©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - V PUBLICATION

APPLICATION OF DERIVATIVES

Question Bank

1. Find the rate of change of the area of circle
with respect to its radius r when $r=5 \mathrm{~cm}$
2. The volume of a cube is increasing at a rate of $9 \mathrm{~cm}^{3} / s$. How fast is in the surface area increasing when the length of an edge is 10 cm ?

- Watch Video Solution

3. A stone is dropped into a quiet lake and waves move in circle at a speed of 4 cm per second, At the instant, when the radius of the
circular wave is 10 cm , how fast is the enclosed area increasing?

D Watch Video Solution

4. The length x of a rectangle is decreasing at the rate of $3 \mathrm{~cm} /$ minute and the width y is increasing at the rate of $2 \mathrm{~cm} /$ minute. When $x=10 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$, find the rates of change of (a) the perimeter and (b) the area of the rectangle.
5. The total cost C (x) in Rupees, associated with the production of x units of an item is given by
$C(x)=0.005 x^{3}-0.02 x^{2}+30 x+5000$ Find
the marginal cost when 3 unit are produced, where by marginal cost we mean the instantaneous rate of change of total cost at any level of output.

- Watch Video Solution

6. The total revenue is Rupees received from
the sale of x units of a product is given by
$R(x)=3 x^{2}+36 x+5$. Find the marginal revenue, when $x=5$, where by marginal revenue we mean the rate of change of total revenue with respect to the number of items sold at an instant.
7. Find the rate of change of the area of a circle with respect to its radius r when $r=4$ cm.

D Watch Video Solution

8. The volume of a cube is increasing at the rate of $8 \mathrm{~cm}^{3} / S$. How fast is the surface area increasing when the length of an edge is 12 cm .
9. The radius of a circle is increasing uniformly at the rate of $3 \mathrm{~cm} / \mathrm{s}$. Find the rate at which the area of the circle is increasing when the radius is 10 cm .

- Watch Video Solution

10. An edge of a variable cube is increasing at the rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the volume of the cube increasing when the edge is 10 cm long?
11. A stone is dropped into a quiet lake and waves move in circles at the speed of $5 \mathrm{~cm} / \mathrm{s}$.

At the instant when the radius of the circular wave is 8 cm , how fast is the enclosed area increasing?

D Watch Video Solution

12. The radius of a circle is increasing at the rate of $0.7 \mathrm{~cm} / \mathrm{s}$. What is the rate of increase of

- Watch Video Solution

13. The length of a rectangle is decreasing at the rate of $5 \mathrm{~cm} / \mathrm{mi}$ and the width is increasing at the rate of $4 \mathrm{~cm} / \mathrm{min}$. When length is 8 cm and width is 6 cm , find the rate of change of its area.

D Watch Video Solution

14. Suppose that a spherical balloon is inflated and it has volume ' v ' and radius ' r ' at time ' t '.

If the balloon is inflated by pumping 900c.c. of gas per second. Find the rate at which the radius of the balloon is increasing when the radious is 15 cm .

- Watch Video Solution

15. A balloon which always remains spherical
has a variable radius. Find the rate at which its
volume is increasing with the radius when the latter is 10 cm .

D Watch Video Solution

16. A ladder 5 m long is leaning against a wall.

The bottom of the ladder is pulled along the ground, away from the wall, at the rate of
$2 \mathrm{~cm} / \mathrm{s}$. How fast is its height on the decreasing when the foot of the ladder is 4 m away from the wall.
17. A particle moves along the curve $6 y=x^{3}+2$. Find the points on the curve at which the y coordinate is changing 8 times as fast as the x-coordinate.

D Watch Video Solution

18. The radius of an air bubble is increasing at
the rate of $\frac{1}{2} \mathrm{~cm} / \mathrm{s}$. At what rate is the
volume of the bubble increasing when the radius is 1 cm ?

- Watch Video Solution

19. A balloon which always remains spherical has a variable diameter $\frac{3}{2}(2 x+1)$. Find the rate of change of its volume with respect to x

- Watch Video Solution

20. Sand is pouring from a pipe at the rate of
$12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on
the ground in such a way that the height of
the cone is always one-sixth of the radius of the base. How fast if the height of the sand cone increasing when the height is 4 cm ?'

D Watch Video Solution

21. The total cost $C(x)$ in Rupees associated with the production of x units of an item is given by
$C(x)=0.007 x^{3}-0.003 x^{2}+15 x+4000$

Find the marginal cost when 17 units are produced.

