# ©゙ doubtnut 

India's Number 1 Education App

## MATHS

# BOOKS - OSWAAL PUBLICATION MATHS (KANNADA <br> ENGLISH) 

## VECTOR ALGEBRA

## Topic 1 Very Short Answer Type Questions

1. If the vectors $2 \hat{i}+3 \hat{j}-6 \hat{k}$ and $4 \hat{i}-m \hat{j}-12 \hat{k}$ are parallel find $m$.

## - Watch Video Solution

2. Write the vector joining the points $A(2,3,0)$ and $B(1,2,4)$.
3. Define collinear vectors.

## - Watch Video Solution

4. Define negative of a vector.

## - Watch Video Solution

5. Find the direction cosines of vector, $2 \hat{i}+\hat{j}+3 \hat{k}$.

## - Watch Video Solution

6. Define unit vector.

## - Watch Video Solution

7. If $\overrightarrow{A B}=3 \hat{i}+2 \hat{j}+6 \hat{k}, \overrightarrow{O A}=\hat{i}-\hat{j}-3 \hat{k}$, find the value of $\overrightarrow{O B}$.
8. The magnitude of the vector $6 \hat{i}+2 \hat{j}+3 \hat{k}$ is ?

## - Watch Video Solution

9. Write a vector in the direction of the vector $\hat{i}-2 \hat{j}+2 \hat{k}$ that has magnitude 9 units.

## - Watch Video Solution

10. Write the value of cosine of the angle which the vector $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ makes with $y$-axis.

## - Watch Video Solution

11. Write a unit vector in the direction of the sum of vectors $\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}-7 \hat{k}$.

## Watch Video Solution

12. Write the value of $p$ for which the vectors $3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\hat{i}-2 p \hat{j}+3 \hat{k}$ are parallel vectors.

## - Watch Video Solution

13. Find a vector $\vec{a}$ of a magnitude $5 \sqrt{2}$ making an angle of $\frac{\pi}{4}$ with $x$-axis ,$\frac{\pi}{2}$ with y -axis and an acute angle $\theta$ with z -axis.

## - Watch Video Solution

14. Find a vector in the direction of vector $2 \hat{i}-3 \hat{j}+6 \hat{k}$ which has magnitude 21 units.
15. If $\vec{a}=x \hat{i}+2 \hat{j}-z \hat{k}$ and $\vec{b}=3 \hat{i}-y \hat{j}+\hat{k}$ are two equal vectors, then write the value of $x+y+z$.

## - Watch Video Solution

16. If a unit vector $\vec{a}$ makes an angle $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with $\hat{j}$ and a acute angle $\theta$ with $\hat{k}$, then find the value of $\theta$.

## - Watch Video Solution

17. Write a unit vector in the direction of the sum of vectors
$\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}+3 \hat{k}$.

## - Watch Video Solution

18. Consider two points $P$ and $Q$ with position vectors $\overrightarrow{O P}=3 \vec{a}-2 \vec{b}$ and $\overrightarrow{O Q}=\vec{a}+\vec{b}$. Find the position vector of a point R which divides the line joining P and Q in the ratio $2: 1$, (i) intermally , and (ii) externally.

## - Watch Video Solution

19. $L$ and $M$ are two points with position vectors $2 \vec{a}-\vec{b}$ and $\vec{a}+2 \vec{b}$ respectively. Write the position vectors of a point N which divides the line segment LM in the ratio $2: 1$ externally.

## - Watch Video Solution

20. Find a unit vector in the direction of $\vec{A}=3 \hat{i}-2 \hat{j}+6 \hat{k}$.

## - Watch Video Solution

21. Find the sum of vectos $a=\hat{i}-2 \hat{j}+\hat{k}, b=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $c=\hat{i}-6 \hat{j}-7 \hat{k}$.

## Watch Video Solution

22. Find the scalar and vector components of the vector with initial point $(2,1)$ and terminal point ( $-5,7$ ).

## - Watch Video Solution

23. If a line has direction ratios $2,-1,-2$ then determine its direction cosines.

## - Watch Video Solution

24. If $A, B$ and $C$ are the vertices of a triangle $A B C$, then what is the value of $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}$ ?
25. Find the magnitude of the vector $\vec{a}=3 \hat{i}+2 \hat{j}+6 \hat{k}$.

