© ${ }^{\prime}$ doubtnut

India's Number 1 Education App

MATHS

BOOKS - V PUBLICATION

VECTOR ALGEBRA

Question Bank

1. Represent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ west of south.

- Watch Video Solution

2. Classify the following, measures as scalars and vectors.
(i) 5 seconds
(ii) $1000 \mathrm{~m}^{3}$
(iii) 10 N
(iv) $30(\mathrm{~km} / \mathrm{hr})$
(v) $10\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$
(vi) $20(\mathrm{~m} / \mathrm{s})$ towards north

- Watch Video Solution

3. Represent graphically a displacement of $40 \mathrm{~km}, 30^{\circ}$ east of north.

- Watch Video Solution

4. Classify the following measures as scalars and vectors.
i) 10 kg
ii) 2 meters north-west
iii) 40°
iv) 40 watt
v) 10^{-10} coloumb
vi) $-20 \mathrm{~m} / \mathrm{s}^{2}$

D Watch Video Solution

5. Classify the following as scalar and vector quantities.
i) time period
ii) distance.
iii) force
iv) velocity
v) workdone
6. Answer the following as true or false.
i) \vec{a} and $-\vec{a}$ are collinear
ii) Two collinear vectors are always equal in magnitude.
iii) Two vectors having same magnitude are collinear. iv) Two collinear vectors having the same magnitude are equal.

D Watch Video Solution

7. Find the values of x, y and z so that the vectors
$\vec{a}=x \hat{i}+2 \hat{j}+z \hat{k}$ and $\vec{b}=2 \hat{i}+y \hat{j}+\hat{k}$ are equal.

D Watch Video Solution

8. Let $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}$. Is $|\vec{a}|=|\vec{b}|$?.Are the vectors \vec{a} and \vec{b} equal?

- Watch Video Solution

9. Find unit vector in the direction of vector

$$
\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}
$$

D Watch Video Solution

10. Find a vector in the direction of vector $\vec{a}=\hat{i}-2 \hat{j}$ that has magnitude 7 units.

- Watch Video Solution

11. Find the unit vector in the direction of the sum of the vectors,
$\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+2 \hat{j}+3 \hat{k}$

(D) Watch Video Solution

12. Write the direction ratio's of the vector,
$\vec{a}=\vec{i}+\hat{j}-2 \hat{k}$ and hence calculate its direction cosines.

D Watch Video Solution

13. Find the vector joining the points $P(2,3,0)$ and
$Q(-1,-2,-4)$. directed from P to Q.

D Watch Video Solution

14. Consider two points P and Q with position vectors $\overrightarrow{O P}=3 \vec{a}-2 \vec{b}$ and $\overrightarrow{O Q}=\vec{a}+\vec{b}$. Find the position vector of a point R which divides the line joining P and
Q in the ratio $2: 1$, i) Internally and ii) externally.

D Watch Video Solution

15. Show that the vectors ' 2 hati-hatj+hatk, hati-3 hatj-5
hatk' and '3 hati-4 hatj-4 hatk' form the vertices of a right-angled triangle.
16. Compute the magnitude of the following vectors.

$$
\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k}
$$

$\vec{c}=\frac{1}{\sqrt{3}} \hat{i}+\frac{1}{\sqrt{3}} \hat{j}-\frac{1}{\sqrt{3}} \hat{k}$

- Watch Video Solution

17. Write two different vectors having same magnitude.

- Watch Video Solution

18. Write two different vectors having same direction.
19. Find the values of x and y so that the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal.

- Watch Video Solution

20. Find the scalar and vector components of the vector with initial point $(2,1)$ and terminal point(-5,7).

D Watch Video Solution

21. Find the sum of the vectors.

$$
\begin{aligned}
& \vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k} \quad \text { and } \\
& \vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}
\end{aligned}
$$

22. Find the unit vector in the direction of the vector
$\vec{a}=\hat{i}+\hat{j}+2 \hat{k}$

- Watch Video Solution

23. Find the unit vector in the direction of vector $\vec{P} Q$, where P and Q are the points $(1,2,3)$ and $(4,5,6)$ respectively.
24. For given vectors, $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k} \quad$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$, find the unit vector in the direction of the vectors $\vec{a}+\vec{b}$

- Watch Video Solution

25. Find a vector in the direction of vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.

- Watch Video Solution

26. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.
27. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$

- Watch Video Solution

28. Find the, direction cosines of the vector joining ' $\mathrm{A}(1,2,-3)$ ' and ' $\mathrm{B}(-1,-2,1)$ ', directed from 'A' fò ' B '.