Watch Video Solution

22. The total revenue is Rupees received from
the sale of x units of a product is given by
$R(x)=13 x^{2}+26 x+5$. Find the marginal
revenue when $x=7$

- Watch Video Solution

23. The rate of change of the area of a circle with respect to its radius r at $r=6 \mathrm{~cm}$ is a) 10π b) 12π c) 8π d) 11π
A. 10 pi'
B. 12 pi .'
C. 8 pi'
D. $11 \mathrm{pi}^{\prime}$

Answer: B

D Watch Video Solution

24. The total revenue in Rupees received from
the sale of x units of a product is given by
$R(x)=3 x^{2}+36 x+5 . \quad$ The marginal
revenue, when $x=15$ is a) 116 b) 96 c) 90 d) 126
A. 116
B. 96
C. 90
D. 126

Answer: D
(Watch Video Solution
25. Show that the function given by
$f(x)=7 x-3$ is strictly increasing on R

- Watch Video Solution

26. Show that the function F given by
$f(x)=x^{3}-3 x^{2}+4 x, x \in R$
is strictly increasing

- Watch Video Solution

27. Prove that the function given by
$f(x)=\cos x$ is
(a) Strictly decreasing in $(0, \pi)$
(b) Strictly increasing in $(\pi, 2 \pi)$ and
(c) neither increasing nor decreasing in
$(0,2 \pi)$

- Watch Video Solution

28. Find the intervals in which the function f
given by $f(x)=x^{2}-4 x+6$ is (a) strictly
increasing (b) Strictly decreasing

- Watch Video Solution

29. Find the intervals in which the function f
given by $f(x)=4 x^{3}-6 x^{2}-72 x+30$ is (a)
strictly increasing (b) strictly decreasing.

- Watch Video Solution

30. Find the interval in which the function
$f(x)=\sin x+\cos x, 0 \leq x \leq 2 \pi$ is strictly
increasing or strictly decreasing.

D Watch Video Solution

31. Show that the function given by $f(x)=3 x+17$ is strictly increasing on R.

D Watch Video Solution

32. Show that the function given by
$f(x)=e^{2 x}$ is strictly increasing on R .

D Watch Video Solution
33. Show that the function given by $f(x)=\sin x$ is
a) strictly increasing in $\left(0, \frac{\pi}{2}\right)$
b) Strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$
c) Neither increasing nor decreasing in $(0, \pi)$.

- Watch Video Solution

34. Find the intervals in which the function f
given $f(x)=2 x^{2}-3 x$ is

Strictly Increasing.

D Watch Video Solution

35. Find the intervals in which the function f
given by $f(x)=2 x^{3}-3 x^{2}-36 x+7$ is
Strictly Increasing.

- Watch Video Solution

36. Show that $y=\log (1+x)-(2 x) /(2+x), x>-1^{`}$ is an
increasing function of x throughout its

D Watch Video Solution

37. Find the value of x for which
$y=[x(x-2)]^{2}$ is an increasing function.

D Watch Video Solution

38. Prove that $y=\frac{4 \sin \theta}{(2+\cos \theta)}-\theta$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.
39. Prove that the logarithmic function is strictly increasing on $(0, \infty)$

- Watch Video Solution

40. Prove that the function f given by $f(x)=x^{2}-x+1 \quad$ is \quad neither \quad strictly increasing nor strictly decreasing on $(-1,1)$

- Watch Video Solution

41. Which of the following functions are strictly decreasing on '(0, pi/2) ?'
A. $\cos x^{\prime}$
B. $\cos 2 x^{\prime}$
C. $\cos 3 x^{\prime}$
D. $\tan x^{\prime}$

Answer: B

- View Text Solution

42. On which of the following intervals is the
function f given by $f(x)=x^{100}+\sin x-1$ strictly decreasing ?
A. (0,1)'.
B. $(\mathrm{pi} / 2, \mathrm{pi})^{\prime}$
C. (0, pi/2)'
D. None of these

Answer: D

43. Find the least value of a such that the
function f given by $f(x)=x^{2}+a x+1$ is strictly increasing on $(1,2)$

- Watch Video Solution

44. Let I be any interval disjoint from ($-1,1$)

Prove that the function f given by
$f(x)=x+\left(\frac{1}{x}\right)$ is strictly increasing on I.

