

CHEMISTRY

BOOKS - MODERN PUBLICATION CHEMISTRY (KANNADA ENGLISH)

UNIT TEST 5

Questions

1. For the reacton:

$$A+B o C+D$$

if the concentration of the reactants are increased by three times, the rate of the reaction will increase by:

A. 9 times

- B. 81 times
- C. 26 times
- D. 27 times

Answer: B

Watch Video Solution

2. The activation energy of a reaction :

X o Y

is 9.0 kcal/mol.` The increase in rate constnat when the temperature is increased from 298 K to 308 K is:

- A. 10~%
- B. 50~%
- C. 100~%

D. 63.2%`

Answer: C

Watch Video Solution

3. Which of the following solutions will have maximum freezing point?

 ${\sf A.}\ 0.01 MNaCl$

B. $0.01MBaCl_2$

 ${\it C.}~0.01M~{\it glucose}$

 ${\rm D.}\ 0.001 M{\rm Urea.}$

Answer: D

4. In spinel structure, O^{2-} ions are cubic-closed packed, whereas 1/8th of the tratrhedral holes are occupied by A^{2+} cations and 1/2 of the octahedral holes are occupied by cations B^{3+} . The general formula of this compound is

- A. A_2BO_4
- $\operatorname{B.}AB_2O_4$
- $\mathsf{C}.\,A_2B_4O$
- D. A_4B_2O

Answer: B

Watch Video Solution

5. How many unit cells are present in a cube shaped ideal crystal of NaCl of mass 1.0 g ?

A.
$$5.14 imes 10^{21}$$

B. $1.28 imes 10^{21}$

C. 1. 71×10^{21}

D. $2.57 imes 10^{21}$

Answer: D

Watch Video Solution

6. Copper crystallizes in fcc with a unit cell length of 361 pm.

What is the radius of copper atom?

A. 108 pm

B. 127 pm

C. 157 pm

D. 181 pm

Answer: B

Watch Video Solution

7. The standard reduction potentials of $Cu^{2+}ig|Cu$ and $Cu^{2+}ig|Cu^{4}$ are 0.337 and 0.153V respectively.

The standard electrode potential of $Cu^+ \mid Cu$ half cell is

- A. 0.184V
- B. 0.827V
- $\mathsf{C}.\,0.521V$
- $D.\,0.490V$

Answer: C

8. Molar conductivity of a solution is $1.26 \times 10^2 \Omega^{-1} cm^2 mol^{-1}$. Its solarity is 0.01M. Its specific conductivity will be

A.
$$1.26 imes10^{-25}$$

B. 1.
$$26 \times 10^{-3}$$

$$\mathsf{C.}\,1.26\times10^{-4}$$

D.0.0063

Answer: B

Watch Video Solution

9. Consider the gaseous reaction having rate =k[A][B]

The volume of the reaction vessel containing these gases is suddenly reduced to one-fourth the initial volume. The rate of reaction relative to original rate would be:

- A. $\frac{1}{16}$ times
- B. $\frac{1}{8}$ times
- C. 16 times
- D. 4 times

Answer: C

- 10. Sixteen gram of a radioactive substance are reduced to 1 g in one hour. The half life period of the radioactive substance is:
 - A. 15 min
 - B. 30 min
 - C. 45 min
 - D. 20 min

Answer: A

Watch Video Solution

11. If 5 g of an isotope sample has a half life of 30 days, the half life of 2 g of sample is :

- A. 15 days
- B. 30 days
- C. 12 days
- D. 75 days

Answer: B

12. An aqueous solution of urea containing 6 g in 500 ml has a density equal to 1.05. If the molar mass of urea is 60, then the molality of the solution is:

- A. 0.20m
- B. 0.10m
- $\mathsf{C}.\,0.193m$
- D. 0.0193m

Answer: C

Watch Video Solution

13. For the reaction $A\Leftrightarrow B$, it is found that the rate of reaction doubles when the concentration of A is increased four times. The units of its rate constant are :

$$A. sec^{-1}$$

B. $mol L^{-1} \sec^{-1}$

C. $mol^{1/2}L^{-1/2}\sec^{-1}$

D. $mol^{-1/2}L^{1/2}\sec^{-1/2}$

Answer: C

View Text Solution

14. Which of the following statements is not correct regarding lyophilic and lyophobic sols . ?

A. Lyphilic sols, are highly hydrated while lyophobic sols, are

partly hydrated

B. Lyophilic sols, can be prepared by simple and direct methods while lyophobic sols. Can be prepared by indirect

methods

C. Lyophilic sols, are irreveersible while lyophobic sols, are reversible.

D. Lyophobic sols, are less stable and get easily coagulated while lyophilic sols, are stable.

Answer: C

15. The decompostion of hydrogen peroxide in the presence of I^- ion has been found to be first order reaction with rate constnat $1.01\times 10^{-2}~{
m min}^{-1}$. The concnetration of H_2O_2 which would give rate equal to $1.12\times 10^{-2}molL^{-1}~{
m min}^{-1}$ is :