- Watch Video Solution

29. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined to the axes OX, OY and OZ .
30. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ratio $2: 1$
(i) internally (li) externally.

D Watch Video Solution

31. Find the position vector of the mid point of the vector joining the points
$P(2,3,4)$ and $Q(4,1,-2)$.
32. Show that the points A, B and C with position vectors
$\vec{a}=3 i-4 j-4 k, \vec{b}=2 i-j+k$ and
$\vec{c}=i-3 j-5 k$ respectively form the vertices of a right angled triangle.

D Watch Video Solution

33. In triangle ' $A B C$ ', which of the following is not true.
(\#\#VPU $U_{H} S S_{M} A T_{X} I I_{C} 10_{E} 03_{020}-Q 01 \# \#$)
A. $\operatorname{vec}(A B)+v e c(B C)+v e c(C A)=v e c O^{\prime}$
B. $\operatorname{vec}(A B)+v e c(B C)-v e c(A C)=v e c O^{\prime}$
$C . \operatorname{vec}(A B)+\operatorname{vec}(B C)-\operatorname{vec}(C A)=v e c O^{\prime}$
D. $\operatorname{vec}(A B)-v e c(C B)+v e c(C A)=v e c O^{\prime}$

Answer: C

- View Text Solution

34. If \vec{a} and \vec{b} are two collinear vectors, then which of the following are incorrect: a) $\vec{b}=\vec{a} \lambda$ scalar λ b) $\vec{a}= \pm \vec{b}$ c)The respective components of \vec{a} and \vec{b} are proportional d)Both \vec{a} and \vec{b} have same direction, but different magnitude.
A. vecb=lambda veca', for some scalar 'lambda'.
B. veca=+- vecb'
C. the respective components of 'veca' and 'vecb' are proportional
D. Both the vectors a and 'vecb' have'same direction, but different magnitudes.

Answer: D

- Watch Video Solution

35. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and when $\vec{a} \cdot \vec{b}=1$
36. Find the angle between the vectors $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$

- Watch Video Solution

37. If $\vec{a}=5 i-j-3 k$ and $\vec{b}=i+3 j+5 k$, then show that the vectors $\vec{a}+\vec{b}, \vec{a}-\vec{b}$ are perpendicular.

- Watch Video Solution

38. Find the projection of the vector $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.
39. Find $|\vec{a}-\vec{b}|$, if two vectors \vec{a} and \vec{b} are such that $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$

- Watch Video Solution

40. If \vec{a} is a unit vector and $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$, then find $|\vec{x}|$.

- Watch Video Solution

41. For any two vectors \vec{a} and \vec{b}, we always have $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$ (triangle ineuality)
42. Show that the points $A(-2 \hat{i}+3 \hat{j}+5 \hat{k})$, $B(\hat{i}+2 \hat{j}+3 \hat{k})$ and $C(7 \hat{i}-\hat{k})$ are collinear.

- Watch Video Solution

43. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and2 respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$.

- Watch Video Solution

44. Find the angle between the vectors $\hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$
45. Find the projection of the vector $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$.

D Watch Video Solution

46. Find the projection of a vector $i+3 j+7 k$ on the vector $7 i-j+8 k$.

- Watch Video Solution

47. Show that each of the given three vectors is a unit
$\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}), \frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$

Also, show that the are mutually perpendicular to each other.

D Watch Video Solution

48. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$

(D) Watch Video Solution

49. Evaluate the product $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$
50. Find the magnitude of two vectors \vec{a} and \vec{b}, having the same magitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.

