©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - V PUBLICATION

THREE DIMENSIONAL GEOMETRY

Question Bank

1. If a line makes angles. $90^{\circ}, 60^{\circ}, 30^{\circ}$ with the x, y and z axes respectively,
find its direction cosines

- Watch Video Solution

2. If a line has direction ratios ' $2,-1,-2$ ', determine direction cosines.

- Watch Video Solution

3. Find the direction cosines of the line passing through the following points: $(-2,4,-5),(1,2,3)$.

- Watch Video Solution

4. Find the direction cosines of x, y and z-axis
5. Show that the points ' $\mathrm{A}(2,3,-4), \mathrm{B}(1,-2,3)$ ' and $\mathrm{C}(3,8,-11)$ ' are collinear

- Watch Video Solution

6. If a Ine makes angles. $90^{\circ}, 135^{\circ}, 45^{\circ}$ with the x, y and Z -axes respectively, find its direction cosines.

- Watch Video Solution

7. Find the direction cosines of a line which makes equal angles with the coordinate axes.
8. If a line has the direction ratios '-18,(12) ,-4', then what are its directión cosines?

- Watch Video Solution

9. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

- Watch Video Solution

10. Find the direction cosines of the sides of the triangle whose vertices are '(3,5,-4),(-1,1,2)' and '(-5,-5,-2)'
11. Find the vector and Cartesian equations of the line through the point $(5,2,-4)$ and which is pralel to the vector $3 \hat{i}+2 \hat{j}-8 k$.

D Watch Video Solution

12. Find the vector equation for the line passing through the points $(1,0,2)$ and (3, 4, 6).

- Watch Video Solution

13. The Cartesian equation of a line is $\frac{x+3}{2}=\frac{y-5}{4}=\frac{z+6}{2}$. Find the vector equation for the line.
14. Find the angle between the pair of lines given by
$\bar{r}=3 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$ and
$\vec{r}=5 \hat{i}-2 \hat{j}+\mu(3 \hat{i}+2 \hat{j}+6 \hat{k})$

- Watch Video Solution

15. find the angle between the pair of lines $\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and $\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$

- Watch Video Solution

16. Find the shortest distance between the lines l_{1} and l_{2}

$$
\begin{aligned}
& \bar{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+k) \text { and } \\
& \bar{r}=2 \hat{i}+\hat{j}-\hat{k}+\mu \cdot(3 \hat{i}-5 \hat{j}+2 \hat{k})
\end{aligned}
$$

17. Find the distance between the lines l_{1} and l_{2}, given by
$\bar{r}=\hat{i}+2 \hat{j}-4 \hat{k}+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$
and
$\bar{r}=3 \hat{i}+3 \hat{j}-5 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+6 \hat{k})$

D Watch Video Solution

18. Show that the three lines with direction cosines $\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13} ; \frac{4}{13} ; \frac{12}{13}, \frac{3}{13} ; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13}$ are mutually perpendicular.

- Watch Video Solution

19. Show that the line through the points $(1,-1,2)$ and $(3,4,-2)$ is perpendicular to the through the points ($0,3,2$) and ($3,5,6$).
20. Show that the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(-1,-2,1),(1,2,5)$.

- Watch Video Solution

21. The equation of the line which passes through the point
$(1,2,3)$ and parallel to the vector $3 \mathrm{i}+2 \mathrm{j}-2 \mathrm{k}$ is

- Watch Video Solution

22. Find the equation of the line in vector and in cartesian form that passes through the point with position vector ' 2 hati-hatj+4 hatk' and is in the direction 'hati+2 hatj-hatk'.
23. Find the Cartesian equation of the line with passes through the point $(-2,4,-5)$ and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{3}=\frac{z+8}{6}$.

- Watch Video Solution

24. The Cartesian equations of a line are $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Find a vector equation for the line.