## - Watch Video Solution

26. Find the magnitude of the vector $(2 \hat{i}-3 \hat{j}-6 \hat{k})+(-\hat{i}+\hat{j}+4 \hat{k})$.

## - Watch Video Solution

27. Write the direction cosines of the line joining the points ( $1,0,0$ ) and (0,1,1).

## - Watch Video Solution

28. For what value of 'a' the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $a \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear ?
29. Write the direction cosines of the vector $2 \hat{i}+\hat{j}-5 \hat{k}$.

## - Watch Video Solution

30. Find the position vector of the mid point of the line segment joining the points $A(5 \hat{i}+3 \hat{j})$ and $B(3 \hat{i}-\hat{j})$.

## - Watch Video Solution

31. If $\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=(6 \hat{i}+\lambda \hat{j}+9 \hat{k})$ and $\vec{a}$ is parallel to $\vec{b}$, find the value of $\lambda$.

## - Watch Video Solution

32. In a triangle $A B C$, the sides $A B$ and $B C$ are represented by vectors
$2 \hat{i}-\hat{j}+2 \hat{k}, \hat{i}+3 \hat{j}+5 \hat{k}$ respectively. Find the vector representing CA.

## (D) Watch Video Solution

33. Find the position vector of the mid point of the line-segment $A B$, where $A$ is the point $(3,4,-2)$ and $B$ is the point $(1,2,4)$.

## - Watch Video Solution

34. Write a vector of magnitude 15 units in the direction of vector $\hat{i}-2 \hat{j}+2 \hat{k}$.

## - Watch Video Solution

## Topic 1 Short Answer Type Questions I

1. If the position vectors of the points $A$ and $B$ respectively are $i+2 j-3 k$ and $j-k$ find the direction cosines of $A B$
2. Find a vector of magnitue 8 units in the direction of the vector, $\vec{a}=5 \hat{i}-\hat{j}+2 \hat{k}$

## - Watch Video Solution

3. 

Find
$\lambda$
if
the
vectors
$\vec{a}=\hat{i}+3 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=\lambda \hat{i}+7 \hat{j}+3 \hat{k}$
coplanar

## - Watch Video Solution

4. Find $|\vec{b}|$, if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$

## - Watch Video Solution

5. Find the area of the parallelogram whose adjacent sides are determined by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$.

## Watch Video Solution

6. Find a vector of magnitude 11 in the direction on opposite to that of $\overline{P Q}$. Where P and Q are the points $(1,3,2)$ and $(-1,0,8)$, respectively.

## - Watch Video Solution

7. If the points $(-1,-1,2),(2, m, 5)$ and $(3,11,6)$ are collinear, find the value of $m$.

## - Watch Video Solution

8. Obtain the projection of the vector $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.
9. Show that the position vector of the point $P$, which divides the line joining the points A and B having position vectors $\vec{a}$ and $\vec{b}$ internally in ratio m:n is $\frac{m \vec{b}+n \vec{a}}{m+n}$

## - Watch Video Solution

2. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+2 \hat{j}$ such that $\vec{a}+\lambda \vec{b}$ is perpendicular to $\vec{c}$, then find the value of $\lambda$.

## - Watch Video Solution

3. Show that the points $A(1,2,7), B(2,6,3)$ and $C(3,10,-10$ are collinear.
4. Find all vectors of magnitude $10 \sqrt{3}$ that are perpendicular to the plane of $\hat{i}+2 \hat{j}+\hat{k}$ and $-\hat{i}+3 \hat{j}+\hat{k}$.

## - Watch Video Solution

5. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$

## - Watch Video Solution

6. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a vector of magnitude 6 units which is parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$.

## - Watch Video Solution

1. If $\vec{a}$ is a unit vector such that $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$ find $|\vec{x}|$.

## - Watch Video Solution

2. If $\vec{a}$ and $\vec{b}$ are unit vectors, then find the angle between $\vec{a}$ and $\vec{b}$, given that $(\sqrt{3} \vec{a}-\vec{b})$ is a unit vector.

## - Watch Video Solution

3. Find the projection of vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $2 \hat{i}-3 \hat{j}+6 \hat{k}$.

## - Watch Video Solution

4. If $\vec{a}$ and $\vec{b}$ are perpendicular vectors $|\vec{a}+\vec{b}|=13$ and $|\vec{a}|=5$, find the value of $|\vec{b}|$

## - Watch Video Solution

5. Write the projection of the vector $\hat{i}+\hat{j}+\hat{k}$ along the vector $\hat{j}$.

## - Watch Video Solution

6. Write the value of $\lambda$ so that the vectors $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$ are perpendicular to each other ?