- Watch Video Solution

51. Find $|\vec{x}|$, if for a unit vector
$\vec{a},(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=12^{\prime}$

- Watch Video Solution

52. If $\quad \vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}$,
$\vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$ are such that $\vec{a}+\lambda \vec{b}$ is perpendicular to \vec{c}, then find the value of λ

- Watch Video Solution

53. Show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$, for any two non-zero vectors.

- Watch Video Solution

54. If $\vec{a} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b}=0$, then what can be concluded about the vector \vec{b} ?
55. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that
$\vec{a}+\vec{b}+\vec{c}=0$, find the value of
$\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

56. If either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \times \vec{b}=\overrightarrow{0}$.Is the converse true? Justify your answer with an example.

- Watch Video Solution

57. If the vertices A, B, C of a triangle $A B C$ are ($1,2,3$),(-1,0,0), (0,1,2)respectively,then find $\angle A B C$.

D Watch Video Solution

58. Using vectors, show that the points
$A(1,2,7), B(2,6,3), C(3,10,-1)$ are collinear.
59. Show that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ form the vertices of a right-angled triangle.

D Watch Video Solution

60. If a is a non-zero vector of magnitude'a' and λ a non-
zero scalar, then $\lambda \vec{a}$ is a unit vector if: a) $\lambda=1$ b)
$\lambda=-1 \mathrm{c}) a=|\lambda| \mathrm{d}) a=\frac{1}{|\lambda|}$
A. lambda=1'
B. lambda=-1'
C. a=|lambda|',
D. 1/(|lambda|)'

Answer: D

D Watch Video Solution

61. Show that the area of a parallelogram with diagonals
\vec{a} and \vec{b} is $\frac{1}{2}|\vec{a} \times \vec{b}|$

- Watch Video Solution

62. Find $\quad|\vec{a} \times \vec{b}| \quad$ if $\quad \vec{a}=2 \hat{i}+\hat{j}+3 \hat{k} \quad$ and
$\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$
63. Find a unit vector perpendicular to each of the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$, where $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$

- Watch Video Solution

64. Consider the triangle $A B C$ with vertices $A(1,1,1), B(1,2,3)$ and $C(2,3,1)$.Hence find the area of the triangle.

D
 Watch Video Solution

65. Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$

D Watch Video Solution

66. Find $\quad|\vec{a} \times \vec{b}|$, if. $\quad \vec{a}=\hat{i}-7 \hat{j}+7 \hat{k} \quad$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$

D Watch Video Solution

67. Find a unit vector perpendicular to each of the vector $\vec{a}+\vec{b}$, and $\vec{a}-\vec{b}$, where $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$ and
$\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

68. Choose the correct answer from the backet. If a unit vector \widehat{a} makes angles $\frac{\pi}{4}$ with i and $\frac{\pi}{3}$ with j and acute angle θ with k .
then θ is

D Watch Video Solution

69.

Show
that
$(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=2(\vec{a} \times \vec{b})$
70. Find λ and μ if
$(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\overrightarrow{0}$.

- Watch Video Solution

71. Given that $\vec{a} \cdot \vec{b}=0 \operatorname{and} \vec{a} \times \vec{b}=\overrightarrow{0}$. What can you conclude about the vectors \vec{a} and \vec{b}.

- Watch Video Solution

72. Let the vectors 'veca, vecb, vecc' be given as 'a_1 hati+a_2 hatj+a_3 hatk, b_1 hati+b_2 hatj+b_3 hatk, c_1
hati+c_2 hatj+c_3 hatk', Then show that 'veca $x x(v e c b+v e c c)=v e c a ~ x x$ vecb+veca $x x$ vecc'

- Watch Video Solution

73. If either $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$, then $\vec{a} \times \vec{b}=\overrightarrow{0}$.Is the converse true? Justify your answer with an example.