A. 1.
$$13 imes 10^{-4} mol L^{-1}$$

B.
$$1.11 mol L^{-1}$$

C.
$$1.11 imes 10^{-2} mol^{-1}$$

D. 1.
$$13 imes 10^4 mol L^{-1}$$

Answer: B

Watch Video Solution

16. Blue colour of sea water is due to

- A. Reflection of blue sky by sea-water
- B. Scattering of blue light by water molecules
- C. Absorption of all colours except the blue colour by water molecules

D. Reflection of the blue light by the impurities in sea-water

Answer: B

Watch Video Solution

17. The boiling point of a solution containing 2.62 g of a substance A in 100 g of water is higher by $0.0512^{\circ}C$ than the boiling point of pure water. The molar mass of the substance ($K_b=5.12Km^{-1}$) is :

- A. 131
 - B. 2620
 - C.26.2
- D. 262.

Answer: B

18. The rate constnat of a reaction:

A. increase linearly with increase of temperature

B. decreases linearly with decrease of temperature

C. increases exponentially with increse of temperature

D. decreases exponentially with decrease of temperature

Answer: C

Watch Video Solution

19. If K_1 and K_2 are the rate constants at temperatures

 $T_1 \ \ {
m and} \ \ T_2$ respectively and E_a is the activatino energy, then :

A.
$$\log rac{k_1}{k_2} = -rac{E_a}{2.303 R \left[rac{1}{T_1} - rac{1}{T_2}
ight]}$$

B. $\lograc{k_2}{k_1}=rac{E_a}{2.303R}igg[rac{1}{T_2}-rac{1}{T_2}igg]$

D. $\log rac{k_1}{k_2} = -rac{E_a}{2.303} \left[rac{1}{T_2} - rac{1}{T_1}
ight]$

C. $\log rac{k_1}{k_2} = rac{E_a}{2.303} \left| rac{1}{T_1 - rac{1}{T}}
ight|$

Watch Video Solution

Answer: A

M HCl and $0.1MH_2SO_4$. Which of the following expressions

20. The hydrolysis of an ester was carried out separately with
$$0.1$$
 M HCl and $0.1MH_0SO_4$. Which of the following expressions

A.
$$k(HCl)k(H_2SO_4)$$

B. $k(HCl) > k(H_2SO_4)$

C.
$$k(HCl) < k(H_2SO_4)$$

D.
$$k(H_2SO_4)=2k(H_2SO_4)$$

Answer: B

21. When the concentration of a particular reactant is increased by a factor of 5, the reactin rate becomes 25 times. The order of that reactant is:

- A. 2
- B. 3
- C. 5
- D. 2.5

Answer: A

22. A substance with initial concentration A_0 reacts according to zero order kinetics. The time taken for the completion of the reaction is :

- A. $\frac{A_0}{k}$
- B. $\frac{2A_0}{k}$
- C. $\frac{k}{A_0}$
- D. $\frac{A_0}{2k}$

Answer: A

Watch Video Solution

23. The rusting of iron takes place as follows:

$$2H^{\,+}\,+2e^{\,-}\,+rac{1}{2}O_2(g)
ightarrow H_2O(l)E^{\,\circ}\,=\,+\,1.23V$$

 $Fe^{2+}+2e^ightarrow Fe(s)E^\circ = -0.44V$

Calculate ΔG° for the net process

A. $-322kJmol^{-1}$

B. $-161kJmol^{-1}$

C. $-152kJmol^{-1}$

D. $-76kJmol^{-1}$

Answer: A

24. 4.5 g of aluminium (at mass =27.~a.~m.~u) is deposited at cathode from Al^{3+} solution by certain quantity of electric charge. The volume of hydrogen produced at STP from H^+ ions in soution by the same quantity of electric charge will be

A. 44.8L

 ${\tt B.\,22.4} L$

 $\mathsf{C.}\ 11.2L$

D. 5.6L

Answer: D

Watch Video Solution

25. The reaction : $A \to B$ follows first order kinetics . The time taken for 0.8 mol of A to produce 0.6 mol of B is 1 hour . What is the time taken for conversion of 0.9 mol of A to produce 0.675 mol of B ?

