©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - V PUBLICATION

DIFFERENTIAL EQUATIONS

Question Bank

1. Find the order and degree, if defined, of each of the following differential equations:
i) $\frac{d y}{d x}-\cos x=0$
ii) $x y\left(\frac{d^{2} y}{d x^{2}}\right)+x\left(\frac{d y}{d x}\right)^{2}-y \frac{d y}{d x}=0$
iii) $y^{\prime, '}+y^{2}+e^{y}=0$
2. Find the order and degree (if defined) of the following differential equations. $\frac{d^{4} y}{d x^{4}}+\sin \left(y^{\prime \prime \prime}\right)=0$

(D) Watch Video Solution

3. Find the order and degree (if defined) of the following differential equations. $y^{\prime}+5 y=0$

(D) Watch Video Solution

4. Find the order and degree (if defined) of the following differential equations. $\left(\frac{d s}{d t}\right)^{4}+3 s \frac{d^{2} s}{d t^{2}}=0$
5. Find the order and degree (if defined) of the following differential equations. $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\cos \left(\frac{d y}{d x}\right)=0$

(D) Watch Video Solution

6. Find the order and degree (if defined) of the following differential equations. $\frac{d^{2} y}{d x^{2}}=\cos 3 x+\sin 3 x$

- Watch Video Solution

7. Determine order and degree (if defined) of the following differential equations. $\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{3}+\left(y^{\prime}\right)^{4}+y^{5}=0$

- Watch Video Solution

8. Determine order and degree (if defined) of the following differential equations $y^{\prime \prime \prime}+2 y^{\prime \prime}+y^{\prime}=0$

(D) Watch Video Solution

9. Determine order and degree (if defined) of the following differential equations $y^{\prime}+y=e^{x}$

- Watch Video Solution

10. Determine order and degree (if defined) of the following differential equations $y^{\prime \prime}+\left(y^{\prime}\right)^{2}+2 y=0$
11. Determine order and degree (if defined) of the following differential equations $y^{\prime \prime}+2 y^{\prime}+\sin y=0$

(D) Watch Video Solution

12. Choose the correct answer. The degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{2}+\sin \left(\frac{d y}{d x}\right)+1=0$
A. 3
B. 2
C. 1
D. not defined

Answer: C

13. Choose the correct answer. The degree of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}-3\left(\frac{d y}{d x}\right)+y=0$ is
A. 2
B. 1
C. 0
D. not defined

Answer: A

D Watch Video Solution

14. Check whether $y=e^{-3 x}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$

- Watch Video Solution

15. $y=a \cos x+b \sin x$ is the solution of the
differential equation
$\frac{d^{2} y}{d x^{2}}+y=0$

- Watch Video Solution

16. Verify that the given function (explicit or implicit) isa solution of the correseponding differential equation :

$$
y=e^{x}+1: y^{\prime \prime}-y^{\prime}=0
$$

- Watch Video Solution

17. Verify that the given function (explicit or implicit) isa solution of the correseponding differential equation : $y=x^{2}+2 x+c: y^{\prime}-2 x-2=0$

- Watch Video Solution

18. Verify that the given function (explicit or implicit) isa solution of the correseponding differential equation: $y=\cos x$ $+c: y^{\prime}+\sin x=0$

- Watch Video Solution

19. Verify that the given function (explicit or implicit) isa solution of the correseponding differential equation :

$$
y=\sqrt{1+x^{2}}: y^{\prime}=\frac{x y}{1+x^{2}}
$$

- Watch Video Solution

20. Verify that the given function (explicit or implicit) is a solution of the correseponding differential equation : $y=A x$:
$x y^{\prime}=y(x \neq 0)$

(D) Watch Video Solution

21. Verify that the given function(explicit or implicit) is a solution of the corresponding differential equations
$x y=\log y+C: y^{\prime}=\frac{y^{2}}{1-x y},(x y \neq 1)$

- Watch Video Solution

22. Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation
$y-\cos y=x:(y \sin y+\cos y+x) y^{\prime}=y$

