©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS -V PUBLICATION

RELATIONS AND FUNCTIONS

Question Bank

1. Let $P=\{1,2,3\}, Q=\{a, b\}$ Find $P \times Q$ and $Q \times P$

- Watch Video Solution

2. $A=\{p, q, r\}, B=\{m\}$

Wrițe ' $\mathrm{A} \times \mathrm{B}$ ' and all subs of ' $\mathrm{A} \times \mathrm{B}$ '.

D Watch Video Solution

3. Let A be the set of all students of a boys school.

Show that the relation R in A given by $R=\{(\mathrm{a}, \mathrm{b})$: a is sister of $b\}$ is the empty relation and $R^{\prime}=\{(a, b)$: the difference between heights of a and b is less than 3 meters\} is the universal relation.
4. Let T be the set of all triangles in a plane with R as relation in T given by $\mathrm{R}=\left\{\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right): T_{1} \cong \mathrm{~T}_{2}\right\}$. Show that R is an equivalence relation.

- Watch Video Solution

5. Let L be the set of all lines in a plane and R be the

> relation in \quad L defined $R=\left\{\left(L_{1}, L_{2}\right): L_{1}(\text { isperpendiculartoL })_{2}\right\}$
. Show that R is symmetric but neither reflexive nor transitive.
6. Show that the relation R on the set $A=\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ is reflexive but neither symmetric nor transitive.

D Watch Video Solution

7. Show that the relation R on the set Z of integers,
given by $R=\{(a, b): 2$ divides $a-b\}$, is an equivalence relation.

- Watch Video Solution

8. Let R be the relation defined on the set
$A=\{1,2,3,4,5,6,7\}$ by $R=\{(a, b)$: both a
and b are either odd or even\}. Show that R is an equivalence relation. Further, show that all the elements of the subset $\{1,3,5,7\}$ are related to each other and all the elements of the subset $\{2,4,6\}$ are related to each other, but no element of the subset $\{1$,
$3,5,7\}$ is related to any element of the subset $\{2,4,6\}$.

- Watch Video Solution

9. Determine whether each of the following relations is reflexive, symmetric and transitive.

Relation R in the set
$A=\{1,2,3, \ldots, 13,14\}$ defined as $R=\{(x, y): 3 x-y=0\}$
10. Show that the relation R in the set R of real numbers, defined at $R=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive nor symmetric nor transitive.

- Watch Video Solution

11. Check whether the relation R defined in the set
$\{1,2,3,4,5,6\}$ as $R=\{(a, b): b=a+1\}$ is reflexive,
symmetric or transitive.
12. Show that the relation R on R defined as $R=\{(a, b): a \leq b\}$, is reflexive and transitive but not symmetric.

D Watch Video Solution

13. Check whether the relation R on R defined by $R=\left\{(a, b): a \leq b^{3}\right\}$ is reflexive, symmetric or transitive.
14. Show that the relation R on the set $A=\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ is symmetric but neither reflexive nor transitive.

- Watch Video Solution

15. Show that the relation R on the set A of all the books in a library of a college given by $R=\{(x, y): x$ and y have the same number of pages\}, is an equivalence relation.
16. Show that the relation R on the set
$A=\{1,2,3,4,5\}$, given by $R=\{(a, b):|a-b|$ is
even \}, is an equivalence relation. Show that all the elements of $\{1,3,5\}$ are related to each other and all the elements of $\{2,4\}$ are related to each other. But, no element of $\{1,3,5\}$ is related to any element of $\{2,4\}$.

- Watch Video Solution

17. Show that each of the relation R in the set
$A=\{x \in Z: 0 \leq x \leq 12\}$,given by
$R=\{(a, b):|a-b|$ is a multiple of 4$\}$ is an equivalence relation. Find the set of all elements related to 1 in each case.
18. Give an example of a relation which is symmetric but neither reflexive nor transitive.

D Watch Video Solution

19. Show that the relation R. in the set A of all points in a place given by
$R=\{(P, Q)$: the distance of the points P from the point Q
from the origin \}, is an equivalence relation. Further show that the set of all points related to a point
$p \neq(0,0)$ is the circle passing through P with origin as centre.

