightarrow{p} \cdot \overrightarrow{q} = 21$, where $\overrightarrow{q} = 3\hat{i} + \hat{j} - \hat{k}$.

Watch Video Solution

11. Find the unit vector perpendicular to the plane ABC where the position

vectors A, B and C are $2\hat{i} - \hat{j} + \hat{k}, \, \hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} + 3\hat{k}$.

12. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three unit vectors such that \overrightarrow{a} . $\overrightarrow{b} = \overrightarrow{a}$. $\overrightarrow{c} = 0$ and angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{6}$, prove that $\overrightarrow{a} = \pm 2\left(\overrightarrow{b} \times \overrightarrow{c}\right)$.

Watch Video Solution

13. Let
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}$$
, $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - \hat{j} + 4\hat{k}$.
Find a vector \overrightarrow{p} which is perpendicular to both \overrightarrow{a} and \overrightarrow{b} and $\overrightarrow{p} \cdot \overrightarrow{c} = 18$.

Watch Video Solution

Topic 4 Short Answer Type Questions Ii

1. Prove that
$$\left[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} + \overrightarrow{a}\right] = 2\left[\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}\right].$$

2. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{O}$, find the value of \overrightarrow{a} . $\overrightarrow{b} + \overrightarrow{b}$. $\overrightarrow{c} + \overrightarrow{c}$. \overrightarrow{a} .

Watch Video Solution

3. Prove that
$$\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} + \overrightarrow{d} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \end{bmatrix} + \begin{bmatrix} \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{d} \end{bmatrix}$$
.

Watch Video Solution

4. If the vectors $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are coplanar, prove that the vectors $\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{b} + \overrightarrow{c}$ and $\overrightarrow{c} + \overrightarrow{a}$ are also coplanar.

Watch Video Solution

5. Show that the four points A, B, C and D with position vectors $4\hat{i} + 5\hat{j} + \hat{k} - \hat{j} - \hat{k}, 3\hat{i} + 9\hat{j} + 4\hat{k}$ and $4\left(-\hat{i} + \hat{j} + \hat{k}\right)$ respectively are coplanar.

6. Find the value of λ , if the point with position vectors $3\hat{i} - 2\hat{j} - \hat{k}, 2\hat{i} + 3\hat{j} - 4\hat{k}, -\hat{i} + \hat{j} + 2\hat{k}$ and $4\hat{i} + 5\hat{j} + \lambda\hat{k}$ are coplanar.

Watch Video Solution

7. If
$$\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$$
, $\overrightarrow{b} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\overrightarrow{c} = 3\hat{i} + 4\hat{j} - \hat{k}$, then
find $\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ and $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \overrightarrow{c} \cdot$. Is,
 $\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \left(\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \overrightarrow{c}$?