- Watch Video Solution

23. Verify that the given functions (explicit or implicit) is the solution of the corresponding differential equation .

$$
(x+y)=\tan ^{-1} y, y^{2} y^{\prime}+y^{2}+1=0
$$

(D) Watch Video Solution

24. Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation.
$y=\sqrt{a^{2}-x^{2}}, x \in(-a, a): x+y \frac{d y}{d x}=0(y \neq 0)$

Watch Video Solution

25. Choose the correct answer. The number of arbitrary constains in the general solution of a differential equation of fourth order is
A. 0
B. 2
C. 3
D. 4

Answer: D

26. Choose the correct answer. The number of arbitrary constants in the perticular solution of a different equation of third order is
A. 3
B. 2
C. 1
D. 0

Answer: D

- Watch Video Solution

27. Form the differential equation corresponding to the curve

$$
y=m x
$$

28. From the differential equation representing
the family of curves $y=a \sin (x+b)$, where a and b are arbitrary constants.

D Watch Video Solution

29. Form the DE of the family of ellipse
having foci on the x-axis and centre at the origin.

\bullet
 Watch Video Solution

30. Form the DE of the family of circles touching the x-axix at origin.

- Watch Video Solution

31. Form the DE representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.

- Watch Video Solution

32. Find the slope of the line $\frac{x}{a}+\frac{y}{b}=1$
33. Find the Differential equation satisfying the family of curves $y^{2}=a\left(b^{2}-x^{2}\right)$, a and b are arbitrary constants.

- Watch Video Solution

34. Form the $D E$ corresponding to the function

$$
y=a e^{3 x}+b e^{-2 x}
$$

- Watch Video Solution

35. Form the $D E$ corresponding to the function

$$
y=e^{2 x}(a+b x)
$$

36. Form the $D E$ corresponding to the function
$y=e^{x}(a \cos x+b \sin x)$

- Watch Video Solution

37. Form the differential equation of the family of all circles touching the y-axis at origin.

- Watch Video Solution

38. Form the differential equation of the family of parabolas
having vertex at origin and axis along positive y-axis.
39. Form the differential equation of the family of all circles touching the y-axis at origin.

(Watch Video Solution

40. Form the DE of the family of ellipse
having foci on the x-axis and centre at the origin.

- Watch Video Solution

41. Form a differential equation of the family
of circles having centre on y-axis and
radius 3 units.
42. Choose the correct answer . Which of the following differential equation has $y=c_{1} e^{x}+c_{2} e^{-x}$ as the general solution ?
A. $\left(\left(d^{\wedge} 2 y\right) /\left(d x^{\wedge} 2\right)\right)+y=0^{\prime}$
B. $\left(\left(d^{\wedge} 2 y\right) /\left(d x^{\wedge} 2\right)\right)-y=0^{\prime}$
C. $\left(\left(d^{\wedge} 2 y\right) /\left(d x^{\wedge} 2\right)\right)+1=0^{\prime}$
D. $\left(\left(d^{\wedge} 2 y\right) /\left(d x^{\wedge} 2\right)\right)-1=0^{\prime}$

Answer: B

- Watch Video Solution

43. Choose the correct answer. Which of the following differential equation has $y=x$ as one of its particular solution?
A. $\left(\left(d^{\wedge} 2 y\right) /\left(d x^{\wedge}-2\right)\right)(-x)^{\wedge} 2(d y) /(d x)+x y=x^{\prime}$
B. $\left(\left(d^{\wedge} 2 y /\left(d x^{\wedge} 2\right)\right)+x(d y) /(d x)+x y=x^{\prime}\right.$
C. ((d^2y)/(d $\left.\left.x^{\wedge} 2\right)\right)(-x)^{\wedge} 2(d y) /(d x)+x y=0^{\prime}$
D. $\left(\left(d^{\wedge} 2 y\right) /\left(d x^{\wedge} 2\right)\right)+x(d y) /(d x)+x y=0^{\prime}$