D Watch Video Solution

20. Show that the relation R. defined in the set A of all triangle as $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is similar to T_{2}, is an equivalence relation. Consider three right angled triangles T_{1} with sides $3,4,5, T_{2}$ with sides $5,12,13$ and T_{3} with sides $6,8,10$. Which triangle among T_{1}, T_{2} and T_{3} are related ?
21. Show that the relation R defined in the set A of all polygons as
$R=\left\{\left(P_{1}, P_{2}\right): P_{1}\right.$ and P_{2} have the same number of sides \},is an equivalence relation.What is the set of all elements in A related to the right angled triangle T with sides 3,4 and 5 ?

- Watch Video Solution

22. Let L be the set of all line in $X Y$ place and R be the relation in L defined as $R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is parallel to L_{2} \}Show that R is an equivalence relation. Find the set of all line related to the line $y=2 x+4$
23. Let R be the relation in the set $\{1,2,3,4$,$\} given by R=$ $\{(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)\}$.Choose the correct answer. a) R is reflexive and symmetric but not transitive b) R is reflexive and transitive but not symmetric c) R is symmetric and transitive but not reflexive d) R is an equivalence relation
A. R^{\prime} isreflexive and transitive but not transitive
B. R^{\prime} is reflexive and transitive but not symmetric.
C. R^{\prime} is symmetric and.transitive but. not reflexive.
D. R^{\prime} is an equivalence relation.

- Watch Video Solution

24. Let R be the relation in the set N given by

$$
R=\{(a, b): a=b-2, b>6\}
$$

choose the correct answer
A. $(2,4)$ in R^{\prime}
B. $(3,8)$ in R^{\prime}
C. $(6,8)$ in R'
D. $(8,7)$ in R^{\prime}

- Watch Video Solution

25. Let A be the set of all 50 students of class X in a school. Let $f: A \rightarrow N$
be function defined by $f(x)=$ roll numbers of the
student x . Show that
f is one-one but not onto

D Watch Video Solution

26. The function $f: N \rightarrow N$ given by $f(x)=2 x$
27. Prove that the function $f: R \rightarrow R$ given by $f(x)=2 x$ is one-one and onto.

D Watch Video Solution

28. Show that the function $f: N \rightarrow N$, given by $f(1)=f(2)=1$ and $f(x)=x-1$, for every $x>2$, is onto but not one - one

D View Text Solution

29. Check the injective and surjective of the following
functions: $f: R \rightarrow R$ given by $f(x)=x^{2}$
30. Show that $f: N \rightarrow N$ given by
$f(x)=\left\{\begin{array}{lll}(x+1) & \text { if } & \text { xisodd } \\ (x-1) & \text { if } & \text { xiseven }\end{array}\right.$
is both one-one and onto.

D Watch Video Solution

31. Check the injectivity and surjectivity of the following functions
$f: N \rightarrow N$ defined by $f(x)=x^{3}$
32. Prove that the greatest integer function $f: R \rightarrow R$ given by $f(x)=[x]$ is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.

D Watch Video Solution

33. Show that the modulus function $f: R \rightarrow R$ given by $f(x)=|x|$, is neither one-one nor onto.
34. Show that the signum function $f: R \rightarrow R$ given by $f(x)=\left\{\begin{array}{ll}1 & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -1 & \text { if } x<0\end{array}\right.$ is neither one-one nor onto.

D Watch Video Solution

35. Let $A=\{1,2,3\}, B\{4,5,6\}$ and let $f=\{(1,4),(2,5)(3,6)\}$ be a function from A to B. Show that f is one-one.
36. In each of the following cases, states whether the function is one-one, onto or bijective. Justify your answer. $f: R \rightarrow R$ defined by $f(x)=3-4 x$

- Watch Video Solution

37. Let A and B be sets. Show that
$f: A \times B \rightarrow B \times A$ such that
$f(a, b)=(b, a)$ is a bijective function

D Watch Video Solution

38. Let $f: N$ to N be defined by
$f(n)=\left\{\begin{array}{l}\left(\frac{n+1}{2}\right) \text { if nisodd } \\ \frac{n}{2} \text { if niseven }\end{array}\right.$ for all $n \in N$
State whether the function f is bijective. Justify yur answer.