A. 1 hour

 ${\sf B.}\,0.5\,{\sf hour}$

 $\mathsf{C.}\ 0.25\ \mathsf{hour}$

D. 2 hour

Answer: A

Watch Video Solution

26. The half life of a radioisotope is 4 hr. If the initial mass of the isotope was 200 g, the mass remaining after 24 hr undecayed is:

 $\mathsf{A.}\ 3.125g$

 $\mathsf{B.}\,2.084g$

 $\mathsf{C.}\ 1.042g$

D. 4.167g

Answer: A

27. The rate of a first order reaction is 1.5×10^{-2} mol $L^{-1} {\rm min}^{-1}$ at 0.5 M concentration of the reactant . The half life of the reaction is :

A. 23.1 min

B. 8.73 min

C. 7.53 min

 $D.\,0.383\,\mathrm{min}$

Answer: A

Watch Video Solution

28. The half life period of a zero order reaction is equal to:

A.
$$\dfrac{2k}{[A]_0}$$

B. $\frac{[A]_0}{2k}$

C.
$$\frac{1}{k}$$
D. $\frac{0.693}{k[A]_0}$

Answer: B

Watch Video Solution

The solution

29. AN aqueous solution of a substacne freezes at $-0.186^{\circ}\,C.$

boiling point of the same $\left(k_{f}=1.86Km^{-1},K_{b}=0.512Km^{-1}
ight)$ is :

A. $100.0512^{\circ} C$

B. 100.512° C

C. 100.186° C

D.
$$\frac{100.512}{0.186}$$

Answer: A

Watch Video Solution

30. 0.01 M solution each of urea, common salt and Na_2SO_4 are taken, the ratio of depression of freezing point is:

- A. 1:2:1
- B. 2:2:3
- C. 1: 3: 2
- D. 1:2:3.

Answer: D

31. When potassium iodide is added to silver nitrate solution.

The sol formed may be written as:

A.
$$AqII^{\,-}$$

B. $AqIAq^+$

 $\mathsf{C.}\ AgINO_3^-$

D. $NO_3^-AgIAg^+$

Answer: B

Watch Video Solution

32. If

 $E^{\,\circ}\left(Fe^{2\,+}\mid Fe
ight) = \ -0.441V \ \ ext{and} \ \ E^{\,\circ}\left(Fe^{3\,+}\mid Fe^{2\,+}
ight) = 0.771V,$

the standard E.M.F. of the reaction:

 $Fe + 2Fe^{3+} \rightarrow 2Fe^{2+}$ will be

- A. 1.653
- $\mathsf{B}.\,1.212V$
- C.0.111
- $\mathsf{D}.\,0.330V$

Answer: B

Watch Video Solution

33. Resistance of a conductivity cell filled with a solution of an electrolyte of concentration 0.1M is 100Ω . The conductivity of this solution is $1.29Sm^{-1}$. Resistance of the same cell when filled with 0.2M of the same solution is 520Ω . The molar conductivity of 0.2M solution of the electrolyte will be

A.
$$1240 imes 10^{-4} Sm6(2) mol^{-1}$$

B. 1.
$$24 imes 10^{-4} Sm^2 mol^{-1}$$

C.
$$12.4 imes10^{-4} Sm^2 mol^{-1}$$

D.
$$124 imes10^{-4} Sm^2 mol^{-1}$$

Answer: C

Watch Video Solution

34. The coulombs of electricity required for reduction of 1 mol of

 MnO_4^- to Mn^{2+} are :

 $\mathsf{A.}\ 96500C$

B. $1.93 imes 10^5 C$

C. $4.83 imes 10^5 C$

D. $9.65 imes 10^6 C$

Answer: C

Watch Video Solution

35. The cell

 $Znig|Zn^{2+}(1M)ig|ig|Cu^{2+}(1M)ig|Cu(E^\circ\ _(cell)=1.\ 10V)$ was allowed to be completely discharged at 298 K. The relative concentration of Zn^{2+} to $Cu^{2+}\left(rac{ig[Zn^{2+}ig]}{ig[Cu^{2+}ig]}
ight)$ is :

B.
$$10^{37.3}$$

$$\mathsf{C.}\ 9.65 imes 10^4$$

D. antilog (24.08)

Answer: B

36. Calculate the equilibrium constant for the reaction

$$Cu(s)+2Ag+(aq)
ightarrow Cu^{+2}(aq)+2Ag(s), E_{
m cell}^{\,\circ}=0.46V.$$

- A. $2.0 imes 10^{10}$
- $\texttt{B.}\ 4.0\times10^{10}$
- $c. 4.0 \times 10^{15}$
- D. $2.4 imes 10^{10}$

Answer: C

Watch Video Solution

37. Electrolysis of dilute aqueous sodium chloride solution was carried out by passing 10 milliampere current. The time required

to liberate 0.01 mol of H_2 gas at the cathode is (1 Faraday = 96500 C mol^{-1}).