Answer: C

Watch Video Solution

44. Find the general solution of the differential equation

$$
\frac{d y}{d x}=\frac{x+1}{2-y},(y \neq 2)
$$

45. Find the general solution of the differential equation $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$

- Watch Video Solution

46. Find the particular solution of the differential equation $\frac{d y}{d x}=-4 x y^{2}$ given that $y=1$, when $x=0$

- Watch Video Solution

47. Find the equation of the curve passing through the point
$(1,1)$ whose differential equation is
$x d y=\left(2 x^{2}+1\right) d x(x \neq 0)$
48. Find the equation of a curve passing through the point $(-2,3)$, given that the slope of the tangent to the curve at any point (x, y) is $\frac{2 x}{y^{2}}$

D Watch Video Solution

49. In a bank, principal increases continuously at the rate 5% per year. In how many years Rs 1000 double itself?

(D) Watch Video Solution

50. $\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}$
51. Find the general solution of the following differential equations
$\frac{d y}{d x}=\sqrt{4-y^{2}}(-2<y<2)$

- Watch Video Solution

52. Integrate the following: $\frac{d y}{d x}+y=1,(y \neq 1)$

- Watch Video Solution

53. Find the general solution of the differential equation $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$

- Watch Video Solution

54. $\left(e^{x}+e^{-x}\right) d y-\left(e^{x}-e^{-x}\right) d x=0$

- Watch Video Solution

55. $\frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)$

- Watch Video Solution

56. $y \log y d x-x d y=0$

- Watch Video Solution

57. $x^{\wedge} 5(d y) /(d x)=(-y)^{\wedge} 5^{\prime}$
58. Find the general solution of $\frac{d y}{d x}=\sin ^{-1} x$

(D) Watch Video Solution

59. $e^{x} \tan y d x+\left(1-e^{x}\right)\left(\sec ^{2} y\right) d y=0$

(D) Watch Video Solution

60. Find a particular solution satisfying the
given condition. $\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x}=2 x^{2}+x$
when $y=1, x=0$

- Watch Video Solution

61. For the following differential equation find a particular solution satisfying the given condition.
$x\left(x^{2}-1\right) \frac{d y}{d x}=1, \mathrm{y}=0$ when $\mathrm{x}=2$

(D) Watch Video Solution

62. $\cos \left(\frac{d y}{d x}\right)=a,(a \in R), y=1$, when $x=0$

D Watch Video Solution

63. $\frac{d y}{d x}=y \tan x, \mathrm{y}=1$ when $\mathrm{x}=0$
64. Find the equation of a curve passing through $(0,0)$ and whose differential equation is $y^{\prime}=e^{x} \sin x$.

- Watch Video Solution

65. For the DE $x y \frac{d y}{d x}=(x+2)(y+2)$,find the
solution curve passing through the point (1,-1).

- Watch Video Solution

66. Find the equation of a curve passing through the point
$(2,-2)$ given that at any point (x, y) on the curve the product of the slope of its tangent and y coordinate of the point is equal to the x-coordinate of the point.
67. At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment, joining the point of contact to the point $(-4,-3)$. Find the equation of the curve given that it passes through ($-2,1$).

- Watch Video Solution

68. The volume of spherical ballon being inflated at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.

- Watch Video Solution

69. In a bank, principal increases continuosly at the rate of $r \%$ per year. Find the valueof r if Rs. 100 double itself in 10 years.

$$
\left(\log _{e} 2=0.6931\right)
$$

- Watch Video Solution

70. In a bank, principal increases continuosly at the rate of 5% per year. An amount of Rs. 1000 is deposited with this bank. How much will it worth after 10 years $\left(e^{0.5}=1.648\right)$

(D) Watch Video Solution

71. In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the
count reach $2,00,000$. If the rate of growth of bacteria is proportional to the number present ?