D Watch Video Solution

39. Let $A=R-\{3\}$ and $B=R-\{1\}$ Consider the
function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$
Is f one-one and onto? Justify your answer.
40. Let $f: R \rightarrow R$ be defined as $\mathrm{f}(\mathrm{x})=x^{4}$ Choose the correct answer
A. ' f ' is one-one onto
B. ' f ' is many-one onto
C. f ' is one-one but not onto
D. ' f ' is neither one-onenor onto.

Answer: D

- Watch Video Solution

41. Let $f: R \rightarrow R$ be defined as $\mathrm{f}(\mathrm{x})=3 \mathrm{x}$ Choose the correct answer
A. f^{\prime} is one-one onto
B. f^{\prime} is many-one onto
C. ' f ' is one-one but not onto
D. f^{\prime} is neither one-one nor onto

Answer: A

- Watch Video Solution

42. Let $f:\{2,3,4,5\} \rightarrow\{3,4,5,9\} \quad$ and
$g:\{3,4,5,9\} \rightarrow\{7,11,15\}$ be functions defined as
$f(2)=3, f(3)=4, \quad f(4)=f(5)=5 \quad$ and
$g(3)=g(4)=7$ and $g(5)=g(9)=11$. Find $g \circ f$.

- Watch Video Solution

43. Find $g o f$ and $f o g$, if $f: R \rightarrow R$ and $g: R \rightarrow R$ are given by $f(x)=\cos x$ and $g(x)=3 x^{2}$. Show that gof \neq fog.
44. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-one, then gof: $A \rightarrow C$ is also one-one.

D Watch Video Solution

45. Show that if $f: A \rightarrow B$ and $g: B \rightarrow C$ are onto, then $g o f: A \rightarrow C$ is also onto.

- View Text Solution

46. Are ' f ' and 'g' both necessarily onto, if gof, is onto?
47. Let $f:\{1,2,3,\} \rightarrow\{a, b, c\}$ be one-one, and onto function given by $f(1)=a, f(2)=b$ and $f(3)=c$. Shów that there exists a function $g:\{a, b, c\} \rightarrow\{1,2,3$.$\} such that g o f=I_{x}$ and $f o g=, I_{y}$ where, $X=\{1,2,3\}$ and $Y=\{a, b, c\}$

D Watch Video Solution

48. Consider $f: R \rightarrow R$ given $\mathrm{f}(\mathrm{x})=4 \mathrm{x}+3$. Show that f is invertible. Find the inverse of f.
49. Consider of $f: N \rightarrow N$ and $h: N \rightarrow R$ defined as $f(x)=2 x, g(y)=3 y+4$ and $h(z)=\sin z, \forall, x, y$ and z in N. Show that ho(gof) $=$ (hog)of.

- Watch Video Solution

50. Let $S=\{1,2,3\}$. Determine whether the function $f: S \rightarrow S$ defined as below have inverses. Find f^{-1}, if it exists
(a) $f=\{(1,1),(2,2),(3,3)\}$
(b) $f=\{(1,2),(2,1),(3,1)\}$
(c) $f=\{(1,3),(3,2),(2,1)\}$
51. Let $\mathrm{f}:\{1,3,4\} \rightarrow\{1,2,5\}$ and
$\mathrm{g}:\{1,2,5\} \rightarrow(1,3\}$ be given by
$f=\{(1,2),(3,5),(4,1)\}$ and
$g=\{(1,3),(2,3),(5,1)\}$

Write down g of

D Watch Video Solution

52. Let f, g, and h be functions from R to R. Show that
$(f+g) o h=f o h+g o h$
53. Find f o g and g of
$f(x)=|x|$ and $g(x)=|5 x-2|$

- Watch Video Solution

54. If $\mathrm{f}(\mathrm{x})=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$, show that $(\mathrm{fof})(\mathrm{x})=\mathrm{x}$, for all
$x \neq \frac{2}{3}$.
What is the inverse of f ?