D Watch Video Solution

74. Find the area of the triangle with vertices $\mathrm{A}(1,1,2), \mathrm{B}(2,3,5)$ and $\mathrm{C}(1,5,5)$.
75. Find the area of the parallelogram whose adjacent sides are determined by the vectors 'veca=hati-hatj+3 hatk' and 'vecb=2 hati-7 hatj+hatk'

- Watch Video Solution

76. Let the vectors \vec{a} and \vec{b} be such that
$|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is : a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$
A. $\mathrm{pi} / 6^{\prime}$
B. pi/4'
C. $\mathrm{pi} / 3^{\prime}$
D. pi/2'

- Watch Video Solution

77. Area of a rectangle having vertices 'A, B, C' and 'D' with position vectors '-hati+1/2 hatj+4 hatk', 'hati+1/2 hatj+4 hatk, hati-1/2 hatj+4 hatk' and '-hati-1/2 hatj+4 hatk' respectively is
A. $1 / 2^{\prime}$
B. 1
C. 2
D. 4

Answer: C

- Watch Video Solution

78. If $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$ are the position vectors of points A, B, C and D respectively, then find the angle between $\overline{A B}$ and $\overline{C D}$. Deduce that $\overline{A B}$ and $\overline{C D}$ are collinear.

- Watch Video Solution

79. Let \vec{a}, \vec{b}, and \vec{c} be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$ and each
one of the being perpendicular to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$.

D Watch Video Solution

80. Three vectors \vec{a}, \vec{b}, and \vec{c} satisfy the condition
$\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Evaluate the quantity
$\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.
If
$|\vec{a}|=1,|\vec{b}|=4$ and $|\vec{c}|=2$.

- Watch Video Solution

81. Write down a unit vector in XY plane making an angle of 30°
with the positive direction of x-axis.

- Watch Video Solution

82. Find the scalar components and magnitude of the vector joining the points
$P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$.

- Watch Video Solution

83. If 'veca=vecb+vecc', then is it true that '|veca|=|vecb|+|vecc| ?' Justify your answer.
84. Find the value of ' x ' for which ' x (hati+hatj+hatk)' is a unit vector.

- Watch Video Solution

85. Find a vector of magnitude 5 units and parallel to the resultant of the vectors
$\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

86. if $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k} \quad$ and
$\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$, find a unit vector parallel to the vector
$2 \vec{a}-\vec{b}+3 \vec{c}$

- Watch Video Solution

87. Show that the points
$A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear and find the ratio in which B divides $A C$.

(D) Watch Video Solution

88. Find the position vector of a point R which divides
the line joining two points P and Q whose position vectors are $(2 \vec{a}+\vec{b})$ and $(\vec{a}-3 \vec{b})$ externally in the ratio $1: 2$ Also show that P is the mid point of the line segment RQ.
89. The two adjacent sides of a parallelogram are '2 hati-

4 hatj+5 hatk' and 'hati .-2 hatj-3 hatk .' Find the unit vector parallel to its diagonal. Also find its,area.

- Watch Video Solution

90. Show that the direction cosines of a vector equally inclined to the axes $O X, O Y$ and $O Z$ are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
91. Let ' veca=hati+4 hatj+2 hatk, vecb=3 hati-2 hatj+7
hatk' and 'vecc=2 hati-hatj+4 hatk'. Find a vector 'd' 'which is perpendicular to both 'veca' and 'vecb', and 'vecc . vecd=15'

D Watch Video Solution

92. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ

D Watch Video Solution

93. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}

D Watch Video Solution

94. Prove that
$(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})=|\vec{a}|^{2}+|b|^{2}$ if and only if
\vec{a}, \vec{b} are perpendicular, given
$\vec{a} \neq \overrightarrow{0}$ and $\vec{b} \neq 0$.

D Watch Video Solution

95. Choose the correct answer. If θ is the angle between two vectors \vec{a} and \vec{b}, then $\vec{a} \cdot \vec{b} \geq 0$ only when $a)$ $0<\theta<\frac{\pi}{2}$ b) $0 \leq \theta \leq \frac{\pi}{2}$ c) $0<\theta<\pi$ d) $0 \leq \theta \leq \pi$
A. Oltthetaltpi/2'
B. 0 le theta le pi/2'.
C. Olttheta leslant pi, '
D. O le, theta le pi'

Answer: B

D Watch Video Solution

96. Let 'veca' and 'vecb' be two unit vectors and 'theta' is the angle between them. Then 'veca,+vecb' is a unit vector if
A. theta=pi/4'
B. theta=pi/3'
C. thet $\mathrm{a}=\mathrm{pi} / 2^{\prime}$
D. theta=2 fra.pi/3'