- Watch Video Solution

45. Prove that the function $f(x)=\log \sin x$ is strictly increasing in $\left(0, \frac{\pi}{2}\right)$ and strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$

- Watch Video Solution

46. Prove that the function f given by $f(x)=\log \cos x$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ and strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$

- Watch Video Solution

47. Prove that the function given by
$f(x)=x^{3}-3 x^{2}+3 x-100$ in increasing in
R.

- Watch Video Solution

48. The interval in which $y=x^{2} e^{-x}$ is
increasing is a) $(0,2) \mathrm{b})(-2,0) \mathrm{c}),(2, o o)(-\infty 0, o o)^{\prime}$
A. $(-\mathrm{oo}, \mathrm{oo})^{\prime}$
B. $(-2,0)^{\prime}$
C. $(2,00)^{\prime}$
D. $(0,2)^{\prime}$

Answer: D

D Watch Video Solution

49. Find the slope of the tangent to the curve
$' y=x^{\wedge} 3-x^{\prime}$ at $' x=2$ '.

D Watch Video Solution
50. Find the point at which the tangent to the
curve $y=\sqrt{4 x-3}-1$ has its slope $\frac{2}{3}$

- Watch Video Solution

51. Find the equation of all lines having slope 2 and being tangent to the curve
$y+\frac{2}{x-3}=0$

- Watch Video Solution

52. Find points on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangents are parallel to x -axis

- Watch Video Solution

53. Find the equation of the tangent to the curve $y=\frac{x-7}{(x-2)(x-3)}$ at the point where it cuts the x-axis.

(Watch Video Solution

54. Find the equation of the tangent to the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=2$ at $(1,1)$.

- Watch Video Solution

55. Find the equation of tangent to the curve given by $x=a \sin ^{3} t, y=b \cos ^{3} t$
at a point where $t=\frac{\pi}{2}$.

- Watch Video Solution

56. Find the slope of the tangent to the curve
$y=3 x^{4}-4 x$ at $x=4$

- Watch Video Solution

57. Find the slope of the tangent to the curve.
$y=\frac{x-1}{x-2}, x \neq 2$
at $x=10$

- Watch Video Solution

58. Find the slope of the tangent to curve $y=x^{3}-x+1$ at the point whose x-coordinate is 2 .

D Watch Video Solution

59. Find the slope of the tangent to the curve $y=x^{3}-3 x+2$ at the point whose x-coordinate is 3 .
60. Find the slope of the normal to the curve
$x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\frac{\pi}{4}$

- Watch Video Solution

61. Find the slope of the normal to the curve

$$
x=1-a \sin \theta, y=b \cos ^{2} \theta \text { at } \theta=\frac{\pi}{2}
$$

- Watch Video Solution

62. Find points at which the tangent to the
curve $y=x^{3}-3 x^{2}-9 x+7$
is parallel to the x-axis.

D Watch Video Solution

63. Find a point on the curve $y=(x-2)^{2}$ at which the tangent is parallel to the chord joining the points (2,0) and (4,4).
64. Find the point on the curve
$y=x^{3}-11 x+5$ at which the tangent is
$y=x-11$

- Watch Video Solution

65. Find the equation of all lines having slope
-1 that are tangent to the curve
$y=\frac{1}{x-1}, x \neq 1$

- Watch Video Solution

66. Find the equation of all lines having slope

2 which are tangents to the curve
$y=\frac{1}{x-3}, x \neq 3$.

D Watch Video Solution

67. Find the equation of all lines having slope
zero which are tangent to the curve
$y=\frac{1}{x^{2}-2 x+3}$

- Watch Video Solution

68. Find the points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which tangents are parallel to x-axis

- Watch Video Solution

69. Find the equation of the tangent line to
the curve $y=x^{2}-2 x+7$ which is
a) parallel to the line $2 x-y+9=0$
b) perpendicular to the line $5 y-15 x=13$
70. Show that the tangents to the curve $y=7 x^{3}+11$ at the points where $\mathrm{x}=2$ and $x=-2$ are parallel.

D Watch Video Solution

71. Find the points on the curve $y=x^{3}$ at which the slope of the tangent is equal to the y co-ordinate of the point.
72. For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangent passes through the origin.