- Watch Video Solution

55. State with reason whether the following functions
$f:\{1,2,3,4\}$ to $\{10\}$ with
$f=\{(1,10),(2,10),(3,10),(4,10)\}$

D Watch Video Solution

56. Show that $f:[-1,1] \rightarrow R$ given by
$f(x)=\frac{x}{x+2}$ is one-one.

D Watch Video Solution

57. Consider $f: R \rightarrow R$ given $\mathrm{f}(\mathrm{x})=4 \mathrm{x}+3$. Show that f is invertible. Find the inverse of f.
58. Consider $f: R^{+} \rightarrow[-5, \infty)$ given by
$f(x)=9 x^{2}+6 x-5$. Show that f is invertible with
$f^{-1}(y)=\frac{\sqrt{y+6}-1}{3}$

- Watch Video Solution

59. Let $f: X \rightarrow Y$ be invertible, show that f has unique inverse

- Watch Video Solution

60. Consider $\mathrm{f}:\{1,2,3\} \rightarrow\{a, b, c\}$ given by $f(1)=a, f(2)$
$=\mathrm{b}$ and $\mathrm{f}(3)=\mathrm{c}$. find f^{-1} and show that $\left(f^{-1}\right)^{-1}=\mathrm{f}$

- Watch Video Solution

61. Let $f: X \rightarrow Y$ be invertible, show that the inverse of $f^{-1}=\mathrm{f}$,
i.e., $\left(f^{-1}\right)^{-1}=f$.

D Watch Video Solution

62. If $f: R \rightarrow R$ be given by $\mathrm{f}(\mathrm{x})=\left(3-x^{3}\right)^{\frac{1}{3}}$, then ($\mathrm{f} \circ$
f) (x) is

- Watch Video Solution

63. $\mathrm{f}: R-\left\{\frac{-4}{3}\right\} \rightarrow R$ be a function defined as $f(x)=\frac{4 x}{3 x+4}$. The inverse of f is the map $\mathrm{g}:$ Range $f \rightarrow R-\left\{\frac{-4}{3}\right\}$ given by
A. $g(y)=(3 y) /(3-4 y){ }^{\prime}$
B. ${ }^{\prime} g(y)=(4 y) /(4-3 y) '$
C. $g(y)=(4 y) /(3-3 y){ }^{\prime}$
D. $g(y)=(3 y) /(4-3 y)^{\prime}$

Answer: B

- Watch Video Solution

64. Can you define a function from 'RxR rarr R ' such as 'f_3: RxR rarr, R' defined by 'f_3(a, b)=a/b ?'

D View Text Solution

65. Can yóu define a function from ' $\mathrm{R} x \mathrm{x} R$ rarr R ' such as 'f_4: R xx R rarr R' defined by 'f_4(a, b)=sqrt (a b)'

D View Text Solution

66. Show that addition, subtraction and multiplication are binary operations on R, but division is not a binary
operation on R. Further, show that division is a binary operation on the set R of nonzero real numbers.

D Watch Video Solution

67. Show that subtraction and division are not binary operations on N .

D Watch Video Solution

68. Show that ${ }^{*}: R \times R \rightarrow R$ is given by
$(a, b) \rightarrow(a+4 b)^{2}$ is a binary operation.

- Watch Video Solution

69. Let P be the set of all subsets of a given set X. Show that $\cup: P \times P \rightarrow P$ given by $(A, B) \rightarrow A \cup B$ and $\cap: P \times P \rightarrow P$ given by $(A, B) \rightarrow A \cap B$ are binary operations on the set P.

- Watch Video Solution

70. Show that the $\vee: R \times R \rightarrow R$ given by $(a, b) \rightarrow \max \{a, b\}$ and the
*: $R \times R \rightarrow R$ given by $(a, b) \rightarrow \min \{a, b\}$ are binary operations.

- Watch Video Solution

71. Show that $+: R \times R \rightarrow R$ and $\times: R \times R \rightarrow R$ are commutative binary operaions, but
$-: R \times R \rightarrow R$ and $\div: R . \times R . \rightarrow R$. are not commutative.

D Watch Video Solution

72. Show that *: $R \times R \rightarrow R$ defined by a * $\mathrm{b}=a+2 b$ is not commutative.

D Watch Video Solution

73. Show that addition and multiplication are associativé binary operation on R. But subtraction is
not associative on R. Division is not associative on R.