- Watch Video Solution

72. The general solution of the differential equation $\frac{d y}{d x}=e^{x+y}$ is
A. $e^{\wedge} x+e^{\wedge}(-y)=C^{\prime}$
B. $e^{\wedge} x+e^{\wedge} y=C^{\prime}$
C. $e^{\wedge}(-x)+e^{\wedge} y=c^{\prime}$
D. $e^{\wedge}(-x)+e^{\wedge}(-y)=C^{\prime}$

Answer: A
73. Show that the differential equation $\mathrm{x} \cos (\mathrm{y} / \mathrm{x}) \frac{d y}{d x}=\mathrm{y}$ $\cos (y / x)+x$ is homogeneous and solve it.

D Watch Video Solution

> 74. solve the $\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$

- Watch Video Solution

75. Show that the following equations are homogeneous and solve each of them.
$y^{\prime}=\frac{x+y}{x}$
76. Show that the following equations are homogeneous and solve each of them.
$(x-y) d y-(x+y) d x=0$

- Watch Video Solution

77. solve the differential equation $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$

- Watch Video Solution

78. solve $x^{2} \frac{d y}{d x}=x^{2}-2 y^{2}+x y$

- Watch Video Solution

79. Consider the DE $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$

Find the general solution.

- Watch Video Solution

80.

$\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y d x=\left\{y \sin \left(\frac{y}{x}\right)-(x) \cos \left(\frac{y}{x}\right)\right\} x d y$

- Watch Video Solution

81. $x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0$

D Watch Video Solution

82. solve $y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0$

- Watch Video Solution

83. Show that the following equations are homogeneous and solve each of them.

$$
\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0
$$

- Watch Video Solution

84. solve $(x+y) d y+(x-y) d x=0, y=1$ when $x=1$

D Watch Video Solution

85. solve $x^{2} d y+\left(x y+y^{2}\right) d x=0, y=1$ when $x=1$
86. Find the particular solution of the following equation satisfying the given condition.
$\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] d x+x d y=0, y=\frac{\pi}{4}$ when $\mathrm{x}=1$

(D) Watch Video Solution

87. solve $\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0 y=0$ when $x=1$

- Watch Video Solution

88. $2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0, y=2$ when $x=1$
89. A homogeneous differential equation of the form $\frac{d x}{d y}=h\left(\frac{x}{y}\right)$ can be solved by making the substitution. a) $\mathrm{y}=$ $v x b) v=y x c) x=v y d) x=v$
A. ' $y=v x$ '
B. $\mathrm{v}=\mathrm{y} \mathrm{x}^{\prime}$
C. $x=v y^{\wedge}$
D. ' $x=v$ '

Answer: C

- Watch Video Solution

90. Which of the following is a homogeneous differential equation? $(4 x+6 y+5) d y-(3 y+2 x+4) d x=0$
$x y d x-\left(x^{3}+y^{3}\right) d y=0$
$\left(x^{3}+2 y^{2}\right) d x+2 x y d y=0$
$y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0$
A. ' $(4 x+6 y+5) d y^{\wedge} 6-(3 y+2 x+4) d x=0 '$
B. $x y d x-\left(x^{\wedge} 3+y^{\wedge} 3\right) d y=0^{\prime}$
C. $\left(x^{\wedge} 3+2 y^{\wedge} 2\right) d x+2 x y d y=0^{\prime}$
D. ' $y^{\wedge} 2 d x+\left(x^{\wedge} 2(-x) y-y^{\wedge} 2\right) d y=0 '$

Answer: D

- Watch Video Solution

91. Find the general solution of the differential equation $\frac{d y}{d x}-y=\cos x$.
92. Find the general solution of the differential equation.
$x \frac{d y}{d x}+2 y=x^{2}(x \neq 0)$

- Watch Video Solution

93. Find the general solution of the differential equation

$$
y d x-\left(x+2 y^{2}\right) d y=0
$$

D Watch Video Solution

94. Find the particular solution of the differential equation.
$\frac{d y}{d x}+y \cot x=2 x+x^{2} \cot x(x \neq 0)$ given that $y=0$ when
$x=\frac{\pi}{2}$
95. Find the equation of a curve passing through the point $(0,1)$. If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x coordinate (abscissa) and the product of the x coordinate and y coordinate of that point.

