

MATHS

BOOKS - A N EXCEL PUBLICATION

CONTINUITY AND DIFFERENTIABILITY

Question Bank

1. Check the continuity of the function f(x)=2x+3 at

x=1

2. Examine whether the function $f(x)=x^2$ is continuous at x=0

3. Show that the function $f(x)=egin{cases} x^3+3 & ext{if} & x
eq 0 \\ 1 & ext{if} & x=0 \end{cases}$ is not continuous at x=0

4. Discuss the continuity of the function $f(x) = x^3 + x^2 - 1$

5. Discuss the continuity of the function $f(x) = rac{1}{x}, x
eq 0$

Watch Video Solution

6. Let $f(x)=\left\{\begin{array}{l} \frac{x^2-9}{x-3}:x\neq 3 \\ 5:x=3 \end{array}\right\}$ Is f(x) continuous at x=3?

7. Show that the function defined by $f(x) = \sin(x^2)$ is a continuous function?

8. Prove that the function f(x)=5x-3 is continuous at x=0, at x=-3 and at x=5?

Watch Video Solution

9. Examine the continuity of the function $f(x)=2x^2-1$ at x=3

Watch Video Solution

10. Examine the following functions for continuity f(x) = x - 5

11. Examine the following functions for continuity

$$f(x) = \frac{1}{x-5}$$

12. Examine the following functions for continuity

$$f(x)=\frac{x^2-25}{x+5}$$

13. Examine the following functions for continuity

$$f(x) = |x - 5|$$

14. Prove that the function $f(x) = x^n$ is continuous at x=n, where n is a positive integer.

Watch Video Solution

15. Is the function f defined by $f(x) = \begin{cases} x, & \text{if } x \leq 1 \\ 5, & \text{if } x > 1 \end{cases}$ continuous at x=0

Watch Video Solution

16. Is the function f defined by $f(x)= \begin{cases} x, & \text{if} \quad x \leq 1 \\ 5, & \text{if} \quad x>1 \end{cases}$ continuous at x=1?

17. Is the function f defined by $f(x) = \begin{cases} x, & \text{if } x \leq 1 \\ 5, & \text{if } x > 1 \end{cases}$ continuous at x=2?

Watch Video Solution

18. Find all points of discontinuity of f where f is defined

by
$$f(x)=\left\{egin{array}{ccc} 2x+3 & x\leq 2 \ 2x-3 & x>2 \end{array}
ight.$$

Watch Video Solution

19. Find all points of discontinuity of f, where f is defined

$$\mathsf{by}\, f(x) = \left\{ \begin{aligned} |x|+3, & \text{if} \quad x \leq -3 \\ -2x, & \text{if} \quad -3 < x < 3 \\ 6x+2, & \text{if} \quad x \geq 3 \end{aligned} \right.$$

20. Evalute

$$\lim_{x o 0} \, f(x)$$
 , where $f(x) = egin{cases} rac{|x|}{x} & x
eq 0 \ 0 & x = 0 \end{cases}$

21. Find all points of discontinuity of f, where f is defined

by
$$f(x) = \left\{ egin{array}{ll} rac{x}{|x|}, & ext{if} & x < 0 \ -1, & ext{if} & x \geq 0 \end{array}
ight.$$

22. Find all points of discontinuity of f, where f is defined

by
$$f(x) = \left\{ egin{array}{ll} x+1 & ext{if} & x \geq 1 \ x^2+1 & ext{if} & x < 1 \end{array}
ight\}$$

Watch Video Solution

23. Is the function defined by

$$f(x) = \left\{ egin{array}{ll} x+5, & ext{if} & x \leq 1 \ x-5, & ext{if} & x>1 \end{array}
ight.$$
 a continuous function?

24. Find the relation between 'a' and 'b' if the function fdefined by

$$f(x) = \left\{egin{array}{ll} ax+1 & x \leq 3 \ bx+3 & x>3 \end{array}
ight.$$
 is continuous.