D Watch Video Solution

73. Find the points on the curve
$x^{2}+y^{2}-2 x-3=0$ at which the tangent
are parallel to x-axis.

- Watch Video Solution

74. Find the equation of the normal at the point $\left(a m^{2}, a m^{3}\right)$ for the curve $a y^{2}=x^{3}$.

D Watch Video Solution

75. Find the equation, of the normal to the
curve $y=x^{3}+2 x+6$
which are parallel to the line $x+14 y+4=0$

D Watch Video Solution
76. Find the equations of the tangent and normal to the parabola $y^{2}=4 a x$ at the point
$\left(a t^{2}, 2 a t\right)$

D Watch Video Solution

77. Prove that the curve $x=y^{2}$ and $x y=k$ cut at right angles, if $8 k^{2}=1$.

D Watch Video Solution
78. Find the equations of the tangent and normal to the hyperbola,$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{0}, y_{0}\right)$

D Watch Video Solution

79. Find the equation of the tangent to the
curve $y=\sqrt{3 x-2}$ which is parallel to the
line $4 x-2 y+5=0$.
80. The slope of the normal to the curve $y=2 x^{2}+3 \sin x$ at $x=0$ is a)3 b) $\frac{1}{3}$ c) -3 d)
$-\frac{1}{3}$
A. 3
B. '1/3'
C. -3^{\prime}
D. $-1 / 3^{\prime}$

Answer: D

D Watch Video Solution
81. The line $y=x+1$ is a tangent to the
curve $y^{2}=4 x$ at the point a) $\left.\left.(1,2) \mathrm{b}\right)(2,1) \mathrm{c}\right)$
$(1,-2)$ d) $(-1,2)$
A. $(1,2)^{\prime}$
B. $(2,1)^{\prime}$
C. $(1,-2)^{\prime}$
D. '(-1,2)'

Answer: A

- Watch Video Solution

82. Use differentiation to approximate $\sqrt{36.6}$.

D Watch Video Solution

83. Use differential to approximate $25^{\frac{1}{3}}$

D Watch Video Solution
84. Find the approximate value of $f(3.02)$
where $f(x)=3 x^{2}+5 x+3$.
85. Find the approximate change in the volume V of a cube of side x meters caused by increasing the side by 2%

- Watch Video Solution

86. If the radius of a sphere is measured as 9
cm with an error of 0.03 cm ,then find the approximate error in calculating its volume.
87. Find the approximate value of $f(2.01)$, where $f(x)=4 x^{2}+5 x+2$

- Watch Video Solution

88. Find the approximate value of $f(5.001)$
where $f(x)=x^{3}-7 x^{2}+15$.

- Watch Video Solution

89. Find the approximate change in the volume V of a cube of side x meters caused by increasing the side by 1%.

D Watch Video Solution

90. Find the approximate change in the
surface area of a cube of side x meters caused
by decreasing the side by 1%.

D Watch Video Solution
91. If the radious of a sphere is measured as

7 m with an error of 0.02 m then find the approximate error in calculating its volume.

- Watch Video Solution

92. If the radius of a sphere is measured as $9 m$
with an error of 0.03 m , then find the
approximate error in calculating its surface area.
93. Find the approximate value of $f(3.02)$
where $f(x)=3 x^{2}+5 x+3$.
A. 47.66
B. 57.66
C. 67.66
D. 77.66

Answer: D
(Watch Video Solution
94. Find the approximate change in volume of a cube of side x meters caused by an increase in the side by 3%.
A. $0.06 x^{\wedge} 3 m^{\wedge} 3^{\prime}$
B. $0.6 \mathrm{x}^{\wedge} 3 \mathrm{~m}^{\wedge} 3^{\prime}$
C. $0.09 \mathrm{x}^{\wedge} 3 \mathrm{~m}^{\wedge} 3^{\prime}$
D. $0.9 \mathrm{x}^{\wedge} 3 \mathrm{~m}^{\wedge} 3^{\prime}$

Answer: C

95. Find all points of local maxima and local
minima of the function f given by
$f(x)=x^{3}-3 x+3$

- Watch Video Solution

96. Find all the point of local maxima and local
minima of the function f given by
$f(x)=2 x^{3}-6 x^{2}+6 x+5$
97. Find local minimum value of the function f
given by $f(x)=3+|x|, x \in R$

- Watch Video Solution

98. Find local maximum and local minimum
value of the function f given, by
$f(x)=3 x^{4}+4 x^{3}-12 x^{2}+12$

D Watch Video Solution

99. Find all the point of local maxima and local
minima of the function f given by
$f(x)=2 x^{3}-6 x^{2}+6 x+5$

- Watch Video Solution

100. Find two positive numbers whose sum is

15 and the sum of whose squares is minimum.