- Watch Video Solution

25. Find the Cartesian equation of the line passing through origin and (5,-2,3)
26. Find the vector and the cartesian equations of the lines that passes through the points ($3,-2,-5$) and ($3,-2,6$)

- Watch Video Solution

27. Find the angle between the following pairs of lines:
i)

$$
\begin{aligned}
& \text { i) } \quad \vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k}) \\
& \vec{r}=7 \hat{i}-6 \hat{k}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})
\end{aligned}
$$

and
(ii) $\quad \vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k})$
and
$\vec{r}=2 \hat{i}-\hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})$

- Watch Video Solution

28. Find the angles between the lines
$\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$

- Watch Video Solution

29. Find the values of p so that the lines $\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$ and $\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

- Watch Video Solution

30. Show that the lines $\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \quad$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.
31. Find the shortest distance between the skew line $\vec{r}=\vec{i}+\overrightarrow{2}$

- Watch Video Solution

32. Find the shortest distance between the lines:

$$
\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \text { and } \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} .
$$

- Watch Video Solution

33. Find the shortest distance between the lines whose vector equations are $\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k})$ and $\vec{r}=(4 \hat{i}+5 \hat{j}+6 \hat{k})+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$
34. Find the shortest distance between the lines whose vector equations \quad are $\rightarrow r=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$ and $\rightarrow r=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}$

- Watch Video Solution

35. Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin and its normal vector from the origin is $2 \hat{i}-3 \hat{j}+4 \hat{k}$. Also, find its Cartesian form.

- Watch Video Solution

36. Find the direction cosines of the unit vector perpendicular to the plane $\rightarrow r 6 \hat{i}-3 \hat{j}-2 \hat{k}+1=0$ passing through the origin.
37. Find the distance of the plane $2 x-3 y+4 z-6=0$ from the origin.

- Watch Video Solution

38. Find the coordinates of the foot of the perpendicular drawn from the origin to the plane $2 x-3 y+4 z-6=0$.

- Watch Video Solution

39. Find the vector and cartesian equations of the plane which passes through the point $(5,2,-4)$ and perpendicular to the line with direction ratios $2,3,-1$
40. Find the vector equations of the plane passing through the points $R(2,5,-3), S(-2,-3,5)$ and $T(5,3,-3)$.

- Watch Video Solution

41. Find the equation of the plane with intercepts 2,3 and 4 on the x, y and z -axis respectively.

- Watch Video Solution

42. Find the vector equation of the Plane Passing through the intersection of the planes $\bar{r} .(i+j+k)=6$ and
$\bar{r} .(2 i+3 j+4 k)=-5$ and through the point $(1,1,1)$.

- Watch Video Solution

43. Show that the lines
$\frac{x+3}{-3}=\frac{y-1}{1}=\frac{z-5}{5}$ and $\frac{x+1}{-1}=\frac{y-2}{2}=\frac{z-5}{5}$ are coplanar.

- Watch Video Solution

44. Find the angle between the two planes $2 x+y-2 z=5$ and $3 x-6 y-2 z=7$ using vector method.

- Watch Video Solution

45. Find the angle between the two planes $3 x-6 y+2 z=7$ and $2 x+2 y-2 z=5$

- Watch Video Solution

46. Find the distance of a point $(2,5,-3)$ from the plane $\vec{r} \cdot(6 \hat{i}-3 \hat{j}+2 \hat{k})=4$

D Watch Video Solution

47. Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}=\frac{z-3}{6}$ and the plane $10 x+2 y-11 z=3$.

- Watch Video Solution

48. Determine the direction cosines of the normal to the plane and the distance from the origin. $z=2$.
49. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector $3 \hat{i}+5 \hat{j}-6 \hat{k}$.

D Watch Video Solution

50. Find the cartesian equation fo the following planes.
$\vec{r} \cdot(\hat{i}+\hat{j}-\hat{k})=2$

D Watch Video Solution

51. Find the vector and cartesian equations of the planes
a) that passes through the point $(1,0,-2)$ and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$
b) that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{i}-2 \hat{j}+\hat{k}$
52. Find the equation of the planes that pass through the points..
$(1,1,-1),(6,4,-5),(-4,-2,3)$

- Watch Video Solution

53. Find the intercepts cut off by the plane $2 x+y-z=5$

- Watch Video Solution

54. Find the equation of the plane with intercept 3 on the y-axils and parallel to ZOX plane.

- Watch Video Solution

55. Find the equation of the plane through the intersection of the planes $3 x-y+2 z=4$ and $x+y+z=2$ and the point (2, 2, 1).