25. Is the function defined by $f(x) = x^2 - \sin x + 5$ continuous at $x = \pi$?

26. Discuss the continuity of the following functions:

 $f(x) = \sin x + \cos x$

27. Discuss the continuity of the following functions: $f(x) = \sin x - \cos x$

28. Discuss the continuity of the following functions: $f(x) = \sin x \cdot \cos x$

View Text Solution

29. Find the values of k so that function f is continuous at the indicated points $f(x)=egin{cases} kx^2 & ext{if} & x\leq 2atx=2 \ 3 & ext{if} & x>2 \end{cases}$

Watch Video Solution

30. Find the values of k so that function f is continuous at the indicated points

$$f(x) = \left\{ egin{aligned} kx + 1 & ext{if} & x \leq \pi at x = \pi \ \cos x & ext{if} & x > \pi \end{aligned}
ight.$$

31. Prove that the function defined by

 $f(x) = \cos x^2$

Watch Video Solution

32. Show that the function $f(x) = |\cos x|$ is a continuous function.

View Text Solution

33. Find all the points of discontinuity of f defined by f(x) = |x| - |x+1|

34. Differentiate $\sin(x^2+5)$ w.r.t.x

35. Differentiate cos(sinx)w.r.t.x

37. Differentiate
$$\dfrac{\sin(ax+b)}{\cos(cx+d)}$$
 w.r.t.x

38. Differentiate $\cos\left(x^3\right)\sin^2\left(x^5\right)$ w.r.t.x

39. Differentiate $2\sqrt{\cot\left(x^2
ight)}$ w.r.t.x

40. Differentiate $\cos\left(\sqrt{x}\right)$ w.r.t.x

Watch Video Solution

41. Differentiate the following w.r.t.x $2\sin^{-1}x + \tan^{-1}x + 1$

42. Differentiate the following w.r.t.x $x \sin^{-1} x$

44. Differentiate the following w.r.t.x $e^{m an^{-4}x}$

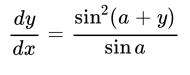
45. Differentiate the following w.r.t.x $\sin^{-1}(x^3)$

46. Differentiate the following w.r.t.x $(\cot^{-1} x)^2$

47. Find $\dfrac{dy}{dx}$ if $x-y=\pi$

Watch Video Solution

48. Find $\frac{dy}{dx}$ if $y + \sin y = \cos x$


Watch Video Solution

49. If $\sin y = x \sin(a+y)$, find x in terms of y and hence find (dx)/(dy)

50. If
$$\sin y = x \sin(a+y)$$
, prove that

$$=\frac{\sin^2(a+y)}{\sin^2(a+y)}$$

51. Find $\dfrac{dy}{dx}$ if $2x+3y=\sin x$

52. Find $\frac{dy}{dx}$ if $2x + 3y = \sin y$

53. Find
$$\frac{dy}{dx}$$
 if $ax + by^2 = \cos y$

54. Find
$$\frac{dy}{dx}$$
 if $xy+y^2=\tan x+y$

55. Find
$$\frac{dy}{dx}$$
, if $x^2+y^2+xy=100$

57. Find
$$\dfrac{dy}{dx}$$
 if $\sin^2 y + \cos(xy) = \pi$

58. Find
$$\dfrac{dy}{dx}$$
 of the following $\sin^2 x + \cos^2 y = 1$

59. Find
$$\dfrac{dy}{dx}$$
 of the following $y=\sin^{-1}\!\left(\dfrac{2x}{1+x^2}
ight)$

60. If
$$y= an^{-1}igg(rac{3x-x^2}{1-3x^2}igg), rac{-1}{\sqrt{3}} < x < rac{1}{\sqrt{3}}$$
 Find $rac{dy}{dx}$

View Text Solution

61. Find
$$\dfrac{dy}{dx}$$
 of $y=\cos^{-1}\dfrac{1-x^2}{(1+x^2)}$, 0

Watch Video Solution

62. Find
$$\dfrac{dy}{dx}$$
 If $y=\sin^{-1}\!\left(\dfrac{1-x^2}{1+x^2}\right)$, $0< x< 1$

63. If
$$y=\cos^{-1}\Bigl(\dfrac{2x}{1+x^2}\Bigr), \ -1 < x < 1,$$
 Find $\dfrac{dy}{dx}$

64. Consider the function
$$f(x)=\sin^{-1}\Bigl(2x\sqrt{1-x^2}\Bigr), \, rac{-1}{\sqrt{2}}\leq x\leq rac{1}{\sqrt{2}}$$

Find f'(x)`.