Answer: D

D Watch Video Solution

97. The value of $\hat{i} .(\hat{j} \times \hat{k})+\hat{j} .(\hat{i} \times \hat{k})+\hat{k} .(\hat{i} \times \hat{j})$ is a) 0 b$)-1 \mathrm{c}) 1 \mathrm{~d}) 3$
A. 0
B. -1
C. 1
D. 3

Answer: C

- Watch Video Solution

98. If θ is the angle between any two vectors \vec{a} and \vec{b}, then $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$ when θ is equal to a)0 b) $\frac{\pi}{4}$ c)
$\frac{\pi}{2}$ d) π
A. 0
B. pi/4'
C. pi/2'
D. pi^{\prime}

Answer: B

D Watch Video Solution

99. Prove that the line joining the midpoints of the two sides of a triangle is parallel to the third side and half of its length.
100. Find the projection of vector $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$

- Watch Video Solution

101. Show that the line segment joining the midpoints of two 'sides of a triangle is parallel to. the third side and is half its length using vectors.

- Watch Video Solution

102. If $P=(2,4,7)$ and $Q=(-4,-1,5)$, then find $\overline{P Q}$ and $|\overline{P Q}|$

D Watch Video Solution

103. i) Compute $|\hat{i}+\hat{j}+\hat{k}|$
ii) If $\vec{a}=2 \hat{i}+3 \hat{j}+6 \hat{k}$, find the unit vector along \vec{a}.

(D) Watch Video Solution

104. Find a vector in the direction of the vector '-hati+2
hatj+2 hatk' that has magnitude '7.'
105. Find a unit vector parallel to the sum of vectors
$\vec{a}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$

D Watch Video Solution

106. Find the condition that vectors $\vec{a}=k \hat{i}+3 \hat{j}$ and $\vec{b}=4 \hat{i}+k \hat{j}(k \neq 0)$ are parallel.

- Watch Video Solution

107. Lẹt 0 be the centre of the regular hexagon ABCDEF.

Find the sum of the vectors $\operatorname{vec}(\mathrm{OA})+\mathrm{vec}(\mathrm{OB})+\mathrm{vec}(\mathrm{O}$
C) $+\operatorname{vec}(\mathrm{O} \mathrm{D})+\mathrm{vec}(\mathrm{OE})+\mathrm{vec}(\mathrm{OF})^{\prime}$
108. Show that the diagonals of a quadrilateral bisect each other if and only if it is a parallelogram.

- Watch Video Solution

109. Prove that the quadrilatral formed by joining the mid points of the sides of a quadrilateral is a parallelogram.
110. Find the vector with initial point $' A(6,-2)^{\prime}$ and terminal point ' $\mathrm{B}(4,8)^{\prime}$

D Watch Video Solution

111. The vectors of magnitude $a, 2 a, 3 a$ meet at a point and their directions are along the diagonals of three adjacent faces of a cube. Then, the magnitude of their resultant is a) 5 a b) 6 a c) 10 a d) 9 a

D Watch Video Solution

112. Find the unit vector in the direction of vector 'vecP
Q ', where ' P ' and ' Q ' are the points '(1,2,3)' and '(4,5,6)'
respectively.

- Watch Video Solution

113. Find the condition that vectors $\vec{a}=k \hat{i}+l \hat{j}$ and $\vec{b}=l \hat{i}+k \hat{j}(k, l \neq 0)$ are parallel.

- Watch Video Solution

114. Find the position vector of a point R which divides
the line joining two points P and Q whose position vectors are $(2 \vec{a}+\vec{b})$ and $(\vec{a}-3 \vec{b})$ externally in the ratio 1:2 Also show that P is the mid point of the line segment RQ.
115. Find the length of the medians of the triangle formed by
$A(4,2), B(1,-2)$ and $C(-2,6)$ by vector method.

- Watch Video Solution

116. Show that the points with position vectors ' 2 hati+ 6 hatj+3 hatk, hati+2 hatj+7 hatk' and ' 3 hati+10 hatj-hatk' are collinear.
117. Show that the four points A, B, C and D with position vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} respectively are coplanar if $3 \vec{a}-2 \vec{b}+\vec{c}-2 \vec{d}=0$