A.
$$9.65 imes 10^4 s$$

B.
$$19.3 imes 10^4 s$$

C.
$$28.95 imes 10^4 s$$

D.
$$38.6 imes 10^4 s$$

Answer: B

38. The rate constant for the reaction :

$$2N_2O_5
ightarrow 4NO_2 + O_2$$

is $3.0 imes 10^{-5} {
m sec}^{-1}$. If the rate is $2.40 imes 10^{-5}$ mol ${
m litre}^{-1} {
m sec}^{-1}$

then the concentration of N_2O_5 (in mol ${
m litre}^{-1}$) is :

- A. 1.4
- $\mathsf{B.}\ 1.2$
- C. 0.04
- D.0.8

Answer: D

Watch Video Solution

39. For a general chemical charge $2A+2B \to {\sf products}$, the rates with respect to A is r_1 , and with respect to B is r_2 . The rates r_1 and r_2 are related as :

- A. $3r_1=2r_2$
- $\mathtt{B.}\,r_1=r_2$
- $\mathsf{C.}\,2r_1=3r_2$

D.
$$r_1^2=2r_2$$

Answer: A

Watch Video Solution

- **40.** The value of observed and theoretical molecular masses of an electrolyte AB are 65.4 and 114.45 respectively. The electrolyte AB in the solution dissociates to the extent of :
 - A. 85~%
 - $\mathsf{B.}\ 25\ \%$
 - C. $90\,\%$
 - D. 75~%

Answer: D

Watah Walaa Calutian

watch video Solution

41. 5 ml of 1 NHCl, 20 ml of $\frac{N}{2}H_2SO_4$ and 30 ml of $\frac{N}{3}HNO_3$ are mixed together and the final volume is made upto 1L. The normality of the resulting solution is :

- A. $\frac{N}{5}$
- ${\rm B.}\,\frac{N}{20}$
- $\mathsf{C.}\,\frac{N}{40}$
- $\mathrm{D.}\;\frac{N}{50}$

Answer: C

42. Given

$$E^{\,\circ}\left(Cr^{3\,+}\,\mid\,Cr
ight)=\,-\,0.72V\, ext{ and }\,E^{\,\circ}\left(Fe^{2\,+}\,\mid\,Fe
ight)=\,-\,0.42V.$$

The potential for the cell

$$Crig|Cr^{3+}(0.1M)ig|ig|Fe^{2+}(0.01M)ig|Fe$$
 is

 $\mathsf{A.}-0.26V$

 ${\tt B.}\,0.26V$

 $\mathsf{C}.\,0.339V$

 $\mathsf{D.}-0.339V$

Answer: B

Watch Video Solution

43. A solution oof nickel sulphate in which nickel rod is dipped is dilute 10 times. The reduction potential of Ni at 298 K

- A. Decreases by 60 mV
- B. Decreases by 30 mV
- C. Decreases by 30 mV
- D. Increases by 30 mV

Answer: B

- **44.** The equivalent conductance of M/32 solution of a work monobasic acid is 8 mho cm^2 and at infinite dilution is 400 mho cm^2 . The dissociation constant of this acid is
 - A. $1.25 imes 10^{-6}$
 - B. $6.25 imes 10^{-4}$
 - C. $1.25 imes 10^{-4}$

D.
$$1.25 imes 10^{-5}$$

Answer: D

Watch Video Solution

- 45. When In k is poltted against 1/T, the slope was found to be
- $-10.7 imes 10^3 K$, activation energy for the reaction would be :

A.
$$-78.\ 9kJmol^{-1}$$

 ${\tt B.}\ 2.26kJmol^{-1}$

 $\mathsf{C.}\,88.9kJmol^{-1}$

D. $10.7kJmol^{-1}$

Answer: C

46. For the first order reaction the half life period is (if k is rate constant and a is initial concentration):

A.
$$\frac{\log 2}{k}$$

B.
$$\frac{1}{ka}$$

$$c. \frac{\ln k}{a}$$

D.
$$\frac{\log k}{2}$$

Answer: A

Watch Video Solution

47. For the first order reaction, time required for $99\,\%$ completion is :

A. half the time required for completion of $90\,\%$ of reaction

- B. thrice the time required for $90\,\%$ completion of reaction
- C. twice the time required for $90\,\%$ completion of reaction
- D. none of these