## - Watch Video Solution

7. Write the projection of the vector $7 \hat{i}+\hat{j}-4 \hat{k}$ on the vector $2 \hat{i}+6 \hat{j}+3 \hat{k}$.

## - Watch Video Solution

8. Write the projection of $\vec{b}+\vec{c}$ on $\vec{a}$, where $\vec{a}=2 \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$.
9. Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}+\vec{a})(\vec{x}-\vec{a})=15$.

## - Watch Video Solution

10. Find ' $\lambda$ ' when the projection of $\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$ is 4 units.

## - Watch Video Solution

11. If $|\vec{a}|=\sqrt{3},|\vec{b}|=2$ and angle between $\vec{a}$ and $\vec{b}$ is $60^{\circ}$, find $\vec{a} \cdot \vec{b}$.

## - Watch Video Solution

12. Find the angle between the vectors $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.
13. Write the angle between two vectors $\vec{a}$ and $\vec{b}$ with magnitudes $\sqrt{3}$ and 2 respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$.

## - Watch Video Solution

14. Find the value of $\lambda$ if the vectors $\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\lambda \hat{j}-3 \hat{k}$ are perpendicular to each other.

## - Watch Video Solution

## Topic 2 Short Answer Type Questions Ii

1. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+2 \hat{j}$ such that $\vec{a}+\lambda \vec{b}$ is perpendicular to $\vec{c}$, then find the value of $\lambda$.
2. If two vectors $\vec{a}$ and $\vec{b}$ such that $|\vec{a}|=2|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=6$, find $|\vec{a}-\vec{b}|$.

## Watch Video Solution

3. If $\vec{a}=\hat{i}-\hat{j}+7 \hat{k}$ and $\vec{b}=5 \hat{i}-\hat{j}+\lambda \hat{k}$, then find the value of $\lambda$ so that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular vectors.

## - Watch Video Solution

4. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular vectors of equal magnitude, then the angle $\theta$ which $\vec{a}+\vec{b}+\vec{c}$ makes with any one of three given vectors is given by

## - Watch Video Solution

5. Vectors $\vec{a}, \vec{b}$ and $\vec{c}$ are such that $\vec{a}+\vec{b}+\vec{c}=0$ and $|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=7$. Find the angle between $\vec{a}$ and $\vec{b}$.

## ( Watch Video Solution

6. The scalar product of the vector $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors $\vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{c}=\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of $\lambda$ and hence find the unit vector along $\vec{b}+\vec{c}$.

## - Watch Video Solution

7. If $\vec{a}$ and $\vec{b}$ are two vectors such that $|\vec{a}+\vec{b}|=|\vec{a}|$, then prove tat $2 \vec{a}+\vec{b}$ is perpendicular to $\vec{b}$.

## - Watch Video Solution

8. If the sum of the unit vectors $\widehat{a}$ and $\vec{b}$ is a unit vector. Show that the magnitude of their difference is $\sqrt{3}$.

## Watch Video Solution

9. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $|\vec{a}|=5,|\vec{b}|=12$ and $|\vec{c}|=13 \quad$ and $\quad \vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

## - Watch Video Solution

10. If two vectors $|\vec{a}|=2,|\vec{b}|=1$ and $\vec{a} \cdot \vec{b}=1$, then find the value of $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$.

## - Watch Video Solution

11. If $\vec{a}, \vec{b}$ and $\vec{c}$ are three vectors such that $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=3$ and each one of them is perpendicular to the sum of the other two, then find $|\vec{a}+\vec{b}+\vec{c}|$.

## - Watch Video Solution

12. The dot product of a vector with the vectors $\hat{i}-3 \hat{k}, \hat{i}-2 \hat{k}$ and $\hat{i}+\hat{j}+4 \hat{k}$ are 0,5 and 8 respectively. Find the vector.

## - Watch Video Solution

## Topic 3

1. If $\vec{a}=2 \hat{i}-3 \hat{j}+\hat{k}, \vec{b}=-\hat{i}+\hat{k}, \vec{c}=2 \hat{j}-\hat{k}$ are three vectors, find the area of the parallelogram having diagonals $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$.

## - Watch Video Solution

2. Find the unit vector perpendicular to both the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ where $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$.