D Watch Video Solution

101. If length of three sides of a trapezium other than base are equal to 10 cm . Then find the area of the trapezium when it is maximum.

D Watch Video Solution

102. Prove that the radius of the right circular
cylinder of greatest curved surface area which
can be inscribed in a given cone is half of that of the cone.
103. Find the absolute maximum value and minimum value of the function.
$f(x)=2 x^{3}-15 x^{2}+36 x+1, x \in[1,5]$

- Watch Video Solution

104. Find the absolute maximum value and minimum value of the function.
$f(x)=12 x^{\frac{4}{3}}-6 x^{\frac{1}{3}}, x \in[-1,1]$
105. Find the maximum profit that a company
can make, if the profit function is given by
$p(x)=41-24 x-18 x^{2}$

D Watch Video Solution

106. Find both the maximum value and the minimum value
$3 x^{4}-8 x^{3}+12 x^{2}-48 x+25$ on the interval
$[0,3]$
107. At what points in the interval $[0,2 \pi]$, does
the function $\sin 2 x$ attain its maximum value?

- Watch Video Solution

108. What is the maximum value of the
function $\sin x+\cos x ?$

Watch Video Solution
109. Find the maximum value of
$2 x^{3}-24 x+107$ in the interval $[1,3]$. Find the maximum value of the same function in $[-3,-1]$

- Watch Video Solution

110. It is given that at $x=1$, the function
$x^{4}-62 x^{2}+a x+9$ attains its maximum
value, on the interval [0,2]. Find the value of a
?
111. Find the maximum and minimum values of $x+\sin 2 x$ on $[0,2 \pi]$

- Watch Video Solution

112. Find two numbers whose sum is 24 and whose product as large as possible.

- Watch Video Solution

113. Find two positive numbers x and y such that $x+y=60$ and $x y^{3}$ is maximum.

D Watch Video Solution

114. Find two numbers x and y such that their sum is 35 and the product $x^{2} y^{5}$ is a maximum.

D Watch Video Solution

115. Find two positive numbers whose sum is

16 and the sum of whose Cubes is minimum.
116. An rectangle sheet of tin with adjascent
sides 45 cm and 24 cm is to be made into a box without top, by cutting off equal squares of side x from the corners the folding up the flaps.

For what value of x, the volume of the box will be maximum.
117. Show that all rectangles with a given perimeter, the square has the maximum area.

D Watch Video Solution

118. Of all the cylinders with given surface area, show that the volume is maximum when height is equal to the diameter of the base .

D Watch Video Solution

119. Of all the closed cylindrical cans (right circular) of a given volume of 100 cubic. cm.
find the dimensions of the can which has the minimum surface area.

D Watch Video Solution

120. A wire of length 28 m is cut into two
pieces. One of the Pieces is be made into a square and the other in to a circle. What should be the length of the two pieces so that

combined area of the square and the circle is

minimum using differentiation?

D Watch Video Solution

121. Show that the right circular cone of least
curved surface and given volume has an altitude equal to $\sqrt{2}$ times the radius of the base.

D Watch Video Solution

122. The point on the curve $x^{2}=2 y$ which is nearest to the point $(0,5)$ is --
A. '(2 sqrt2, 4)'
B. (2 sqrt2, 0)'
C. (0,0)'
D. $(2,2)^{\prime}$

Answer: A
(Watch Video Solution
123. Choose the correct answer. For all real values of x, the minimum value of

$$
\frac{1-x+x^{2}}{1+x+x^{2}} \text { is a) } 0 \text { b) } 1 \text { c) } 3 \mathrm{~d} \text {) } 1 / 3
$$

A. 0
B. 1
C. 3
D. $1 / 3$)

Answer: D
124.
The
maximum
value
of
$[x(x-1)+1]^{1 / 3} 0 \leq x \leq 1$ is a) $\left(\frac{1}{2}\right)^{\frac{1}{3}}$ b) $1 / 2$
c) 1 d$) 0$
A. $(-13)^{\wedge} 13^{\prime}$
B. $(1 / 3)$
C. 1
D. 0

Answer: C
125. A man of 2 m height walks at a uniform
speed of $6 \mathrm{~km} / \mathrm{h}$ away from a
lamp post of $6 m$ height. The rate at which the length of his shadow
increases is

D Watch Video Solution
126. Find intervals in which the function given by
$f(x)=\frac{3}{10} x^{4}-\left(\frac{4}{5}\right) x^{3}-3 x^{2}+\frac{36}{5} x+11$
is (a) strictly increasing (b) strictly decreasing

- Watch Video Solution

127.