Watch Video Solution

48. In the reversible reaction $2NO_2 \Leftrightarrow N_2O_4$, the rate of disappearance of NO_2 is equal to :

- A. $rac{2k_1}{k_2}[NO_2]^2$
- ${\sf B.}\ 2K_1{[NO_2]}^2-k_2{[N_2O_4]}$
- $\mathsf{C.}\, 2k_1 [NO_2]^2 k_2 [N_2 O_4]$
- D. $(2k_1-k(2))[NO_2]$

Watch Video Solution

49. A metal crystallized in fcc lattcie and edge of the unit cell is 620 pm. The radius of metal atom is

A.
$$265.5 \pm$$

B. 310
$$\pm$$

C.219.2pm

 $\mathsf{D.}\,428.6\,\mathsf{pm}$

Answer: C

50. A posible mechanism for the reaction :

$$2NO+2H_2
ightarrow N_2+2H_2O$$
 is :

(i)
$$2NO+ \stackrel{k_1}{\Longleftrightarrow} N_2O_2$$

$$(ii)N_2O_2+H_2 \stackrel{k_2}{\longrightarrow} N_2O+H_2O$$

(iii)
$$N_2O+H_2\stackrel{k_3}{\longrightarrow}N_2+H_2O$$

If the second step is the rate determining step then rate law may

be written as:?

A. Rate=
$$k[N_2O_2][H_2]$$

B. Rate
$$= k[NO][H_2]$$

C. Rate
$$= k[NO]^2[H_2]$$

D. Rate
$$= k[NO][H_2]^2$$
.

Answer: C

51. A radioactive isotope has half life of 27 days. Starting with 4g
of the isotope, what will be the mass remaining after 75 days?

- A. 1.16g
- B. 0.58g
- $C. \, 5.8g$
- D. 13.58g

Answer: B

Watch Video Solution

52. The appearance of colour in solid alkali halides is generally due to

A. Schottky defect

- B. Frenkel defect
- C. Interstitial position
- D. F-centres

Answer: D

Watch Video Solution

53. The half life period of an radioactive element is 1.4×10^{10} years. The time in which the activity of the element is raduced to $90\,\%$ of its original value is :

- A. $2.202 imes 10^{11}$ years
- B. $2.303 imes 10^9$ years
- C. $2.303 imes 10^{16}$ years
- D. $2.303 imes 10^7$ years

Answer: B

Watch Video Solution

54. CsBr crystallzes in a body centred cubgic lattice . The unit cell length is 436.6 pm. Given that the atomic mass of Cr=133 and that of Br=80 amu and Avogadro number being $6.02\times 10^{23} mol^{-1}$. The density of CsBr is

A. 0.
$$425qcm^{-3}$$

B.
$$8.25qcm^{-3}$$

C.
$$4.25gcm^{-3}$$

D.
$$42.5 gcm^{-3}$$

Answer: B

55. At low pressure and at high pressure, Freundlich adsorption isotherm may be expressed as :

- A. K_p, K
- B. $k. p^n, Kp^{1/n}$ (n is whole number)
- $\mathsf{C}.\,k_p,\,K_p$
- D. K_p, K_p^{-1}

Answer: A

Watch Video Solution

56. Which of the following statements is not correct regarding physical and chemical adsorptions?

- A. (i) and (iv)
- B. (i) and (iii)
- C. (ii) and (iii)
- D. (ii), (iii) and (iv)

57. If k for a first order reaction is $5.48 \times 10^{-14} s^{-1}$, its two

A. $2.~01 imes10^{13}s$

third life is:

B. $7.86 \times 10^{11} s$

- C. $2.~01 imes10^{11}s$
- D. $7.86 imes 10^{13} s$

Answer: A

Watch Video Solution

58. A 0.5 molal solution of ethylene glycol in water is used as coolant in a car. If the freezing point constant of water be $1.86\,^\circ\,C$ per mol, the mixture will freeze at

A.
$$0.93\,^{\circ}\,C$$

$$\mathrm{B.}-0.93^{\circ}C$$

$$\mathsf{C}.\,1.86\,^{\circ}\,C$$

$$D.-1.86^{\circ}$$
.

Answer: B

59. Which of the following is correct graph for a second order reaction?

Answer: A

View Text Solution

60. A first order reactin is $15\,\%$ complete in 20 minutes. Its rate constant is :

A.
$$8.13 \times 10^{-6} \; \mathrm{min}^{-1}$$

$$\text{B.}\,8.13\times10^{-9}\,\,\text{min}^{-1}$$

$$\text{C.}\,8.13\times 10^{-3}\,\, \mathrm{min}^{-1}$$

D.
$$8.13 \times 10^{-5} \ min^{-1}$$