D Watch Video Solution

56. Find the vector equation of the plane passing through the intersection of the palnes
$\vec{r} \cdot(2 \hat{i}+2 \hat{j}-\hat{3} k)=7, \vec{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9$ and through the point $(2,1,3)$

- Watch Video Solution

57. Find the vector equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$
which is perpendicular to the plane $x-y+z=0$.

- Watch Video Solution

58. Find the angle between the planes whose vector equations are
$\vec{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=3$

- Watch Video Solution

59. A line makes angles \angle, β, γ and δ with the diagonals of a cube. Show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=4 / 3$.

- Watch Video Solution

60. Find the equation of the plane that contains the point (1, -1 ,
2) and is perpendicualr
to each of the planes $2 x+3 y-3 z=5$ and $x+2 y-3 z=8$

D Watch Video Solution

61. Find the distance between the point $P(6,5,9)$ and the plane determined by the points $A(3,-1,2), \quad B(5,2,4)$ and $C(-1,-1,6)$.

D Watch Video Solution

62. Show that the lines $\frac{x-a+d}{\alpha-\delta}=\frac{y-a}{\alpha}=\frac{z-a-d}{\alpha+\delta}$ and $\frac{x-b+c}{\beta-\gamma}=\frac{y-b}{\beta}=\frac{z-b-c}{\beta+\gamma}$ are coplanar.

- Watch Video Solution

63. Find the coordinates of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the $X Y$-plane.

- Watch Video Solution

64. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1)$, $(4,3,-1)$.

- Watch Video Solution

65. If l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $m_{1} n_{2}-m_{2} n_{1}, n_{1} l_{2}-n_{2} l_{1}, l_{1} m_{2}-l_{2} m_{1}$.
66. Find the angle between the lines whose direction ratios are a, b, c and $b-c, c-a, a-b$.

D Watch Video Solution

67. Find the equation of a line parallel to x-axis and passing through the origin.

- Watch Video Solution

$$
\begin{aligned}
& \text { 68. If the coordinates of the points } \\
& A, B, C, D b e(1,2,3),(4,5,7),(-4,3,-6) \text { and }(2,9,2)
\end{aligned}
$$

respectively then find the angle between the lines $A B$ and $C D$.
69. If the lines $\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}$ and $\frac{x-1}{3 k}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular, find the value of k .

- Watch Video Solution

70. Write the vector equation of the line passing through
$(1,2,3) \quad$ and perpendicular to the plane
$\vec{r} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0$.

- Watch Video Solution

71. Find the equation of the plane passing through (a, b, c) and parallel to the plane $\vec{r} \hat{i}+\dot{j}+\hat{k}=2$.
72. Find the shortest distance between the lines $\vec{r}=6 \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k})$ and
$\vec{r}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})$

- Watch Video Solution

73. Find the co-ordinates of the point where the line through (5,1,6) and (3,4,1)
crosses the YZ plane

D Watch Video Solution

74. Find the coordinates of the point where the line through (5,
$1,6)$ and ($3,4,1$) crosses the ZX-plane.
75. Find the co-ordinates of the point where the line through (3, $-4,-5)$ and $(2,-3,1)$
crosses the plane $2 \mathrm{x}+\mathrm{y}+\mathrm{z}=7$.

- Watch Video Solution

76. Find the equation of the plane passing through the point $(-1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$

- Watch Video Solution

77. If the points $(1,1, p)$ and $(-3,0,1)$ be equidistant from the plane $\vec{r} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0$, then find the value of p
78. Find the equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1 \quad$ and $\vec{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0$ and parallel to x-axis.