- Watch Video Solution

74. Show that * $: R \times R \rightarrow R$ given by $a^{*} b=a+2 b$ is not associative.

- Watch Video Solution

75. Show that zero is the identity for addition on R and

1 is the identity for multiplication on R. But there is no identity element for the operations. $-: R \times R \rightarrow R$ and $\div: R . \times R . \rightarrow R$.
76. Show that $-a$ is not the inverse of $a \in N$ for the addition operation '+' on N and $\frac{1}{a}$ is not the inverse of $a \in N$ for multiplication operation 'X' on N for $a \neq 1$

D Watch Video Solution

77. Determine whether or not each of the definitions of

* given below gives a binary operation. In the event
that $*$ is not a binary operation, give justification for this
on Z^{+}, define $*$ by $a * b=|a-b|$

78. For each binary operation $*$ defined below, determine whether * is commutative or associative on Z, define $a * b=a-b$

- Watch Video Solution

79. Consider the binary operation on a set
$\{1,2,3,4,5\}$. defined by $a \wedge b=\min \{a, b\}$. Write the operation table of the operation.
80. Consider the binary operation $*$ on the set $A=$ \{1,2,3,4,5\} given by the following multiplication table

Compute $(2 * 3) * 4$ and $2 *(3 * 4)$

$*$	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	$\cdot 1$	5

- Watch Video Solution

81. Let $*$ ' be the binary operation on N given by $a *$ ' b
$=$ L.c.m. of a and b. Find $5 * 7,20 * 16$
82. Consider an operation $*$ defined on the set
$A=\{1,2,4,8\}$ by $a * b=L C M$ of a and b.
Show that $*$ is a binary operation.

- Watch Video Solution

83. Let $*$ be a binary operation on N defined by
$a * b=H C F$ of a and b

Is * commutative?

- Watch Video Solution

84. Let $*$ be a binary operation on the set Q of rational numbers as follows
$a * b=a-b$.

Check whether * is commutative and associative

- Watch Video Solution

85. Let
$A=N \times N$ and $*$
be a binary operation on A defined by $(a, b)^{*}(c, d)=(a+$
$c, b+d)$
Prove that
is associative
86. State whether the following statements are true or false. Justify

For an arbitary binary operation * on N, $a * a=a \forall a \in N$

- Watch Video Solution

87. Consider a binary operation $*$ on N defined as
$a * b=a^{3}+b^{3}$. Choose the correct answer. a) both associative and commutative b)commutative but not
neither commutative nor associative

D Watch Video Solution

88. If R_{1} and R_{2} are equivalence relations in a set A , show that $R_{1} \cap R_{2}$ is also an equivalence relation.

D Watch Video Solution

89. Let $X=\{1,2,3,4,5,6,7,8,9\}$. Let R_{1} be a relation in X given by $R_{1}=\{(\mathrm{x}, \mathrm{y})$: $\mathrm{x}-\mathrm{y}$ is divisible by 3$\}$ and R_{2} be another relation on X given by
$R_{2}=\{(x, y):\{x, y\} \subset\{1,4,7\} \circ$ or $\quad\{x, y\} \subset\{2,5,8\}$ or . $\{x, y\} \subset\{3,6,9\}\}$. Show that $R_{1}=R_{2}$

D Watch Video Solution

90. Let $f: X \rightarrow Y$, be a function. Define a relation R in X given by: $R=\{(a, b): f(a)=f(b)\}$ Examine if R is an equivalence relation.

- Watch Video Solution

91. Determine which of the following binary operation
on the set R are associative and which are
communtative.
$a * b=1$

D Watch Video Solution

92. Find the number of all one-one functions from set
$A=\{1,2,3\}$ to itself.

D Watch Video Solution

93. Consider the identity function, $I_{N}: N \rightarrow N$ defined as $I_{n}(x)=x \forall x \in N$. Show that although I_{N} is onto but $I_{N}+I_{N}: N \rightarrow N$ defined as.
$\left(I_{N}+I_{N}\right)(x)=I_{N}(x)+I_{N}(x)=x+x=2 x$ is not onto

D Watch Video Solution

94. Consider a function $f:\left[0, \frac{\pi}{2}\right] \rightarrow R$
given by $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}$ and $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$
given by $g(x)=\cos x$. Show that f and g are one-one, but $f+g$ is not one-one.