- Watch Video Solution

96. Solve the following differential equations $\frac{d y}{d x}+2 y=\sin x$

- Watch Video Solution

97. find general solution $\frac{d y}{d x}+3 y=e^{-2 x}$
98. Solve the following differential equations $\frac{d y}{d x}+\frac{y}{x}=x^{2}$

- Watch Video Solution

99. Solve the following differential equations
$\frac{d y}{d x}+\sec x y=\tan x\left(0 \leq x<\frac{\pi}{2}\right)$

- Watch Video Solution

100. Solve the following differential equations
$\cos ^{2} x \frac{d y}{d x}+y=\tan x\left(0 \leq x<\frac{\pi}{2}\right)$
(D) Watch Video Solution
101. Find the general solution of the differential equation
$x \frac{d y}{d x}+2 y=x^{2} \log x$

(D) Watch Video Solution

102. Solve the following differential equations
$x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x$

(D) Watch Video Solution

103. Solve the following differential equations
$\left(1+x^{2}\right) d y+2 x y d x=\cot x d x(x \neq 0)$

- Watch Video Solution

104. Solve the following differential equations
$x \frac{d y}{d x}+y-x+x y \cot x=0(x \neq 0)$

- Watch Video Solution

105. Solve the following differential equations $(x+y) \frac{d y}{d x}=1$

- Watch Video Solution

106. Solve the following differential equations $y d x+\left(x-y^{2}\right) d y=0$
107. Solve the following differential equations
$\left(x+3 y^{2}\right) \frac{d y}{d x}=y(y>0)$

(D) Watch Video Solution

108. For each of the following differential equations, find a particular solution
satisfying the given conditions.
$\frac{d y}{d x}+2 y \tan x=\sin x, \mathrm{y}=0$ when $\mathrm{x}=\frac{\pi}{3}$

- Watch Video Solution

109. Find the particular solution of the differential equation
$\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}}$, when $y=0$,
$x=1$.

- Watch Video Solution

110. For each of the following differential equations, find a particular solution
satisfying the given conditions.
$\frac{d y}{d x}-3 y \cot x=\sin 2 x, \mathrm{y}=2$ when $\mathrm{x}=\frac{\pi}{2}$

(Watch Video Solution

111. Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point
(x, y) is equal to the sum of the coordinate of the point.
112. Find the equation of a curve passing through the point $(0,2)$ given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5 .

- Watch Video Solution

113. The Integrating Factor of the differential equation $x \frac{d y}{d x}-y=2 x^{2}$ is
A. e^{-x}
B. e^{-y}
C. $\frac{1}{x}$
D. x

Answer: C

- Watch Video Solution

114. The intergrating factor of the differential equation
$\left(1-y^{2}\right) \frac{d x}{d y}+y x=a y(-1<y<1)$ is
A. $1 /\left(y^{\wedge} 2-1\right)^{\prime}$
B. '1/(sqrt(y^2-1))'
C. $1 /\left(1-y^{\wedge} 2\right)^{\prime}$
D. $1 /\left(\operatorname{sqrt}\left(1-y^{\wedge} 2\right)\right)^{\prime}$

Answer: D

115. Verify that the function $y=c_{1} e^{a x} \cos b x+c_{2} e^{a x} \sin b x$, where c_{1}, c_{2} are arbitrary constants is a solution of the differential equation.
$\left(\frac{d^{2} y}{d x^{2}}\right)-2 a \frac{d y}{d x}+\left(a^{2}+b^{2}\right) y=0$

D Watch Video Solution

116. Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

- Watch Video Solution

117. Find the particular solution of the differential equation $\log \left(\frac{d y}{d x}\right)=3 x+4 y$ given that $y=0$ when $x=0$
118. Solve the differential equation
$(x d y-y d x) y \sin \left(\frac{y}{x}\right)=(y d x+x d y) x \cos \left(\frac{y}{x}\right)$