- Watch Video Solution

79. If O be the origin and the co-ordinates of P be $(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to OP.

- Watch Video Solution

80. Find the equation of the plane which contains the line of intersection of the planes $\vec{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})-4=0$,
$\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$ and which is perpendicular to the plane $\vec{r} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

- Watch Video Solution

81. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$

- Watch Video Solution

82. Find the vector equation of the line passing through $(1,2,3)$ and parallel to the planes $\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$
83. Find the vector equation of the line passing through the point (1,2,-4) and perpendicular to the two lines $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$

- Watch Video Solution

84. Prove that if a plane has the intercepts a, b, c and it is at a distance p units
from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$

- Watch Video Solution

85. Distance between the two planes: ' $2 x+3 y+4 z=4$ ' and ' $4 x+6$
$y+8 z=(12)$ ' is
A. 2 units
B. 4 units
C. 8 units
D. $2 \mathrm{sqrt29}$ units

Answer: D

- Watch Video Solution

86. The planes ' $2 x-y+4 z=5$ ' and ' $5 x-2.5 y+10 z=6$ ' are
A. Perpendicular
B. Parallel
C. Intersect y-axis
D. passes through '(0,0 , 5/4)'.

- Watch Video Solution

87. Can a line have direction angles $45^{\circ}, 60^{\circ}, 135^{\circ}$?

D Watch Video Solution

88. A line makes angles of 45° and 60° with the positive axes of X and Y respectively. What angle does it makes with the positive axis of Z

- Watch Video Solution

89. Find the direction cosine of a line which makes equal angles
with the co-ordinate axes.

(D) Watch Video Solution

90. 1, '-2,-2' are direction ratios of a line. What are its direction cosines?

- Watch Video Solution

91. Find d.c.'s of the line passing through the points ' $P(4,3,-5)$ ' and 'Q(-2,1-8) .'

D Watch Video Solution

92. A line passes through the points $(6,-7,-1)$ and
$(2,-3,1)$ Find the direction ratios and direction cosines of the line so directed that the angle α is acute.
93. Find the angle between the lines whose diréction ratios are
'2,3,4' and '1,-2,1'

- Watch Video Solution

94. Find the obtuse angle between the lines with direction ratios
'3,-6,2' and '1,-2,-2 .'

- Watch Video Solution

95. If points 'P, Q ' are ' $(2,3,-6)$ ' and ' $(3,-4,5)$ ', find the angle that $O P$ makes with OQ.
96. If A, B, C, D are the points $(3,4,5),(4,6,3),(-1,2,4)$ and $(1,0,5)$, find the angle between $C D$ and $A B$

- Watch Video Solution

97. Find the coordinates of foot of perpendicular drawn from the point $(1,2,1)$ to the line joining the points $(1,4,6)$ and $(5,4,4)$

- Watch Video Solution

98. Prove that the line joining the midpoints of the two sides of a triangle is parallel to the third side and half of its length.

- Watch Video Solution

99. The cartesian equations of a line are
$6 x-2=3 y+1=2 z-2$.
Find direction of the ratios of the line and write down the cartesian
and vector equations of the line through $(2,-1,-1)$, which is parallel to the given line.

D Watch Video Solution

100. Find the shortest distance between the lines:

$$
\begin{aligned}
\vec{r} & =3 \hat{i}+8 \hat{j}+3 \hat{k}+\lambda(3 \hat{i}-\hat{j}+\hat{k}) \\
\vec{r} & =-3 \hat{i}-7 \hat{j}+6 \hat{k}+\mu(-3 \hat{i}+2 \hat{j}+4 \hat{k})
\end{aligned}
$$

and

- Watch Video Solution

101. Find the shortest distance between the lines

$$
\begin{aligned}
& \vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \\
& \vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}
\end{aligned}
$$

- Watch Video Solution

102. Find the angle between the line $\frac{x-2}{3}=\frac{y+1}{-1}=\frac{z-3}{-2}$ and the plane $3 x+4 y+z+5=0$

- Watch Video Solution

103. Find the length and foot of the perpendicular from
the point $(7,14,5)$ to the plane $2 x+4 y-z=2$.