D Watch Video Solution

95. Let $f: R \rightarrow R$ be defined as $\mathrm{f}(\mathrm{x})=10 \mathrm{x}+7$

Find the function $g: R \rightarrow R$ such that gof $=\mathrm{fog}=I_{R}$

- Watch Video Solution

96. Let $f: W \rightarrow W$ be defined as $\mathrm{f}(\mathrm{n})=\mathrm{n}-1$
if n is odd and
$f(n)=n+1$ if n is even.
Show that f is invertible. Find the inverse of f. Here W is the set of all whole numbers.

D Watch Video Solution

97. If $f: R \rightarrow R$ is defined by
$f(x)=x^{2}-3 x+2$, find $\mathrm{f}(\mathrm{f}(\mathrm{x}))$
98. Show that the function $f: R \rightarrow R$ given by $f(x)=x^{3}$ is injective.

- Watch Video Solution

99. Given a non empty set X, consider $P(X)$ which is
the set of all subsets of X. Define the relation R in
$P(X)$ as follows. For subsets A, B in $P(X), A R B$ if and only of $A \subset B$. Is R an equivalence relation on $P(X)$. Justify your answer.

- Watch Video Solution

100. Find the number of all onto functions from the set $\{1,2,3 \ldots \ldots . n\}$ to itself.

- Watch Video Solution

101. Let $S=\{a, b, c\}$ and $T=\{1,2,3\}$, Find F^{-1} of the following functions F from S to T if it exist.
i) $F=\{(a, 3),(b, 2),(c, 1)\}$
ii) $F=\{(a, 2),(b, 1),(c, 1)\}$
102. Let $A=\{-1,0,1,2\} B=,\{-4,-2,0,2\}$ and $f, g: A \rightarrow B$ be functions defined by $f(x)=x^{2}-x, x \in A$ and $g(x)=2\left|x-\frac{1}{2}\right|-1, x \in A$
.Are f and g equal?. Justify your answer.

- Watch Video Solution

103. Number of binary operations on the set $\{a, b\}$ are
(A) 10 (B) 16 (C)20 (D) 8

- Watch Video Solution

104. Show that the relation R on the set $N \times N$ defined by $(a, b) R(c, d)$ iff $a d(b+c)=b c(a+d)$ is an equivalence relation.

(D) Watch Video Solution

105. If $f: R \rightarrow R$ be a function defined by $f(x)=4 x^{3}-7$, show that the function f is a bijective function.
106. Consider the binary operation $*: Q \rightarrow Q$ where
Q is the set of rational numbers as defined as $a * b=a+b-a b$

Find $2 * 3$

- Watch Video Solution

107. Prove that the function $f: Q \rightarrow Q$ given by $f(x)=2 x-3$ for all $x \in Q$ (the set of all rational numbers) is a bijection.
108. Prove that the function $f: N \rightarrow N$, defined by $f(x)=x^{2}+x+1$ is one-one but not onto.

D Watch Video Solution

109. Let $f: R \rightarrow R$ be a function defined by
$f(x)=x^{2}-3 x+2$ Find $f^{\prime}(2)$ and $f^{\prime}(6)$

D Watch Video Solution

110. If $f: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=5 \mathrm{x}-3$, then prove
that f is one-one and onto and find a formula for f^{-1}
111. Let $f, g: R \rightarrow R$ be defined by $f(x)=x^{2}+1$ and $g(x)=\sin x$. Find $f o g$ and $g o f$.

D Watch Video Solution

112. If $f, g: R \rightarrow R$ are defined by $f(x)=x^{2}+3 x+1$, $g(x)=2 x-3$, find
(i) $\operatorname{fog}(i i) f o f(i i i)(g \circ f)(2)(i v)(g \circ g)(-5)$

- Watch Video Solution

113. Let * be a binary operation on N, the set of all natural numbers defined by $a^{\star} b=a^{b}, a, b \in N$. Is ($\mathrm{N},{ }^{*}$) associative or commutative?

- Watch Video Solution

114. Let $A=N \times N$ and let * be a binary operation on

A defined by
$(a, b)^{*}(c, d)=(a c, b d)$ show that
(i) $\left(A,{ }^{*}\right)$ is associative
(ii) $\left(A,{ }^{*}\right)$ is commutative