- Watch Video Solution

119. Solve the
$\left(\tan ^{-1} y-x\right) d y=\left(1+y^{2}\right) d x$

(D) Watch Video Solution

120. For each of the differential equations given below, indicate its order and degree (if defined)
i) $\left(\frac{d^{2} y}{d x^{2}}\right)+5 x\left(\frac{d y}{d x}\right)^{2}-6 y=\log x$
ii) $\left(\frac{d y}{d x}\right)^{3}-4\left(\frac{d y}{d x}\right)^{2}+7 y=\sin x$
iii) $\frac{d^{4} y}{d x^{4}}-\sin \left(\frac{d^{3} y}{d x^{3}}\right)=0$

D Watch Video Solution

121. Verify that the given fuction (implicit or explicit) is a solution of the corresponding differential equation.
$x y=a e^{x}+b e^{-x}+x^{2}: x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-x y+x^{2}-2=0$

- Watch Video Solution

122. Form the differential equation representing the family of curves given by $(x-a)^{2}+2 y^{2}=a^{2}$, where a is an arbitrary constant.
123. Prove that $x^{2}-y^{2}=c\left(x^{2}+y^{2}\right)^{2}$ is the general solution of the differential equation $\left(x^{3}-3 x y^{2}\right) d x=\left(y^{3}-3 x^{2} y\right) d y$, Where c is a parameter.

D Watch Video Solution

124. Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.

- Watch Video Solution

125. Find the general solution of the differential equation.
$\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}=0}$
126. Show that the general solution of the differential equation $\frac{d y}{d x}+\frac{y^{2}+y+1}{x^{2}+x+1}=0$ given
$((x+y)+1)=A(1-x-y-2 x y)$, where A is parameter.

(D) Watch Video Solution

127. Find the equation of the curve passing through the point $\left(0, \frac{\pi}{4}\right) \quad$ whose differential equation is $\sin x \cos y d x+\cos x \sin y d y=0$

- Watch Video Solution

128. Find the particular solution of the differential equation $\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d x=0$ given that $y=1$ when
$x=0$

- Watch Video Solution

129. $\begin{aligned} & \text { Solve the } \\ & y e^{\frac{x}{y}} d x=\left(x e^{\frac{x}{y}}+y^{2}\right) d y(y \neq 0)\end{aligned}$

- Watch Video Solution

130. Find a particular solution of the differential equation
$(x-y)(d x+d y)=d x-d y$, given that $y=-1$, when $x=0$
(Hint: Put $x-y=t$)

D Watch Video Solution

131.

$\left[\left(\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}\right)-\left(\frac{y}{\sqrt{x}}\right)\right]\left(\frac{d x}{d y}\right)=1(x \neq 0)$

- Watch Video Solution

132. Find the particular solution of the differential equation $\frac{d y}{d x}+y \cot x=4 x \cos e c x(x \neq 0)$, given that $\mathrm{y}=0$, when $\mathrm{x}=$ $\frac{\pi}{2}$.

- Watch Video Solution

133. Find the general solution of the differential equation
$(x+1) \frac{d y}{d x}=2 e^{-y}-1$,
given that $\mathrm{y}=0$ when $\mathrm{x}=0$.
134. The population of a village increases continuously at the rate. proportional to the number of its inhabitants present at any time. If the population of the village was 20000 in 1999 and 25000 in the year 2004, what will be the population of the village in 2009 ?

