

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR ENGLISH

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

Others

1. If the difference between the roots of the equation $x^2 + ax + 1 = 0$ is less than $\sqrt{5}$, then the set of possible values of a is (1) (-3, 3) (2) $(-3, \infty)$ (3) $(3, \infty)$ (4) $(-\infty, -3)$

2. If $|z+4| \leq 3$, then the maximum value of |z+1| is (1) 4 (B) 10 (3) 6 (4) 0

Watch Video Solution

3. The quadratic equations $x^2-6x + a = 0$ and $x^2-cx + 6 = 0$ have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3. Then the common root is (1) 1 (2) 4 (3) 3 (4) 2

4. If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real values of x, the expression $3b^2x^2 + 6bcx + 2c^2$ is (1) greater than 4ab (2) less than 4ab (3) greater than 4ab (4) less than 4ab

5. If $\left|z-rac{4}{z}
ight|=2$, then the maximum value of |Z| is equal to (1) $\sqrt{3}+1$ (2) $\sqrt{5}+1$ (3) 2 (4) $2+\sqrt{2}$

Watch Video Solution

6. If lpha and eta are the roots of the equation x^2 -x+1=0 , then $lpha^{2009}+eta^{2009}=$ (1) 4 (2) 3 (3) 2 (4) 1

7. Let α, β be real and z be a complex number. If $z^2 + \alpha z + \beta = 0$ has two distinct roots on the line Re z = 1 , then it is necessary that : (1) $b \in (0, 1)$ (2) $b \in (-1, 0)$ (3) |b| = 1 (4) $b \in (1, \infty)$

Watch Video Solution

8. If $\omega (\neq 1)$ is a cube root of unity, and $(1 + \omega)^7 = A + B\omega$. Then (A, B) equals (i.)(0, 1) (ii.)(1, 1) (iii.)(1, 0) (iv.)(-1, 1)

9. If $z \neq 1$ and $\frac{z^2}{z-1}$ is real, then the point represented by the complex number z lies (1) either on the real axis or on a circle passing through the origin (2) on a circle with centre at the origin (3) either on the real axis or on a circle not passing through the origin (4) on the imaginary axis

11. If z is a complex number of unit modulus and argument

q, then
$$argigg(rac{1+z}{1+ar{z}}igg)$$
 equal (1) $rac{\pi}{2}- heta$ (2) $heta$ (3) $\pi- heta$ (4) $- heta$

View Text Solution

12. The real number k for which the equation, $2x^3 + 3x + k = 0$ has two distinct real roots in [0, 1] (1) lies between 2 and 3 (2) lies between -1 and 0 (3) does not exist (4) lies between 1 and 2

13. Let a and b be the roots of equation

$$px^2 + qx + r = 0, p \neq 0$$
. If p, q, r are in A.P. and
 $\frac{1}{\alpha} + \frac{1}{\beta} = 4$, then the value of $|\alpha - \beta|$ is (1) $\frac{\sqrt{61}}{9}$ (2)
 $\frac{2\sqrt{17}}{9}$ (3) $\frac{\sqrt{34}}{9}$ (4) $\frac{2\sqrt{13}}{9}$

14. If z is a complex number such that $|z|\geq 2$ then the minimum value of $\left|z+rac{1}{2}
ight|$ is

15. A complex number z is said to be unimodular if . Suppose z_1 and z_2 are complex numbers such that $\frac{z_1 - 2z_2}{2 - z_1 z_2}$ is unimodular and z_2 is not unimodular. Then the point z_1 lies on a : (1) straight line parallel to x-axis (2) straight line parallel to y-axis (3) circle of radius 2 (4) circle of radius $\sqrt{2}$

View Text Solution

16. Let lpha and eta be the roots of equation $x^2-6x-2=0$.

If $a_n=lpha^n-eta^n, f ext{ or } n\geq 1$, then the value of $rac{a_{10}-2a_8}{2a_9}$ is equal to: (1) 6 (2)- 6 (3) 3 (4) - 3

View Text Solution

17. A value of
$$\theta$$
 for which $\frac{2+3i\sin\theta}{1-2i\sin\theta}$ purely imaginary, is :
(1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$ (3) $\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$ (4) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$

View Text Solution

18. Let ω be a complex number such that $2\omega+1=z$

where
$$z=\sqrt{-3}.$$
 If

 $ig|(1,\,1,\,1),\,ig(1,\,-\,\omega^2-1,\,\omega^2ig),\,ig(1,\,\omega^2,\,\omega^7ig)ig|\ = 3k$, then k is

View Text Solution

19. If, for a positive integer n, the quadratic equation,x(x+1) + (x-1)(x+2) + + (x+n-1)(x+n) = 10n

has two consecutive integral solutions, then \boldsymbol{n} is equal to :

(1)10 (2) 11 (3) 12 (4) 9