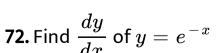
65. Find
$$\frac{dy}{dx}$$
 of the following $y = \sec^{-1}\left(\frac{1}{2x^2-1}\right)$

66. Find
$$\frac{dy}{dx}$$
 of $y = e^x \log x$

67. Find
$$\frac{dy}{dx}$$
 of $y=rac{1-\log x}{1+\log x}$

68. Find
$$\dfrac{dy}{dx}$$
 of $y=4^x$

69. Find
$$\dfrac{dy}{dx}$$
 of $y=log_2x$

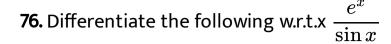


70. Find
$$\frac{dy}{dx}$$
 of y=log_0x`

71. Find
$$rac{dy}{dx}y=2^{\sin^2x}$$

73. Find $\frac{dy}{dx}$ of $y = \sin(\log x)$

Watch Video Solution


74. Find $\dfrac{dy}{dx}y=\cos^{-1}ig(e^2ig)$

View Text Solution

75. Find $\frac{dy}{dx}$ of $y = e^{\cos x}$

77. Differentiate the following w.r.t.x $e^{\sin^{-1}x}$

Watch Video Solution

78. Differentiate the following w.r.t.x e^{x^2}

80. Differentiate the following w.r.t.x $\log(\cos e^x)$

Watch Video Solution

81. Differentiate the following w.r.t.x $e^x + e^{x^2} + ... + e^{x^5}$

Watch Video Solution

82. Differentiate the following w.r.t.x $\sqrt{e^{\sqrt{x}}}, x>0$

83. Differentiate the following w.r.t.x $\log(\log x), x > 1$

Watch Video Solution

84. Differentiate the following w.r.t.x $\frac{\cos x}{\log x}$, x>0

Watch Video Solution

 $\cos(\log x + e^2), x > 0$

Watch Video Solution

85. Differentiate the

following w.r.t.x

86. Find
$$\dfrac{dy}{dx}$$
 of $y=x^x$

87. Differentiate $y = a^x$

View Text Solution

88. Differentiate $x^{\sin x}$ w.r.t. x

89. Differentiate $\sqrt{\frac{(x-3)(x^2+4)}{3x^2+4x+5}}$ w.r.t.x.

Watch Video Solution

90. Find $\frac{dy}{dx}$, if $y^x + x^y + x^x = a^b$

Watch Video Solution

91. Differentiate cosx.cos2x.cos3x

92. Differentiate $\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$ with respect

to x.

93. Differentiate $(\log x)^{\cos x}$ w.r.t.x

94. Differentiate $x^2-2^{\sin x}$

95. Differentiate $(x+3)^2(x+4)^3(x+5)^4$ w.r.t.x

Watch Video Solution

96. Differentiate $\left(x+rac{1}{x}
ight)^x+x^{\left(1+1/x
ight)}$ w.r.t.x

Watch Video Solution

97. Differentiate $(\log x)^x + x^{\log x}$ w.r.t.x

98. Find
$$\frac{dy}{dx}$$
 of

$$y = (\sin x)^x + \sin^{-1} \sqrt{x}$$

99. Differentiate $x^{\sin x} + (\sin x)^{\cos x}$ w.r.t.x

100. Find $\frac{dy}{dx}$ if $x^y + y^x = 1$

101. Find
$$\dfrac{dy}{dx}$$
 of $y^x = x^y$

102. Find
$$\frac{dy}{dx}$$
 of $(\cos x)^y = (\cos y)^x$

103. Find
$$\frac{dy}{dx}$$
 if $xy = e^{(x-y)}$

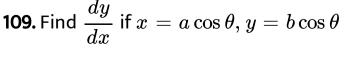
104. Find the derivative of the function given by $f(x)=(1+x)\big(1+x^2\big)\big(1+x^4\big)\big(1+x^8\big) \ \ \text{and} \ \ \text{hence}$ find f '(1) ?

