©゙ doubtnut

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR ENGLISH

COMPLEX NUMBERS AND QUADRATIC

EQUATIONS

Others

1. If the difference between the roots of the equation $x^{2}+a x+1=0$ is less than $\sqrt{5}$, then the set of possible
values of a is (1) $(-3,3)(2)(-3, \infty)(3)(3, \infty)$
$(-\infty,-3)$
2. If $|z+4| \leq 3$, then the maximum value of $|z+1|$ is (1)

4 (B) 10 (3) 6 (4) 0

- Watch Video Solution

3. The
quadratic
equations
$x^{2}-6 x+a=0 a n d x^{2}-c x+6=0$ have one root in common. The other roots of the first and second equations are integers in the ratio $4: 3$. Then the common root is (1) 1 (2) 4 (3) $3(4) 2$
4. If the roots of the equation $b x^{2}+c x+a=0$ be imaginary, then for all real values of x, the expression $3 b^{2} x^{2}+6 b c x+2 c^{2}$ is (1) greater than 4 ab (2) less than 4 ab (3) greater than $4 a b$ (4) less than $4 a b$

- Watch Video Solution

5. If $\left|z-\frac{4}{z}\right|=2$, then the maximum value of $|Z|$ is equal to (1) $\sqrt{3}+1$ (2) $\sqrt{5}+1$ (3) 2 (4) $2+\sqrt{2}$

- Watch Video Solution

6. If α and β are the roots of the equation $x^{2}-x+1=0$, then $\alpha^{2009}+\beta^{2009}=(1) 4$ (2) 3 (3) 2 (4) 1
7. Let α, β be real and z be a complex number. If $z^{2}+\alpha z+\beta=0$ has two distinct roots on the line Re $z=1$, then it is necessary that : (1) $b \in(0,1)$
$b \in(-1,0)(3)|b|=1(4) b \in(1, \infty)$

D Watch Video Solution

8. If $\omega(\neq 1)$ is a cube root of unity, and
$(1+\omega)^{7}=A+B \omega$. Then (A, B) equals
(i. $)(0,1)$
(ii. $)(1,1)$
(iii. $)(1,0)$
$(i v).(-1,1)$

- Watch Video Solution

9. If $z \neq 1$ and $\frac{z^{2}}{z-1}$ is real, then the point represented by the complex number z lies (1) either on the real axis or on a circle passing through the origin (2) on a circle with centre at the origin (3) either on the real axis or on a circle not passing through the origin (4) on the imaginary axis

- Watch Video Solution

10. If
the
equation
$x^{2}+2 x+3=0$ and $a x^{2}+b x+c=0, a, b, c \in R$
have a common root, then $a: b: c$ is
11. If z is a complex number of unit modulus and argument
q , then $\arg \left(\frac{1+z}{1+\bar{z}}\right)$ equal (1) $\frac{\pi}{2}-\theta$ (2) θ (3) $\pi-\theta$ (4) $-\theta$

D View Text Solution

12. The real number k for which the equation, $2 x^{3}+3 x+k=0$ has two distinct real roots in [0,1] (1)
lies between 2 and 3 (2) lies between -1 and $0(3)$ does not exist (4) lies between 1 and 2

- Watch Video Solution

13. Let a and b be the roots of equation $p x^{2}+q x+r=0, p \neq 0$. . If $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are in A.P. and $\frac{1}{\alpha}+\frac{1}{\beta}=4$, then the value of $|\alpha-\beta|$ is (1) $\frac{\sqrt{61}}{9}$ (2) $\frac{2 \sqrt{17}}{9}$ (3) $\frac{\sqrt{34}}{9}$ (4) $\frac{2 \sqrt{13}}{9}$

D Watch Video Solution

14. If z is a complex number such that $|z| \geq 2$ then the minimum value of $\left|z+\frac{1}{2}\right|$ is

D Watch Video Solution

15. A complex number z is said to be unimodular if .

Suppose z_{1} and z_{2} are complex numbers such that
$\frac{z_{1}-2 z_{2}}{2-z_{1} z_{2}}$ is unimodular and z_{2} is not unimodular. Then the point z_{1} lies on a : (1) straight line parallel to x-axis (2) straight line parallel to y-axis (3) circle of radius 2 (4) circle of radius $\sqrt{2}$

D View Text Solution

16. Let α and β be the roots of equation $x^{2}-6 x-2=0$.

If $a_{n}=\alpha^{n}-\beta^{n}, f$ or $n \geq 1$, then the value of
$\frac{a_{10}-2 a_{8}}{2 a_{9}}$ is equal to: (1) $6(2)-6$ (3) 3 (4) -3
17. A value of θ for which $\frac{2+3 i \sin \theta}{1-2 i \sin \theta}$ purely imaginary, is :
(1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$ (4) $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$

- View Text Solution

18. Let ω be a complex number such that $2 \omega+1=z$ where

$$
z=\sqrt{-3}
$$

$\left|(1,1,1),\left(1,-\omega^{2}-1, \omega^{2}\right),\left(1, \omega^{2}, \omega^{7}\right)\right|=3 k$, then k is equal to

D View Text Solution

19. If, for a positive integer n, the quadratic equation,

$$
x(x+1)+(x-1)(x+2)++(x+n-1)(x+n)=10 n
$$

has two consecutive integral solutions, then n is equal to :
(1)10 (2) 11 (3) 12 (4) 9

- Watch Video Solution