## - Watch Video Solution

3. If $\vec{a}=3 \hat{i}-\hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}-3 \hat{k}$ then express $\vec{b}$ in the form of $\vec{b}=\overrightarrow{b_{1}}+\overrightarrow{b_{2}}$ where $\overrightarrow{b_{1}}\left|\mid \vec{a}\right.$ and $\overrightarrow{b_{2}}$ perpendicular to $\vec{a}$.

## - Watch Video Solution

4. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{j}-\hat{k}$, find a vector $\vec{c}$, such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$.

## - Watch Video Solution

5. Using vectors, find the area of the triangle with vertices are $A(1,2,3), B(2$, $-1,4)$ and $C(4,5,-1)$.
6. Find the unit vector perpendicular to the plane of $\triangle A B C$ whose vertices are
$A(3,-1,2), B(1,-1,-3)$ and $C(4,-3,1)$

## - Watch Video Solution

7. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector $\vec{p}$ which is perpendicular to both $\vec{a}$ and $\vec{b}$ and $\vec{p} \cdot \vec{c}=18$.

## - Watch Video Solution

8. Find the area of the triangle with vertices $\mathrm{A}(1,1,2), \mathrm{B}(2,3,5)$ and $\mathrm{C}(1,5,5)$.

## - Watch Video Solution

9. Find the unit vector perpendicular to each of the vectors
$\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$

## - Watch Video Solution

10. Find the vector $\vec{p}$ which is perpendicular to both $\vec{\alpha}=4 \hat{i}+5 \hat{j}-\hat{k}$ and $\vec{\beta}=\hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{p} \cdot \vec{q}=21$, where $\vec{q}=3 \hat{i}+\hat{j}-\hat{k}$.

## - Watch Video Solution

11. Find the unit vector perpendicular to the plane $A B C$ where the position vectors $\mathrm{A}, \mathrm{B}$ and C are $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+\hat{j}+2 \hat{k}$ and $2 \hat{i}+3 \hat{k}$.

## - Watch Video Solution

12. If $\vec{a}, \vec{b}$ and $\vec{c}$ are three unit vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and angle between $\vec{b}$ and $\vec{c}$ is $\frac{\pi}{6}$, prove that $\vec{a}= \pm 2(\vec{b} \times \vec{c})$.

## - Watch Video Solution

13. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$.

Find a vector $\vec{p}$ which is perpendicular to both $\vec{a}$ and $\vec{b}$ and $\vec{p} \cdot \vec{c}=18$.

## - Watch Video Solution

## Topic 4 Short Answer Type Questions li

1. Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a}, \vec{b}, \vec{c}]$.

## - Watch Video Solution

2. If $\vec{a}, \vec{b}$ and $\vec{c}$ are three unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\vec{O}$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

## Watch Video Solution

3. Prove that $[\vec{a}, \vec{b}, \vec{c}+\vec{d}]=[\vec{a}, \vec{b}, \vec{c}]+[\vec{a}, \vec{b}, \vec{d}]$.

## (D) Watch Video Solution

4. If the vectors $\vec{a}, \vec{b}$ and $\vec{c}$ are coplanar, prove that the vectors $\vec{a}+\vec{b}, \vec{b}+\vec{c}$ and $\vec{c}+\vec{a}$ are also coplanar.

## - Watch Video Solution

5. Show that the four points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D with position vectors $4 \hat{i}+5 \hat{j}+\hat{k}-\hat{j}-\hat{k}, 3 \hat{i}+9 \hat{j}+4 \hat{k}$ and $4(-\hat{i}+\hat{j}+\hat{k})$ respectively are coplanar.
6. Find the value of $\lambda$, if the point with position vectors $3 \hat{i}-2 \hat{j}-\hat{k}, 2 \hat{i}+3 \hat{j}-4 \hat{k},-\hat{i}+\hat{j}+2 \hat{k} \quad$ and $\quad 4 \hat{i}+5 \hat{j}+\lambda \hat{k} \quad$ are coplanar.

## Watch Video Solution

7. If $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{c}=3 \hat{i}+4 \hat{j}-\hat{k}$, then find $\quad \vec{a} \cdot(\vec{b} \times \vec{c}) \quad$ and $\quad(\vec{a} \times \vec{b}) \cdot \vec{c}$. Is,
$\vec{a} \cdot(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \cdot \vec{c} ?$

- Watch Video Solution