D Watch Video Solution

135. The general solution of the differential equation

$$
\frac{y d x-x d y}{y}=0
$$

A. $x y=C^{\prime}$
B. $x=C y^{\wedge} 2^{\prime}$
C. $y=c x^{\prime}$
D. $y=C x^{\wedge} 2^{\prime}$

Answer: C

(D) Watch Video Solution

136. Choose the correct answer. The general solution of a differential equation of the type $\frac{d x}{d y}+P_{1} x=Q_{1}$ is a)
$y e^{\int P_{1} d y}=\int\left(Q_{1} e^{\int P_{1} d y}\right) d y+c$
$y e^{\int P_{1} d x}=\int\left(Q_{1} e^{\int P_{1} d x}\right) d y+c$
$x e^{\int P_{1} d y}=\int\left(Q_{1} e^{\int P_{1} d y}\right) d y+c$
$x e^{\int P_{1} d x}=\int\left(Q_{1} e^{\int P_{1} d x}\right) d x+c$
A. 'y . $e^{\wedge}($ int_($\left.p d y)\right)=i n t\left(Q_{-} 1 e^{\wedge}(\right.$ int_($\left.p d y)\right) d y+C^{\prime}$
B. $y e^{\wedge}\left(\operatorname{int}\left(_p, d x\right)\right)=\operatorname{int}\left(Q_{-} 1 e^{\wedge}\left(\operatorname{int}\left(p_{-} 1 d x\right)\right)\right) d x+C^{\prime}$
C. $x_{-} 0 e^{\wedge}($ int_($\left.p d) y\right)=i n t\left(Q_{-} s e^{\wedge}(\right.$ int_p $\left.d y)\right) d y+C^{\prime}$
D. $x, e^{\wedge}($ int $(p, d x))=\operatorname{int}\left(Q_{-} 1 e^{\wedge}\left(\operatorname{int}\left(p_{-} 1 d x\right)\right) d x+C^{\prime}\right.$

Answer: C

- Watch Video Solution

137. Choose the correct answer. The general solution of a differential equation $\quad e^{x} d y+\left(y e^{x}+2 x\right) d x=0 \quad$ is... a)

$$
\begin{align*}
& x e^{x}+x^{2}=c \quad \text { b) } \quad x e^{y}+y^{2}=c \quad \text { c) } \quad x e^{y}+y^{2}=c \\
& y e^{x}+x^{2}=c
\end{align*}
$$

A. $x e^{\wedge} y+x^{\wedge} 2=C^{\prime}$
B. $x e^{\wedge} y+y^{\wedge} 2=c^{\prime}$
C. $y e^{\wedge} x+x^{\wedge} 2=c^{\prime}$
D. $y_{-} i e^{\wedge} y+x_{-} i^{\wedge} 2=C^{\prime}$.

(D) Watch Video Solution

138. Form the differential equation corresponding to
$y=a x^{2}+b x+c$

D Watch Video Solution

139. Verify that $y=a e^{-x}$, (a is a parameter) is the general solution of $y^{\prime}+y=0$

- Watch Video Solution

140. Solve the differential equation
$3 e^{x} \tan y d x-\left(1+e^{x}\right)\left(\sec ^{2} y\right) d y=0$

- Watch Video Solution

141. Find the curve in the xy plane that passes through $(0,3)$ and whose tangent line at a point (x, y) has slope $\frac{2 x}{y}$

D Watch Video Solution

142. Solve $\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}, x^{2}+y^{2} \neq 0$
143. Solve $y^{\prime}=\frac{y(x-2 y)}{x(x-3 y)}, x \neq 0, x \neq 3 y$

- Watch Video Solution

144. Solve the initial value problem
$\left.\left(x e^{\frac{y}{x}}+y\right)\right) d x=x d y, y(1)=0$.

- Watch Video Solution

145. solve $\frac{d y}{d x}-x y=x$

- Watch Video Solution

146. Solve $y^{\prime}+y=\cos \left(e^{x}\right)$
147. Solve $y^{\prime}+y \cos x=e^{\sin x} \cos x$

- Watch Video Solution

148. Solve the following differential equations $(x+y) \frac{d y}{d x}=1$

- Watch Video Solution

149. a)Equation of family of circles touching the y-axis at origin is
$x^{2}+y^{2}-2 a x=0$
Find the differential equation of all circles
b) Solve the differential equation
$\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x$

- Watch Video Solution