The
functions
$=\tan ^{-1}(\sin x+\cos x), x>0$ is always an
increasing functions on the interval :

- Watch Video Solution

128. A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of $0.05 \mathrm{~cm} / \mathrm{s}$. Find the rate at which its area is increasing when radius is 3.2 cm.

D Watch Video Solution

129. An open topped box is to be constructed by removing equal squares from each corner of a 3 metre by 8 metre rectangular sheet of
aluminium and folding up the sides. Find the volume of the largest such box.

D Watch Video Solution

130. Manufacturer can sell, x items at a price of rupees $\left(5-\left(\frac{x}{100}\right)\right)$ each. The cost price of x items is Rs. $\left(\frac{x}{5}+500\right)$. Find the number of items he should sell to earn maximum profit:
131. Show that the function given by
$f(x)=\frac{\log x}{x}$ has maximum at $x=e$.

- Watch Video Solution

132. Find the equation of the tangent and normal at the point $(1,2)$ on the parabola $y^{2}=4 x$.

- Watch Video Solution

133. Find the intervals in which the function f
given by $f(x)=x^{3}+\frac{1}{x^{3}}, x \neq 0$ is
(i) increasing
(ii) decreasing

D Watch Video Solution

134. Find the points at which the function f
given by
$f(x)=(x-2)^{4}(x+1)^{3}$ has
i) local maxima
ii) local minimà
iii) point of inflexion

D Watch Video Solution
135. Find the absolute maximum and minimum
values of the function f given by
$f(x)=\cos ^{2} x+\sin x, x \in[0, \pi]$

D Watch Video Solution
136. A cylindrical tank of radius ' 10 m ' is being
filled. with wheat at the rate of 314 .cubic inetre per hour. Then the depth of the wheat is increăsing at the rate of
A. 1 mh
B. 0.1 mh
C. 1.1mh
D. 0.5 mh

Answer: A
137. The slope of the normal to the curve
$x=t^{2}+3 t-8$ and $y=2 t^{2}-2 t-5$ at the
point $(2,-1)$ is a) $\frac{6}{7}$ b) $-\frac{6}{7}$ c) $\frac{7}{6}$ d) $-\frac{7}{6}$
A. (22)/7
B. $6 / 7$
C. $7 / 6$
D. $\frac{-6}{7}$

Answer: B
138. The line $y=m x+1$ is a tangent to the
curve $y^{2}=4 x$ Find the value of m.
A. 1
B. 2
C. 3
D. $1 / 2$

Answer: A
139. The normal at the point $(1,1)$ on the
curve $\quad 2 y+x^{2}=3 \quad$ is \quad a) $x+y=0 \quad$ b)

$$
x-y=0 \mathrm{c}) x+y+1=0 \mathrm{~d}) x-y=1
$$

A. $x+y=0 '$
B. $x-y=0^{\prime}$
C. $x+y+1=0^{\prime}$
D. $x-y=1^{\prime}$

Answer: B
140. The normal to the curve $x^{2}=4 y$ passing $(1,2)$ is
A. $x+y=3^{\prime}$
B. $x-y=3^{\prime}$
C. $x+y=1^{\prime}$
D. $x-y=1^{\prime}$

Answer: A
141. The points on the curve $9 y^{2}=x^{3}$, where the normal to the curve makes equal intercept. with : the axes are
A. $(4,+-8 / 3)^{\prime}$
B. $(4,-8 / 3)^{\prime}$
C. $(4,3 / 8)^{\prime}$
D. (+- 4, 3/8)'

Answer: A
142. Find the equation to the tangent and
normal at $(2,-2)$ to the curve $y^{2}=\frac{x^{3}}{4-x}$

- Watch Video Solution

143. Find the equations of the tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$

- Watch Video Solution

144. Find both maximum and minimum value of $3 x^{4}-8 x^{3}+12 x^{2}-48 x+1$ on the interval $[1,4]$