Watch Video Solution

105. Differentiate $\left(x^2-5x+8\right)\left(x^3+7x+9\right)$ by using product rule

Watch Video Solution

106. Differentiate $(x^2 - 5x + 8)(x^3 + 7x + 9)$ by expanding the product to obtain a single polynomial


107. Differentiate $(x^2 - 5x + 8)(x^3 + 7x + 9)$ by logarithmic differentiation.

$$x=2at^2$$
 , $y=at^4$

108. Find $\frac{dy}{dx}$ of

110. Find $\frac{dy}{dx}$, $x = \sin t$, $y = \cos 2t$

Watch Video Solution

111. Find $\frac{dy}{dx}, x=4t, y=rac{4}{t}$

Watch Video Solution

112. Find $\frac{dy}{dx}$ if $x=\cos\theta-\cos2\theta$ and $y=\sin\theta-\sin2\theta$

113. Find
$$\dfrac{dy}{dx}$$
 if $x=a(heta-\sin heta)$ and $y=a(1+\cos heta)$

114. Find
$$\dfrac{dy}{dx}$$
 if $x=a(\cos t + \log \tan (t/2))$ and $y=a\sin t$

115. Find
$$\frac{dy}{dx}$$
, $x = a \sec \theta$, $y = b \tan \theta$

116. Find
$$\frac{dy}{dx}$$
 of

$$x=a(\cos heta+ heta\sin heta)$$
 , $y=a(\sin heta- heta\cos heta)$

Watch Video Solution

117. If
$$x=\sqrt{a^{\sin^{-1}t}}$$
 , $y=\sqrt{a^{\cos^{-1}t}}$ Show that $\dfrac{dy}{dx}=\dfrac{-y}{x}$

118. Find second order derivative for $y=3x^4+4x^2-x+1$

119. Find second order derivative for y= xsinx

Watch Video Solution

120. Find second order derivative for f(x)=cos2x

Watch Video Solution

121. Find second order derivative for $y = \frac{\log x}{r}$

Watch Video Solution

122. Find second order derivative for x=ct and $y=rac{c}{t}$

123. Find
$$\frac{d^2y}{dx^2}$$
, if $y=x^3+\tan x$

Watch Video Solution

124. $y = a \cos x + b \sin x$ is the solution of the differential equation

$$rac{d^2y}{dx^2}+y=0$$

Watch Video Solution

$$rac{d^2y}{dx^2}-5rac{dy}{dx}+6y=0$$

125. If $y = 3e^{2x} + 2e^{3x}$, prove that

126. If
$$y=\sin^{-1}x$$
,then show that $(1-x^2)rac{d^2y}{dx^2}-xrac{dy}{dx}=0$

127. Find the second order derivative of the following functions $x^2 + 3x + 2$

128. Find the second order derivative of the following functions x^{20}

129. Find the second order derivative of the following functions xcosx

130. Find the second order derivative of the following functions $\log x$

131. Find the second order derivative of the following functions $x^3 \log x$

132. Find the second order derivative of the following functions $e^x \sin 5x$

133. Find the second order derivative of the following functions $e^{6x}\cos 3x$

134. Find the second order derivative of the following functions $an^{-1}x$

135. Find the second order derivative of the following functions log(logx)

136. Find the second order derivative of the following functions sin(logx)

138. If $y = \cos^{-1} x$, find $\frac{d^2y}{dx^2}$ in terms of y alone.

139. Let $y=3\cos(\log x)+4\sin(\log x)$

Prove that $x^2y_2+xy_1+y=0$

140. If $y=ae^{mx}+be^{nx}$, show that

$$rac{d^2y}{dx^2}-(m+n)rac{dy}{dx}+mny=0$$

141. If $y = 500e^{7x} + 600e^{-7x}$. Show that $\frac{d^2y}{dx^2} = 49y$

Watch Video Solution

142. If
$$e^y(x+1)=1$$
 , show that $\dfrac{d^2y}{dx^2}=\left(\dfrac{dy}{dx}
ight)^2$

Watch Video Solution

143. If $y=\left(\tan^{-1}x\right)^2$, show that

$$\left(x^2+1\right)^2 y_2 + 2x \left(x^2+1\right) y_1 = 2$$
 .

144. Verify Rolle's Theorem for the function

$$f(x)=x^2+2x-8$$
 , $x\in[\,-4,2]$

Watch Video Solution

145. Examine if Rolle's theorem is applicable to any of the following function. Can you say something about the converse of Rolle's theorem from these examples? $f(x) = [x] \text{forx} \in [5, 9]$

Watch Video Solution

146. Examine if Rolle's theorem is applicable to any of the following function. Can you say something about the

converse of Rolle's theorem from these examples? f(x)=[x]for $x \in [-2, 2]$

Watch Video Solution

147. Examine if Rolle's theorem is applicable to any of the following function. Can you say something about the converse of Rolle's theorem from these examples? $f(x) = x^2 - 1$ for $\mathbf{x} \in [1, 2]$

Watch Video Solution

148. If $f\!:\![\,-5,5] o R$ is a differentiable function and if f'(x) does not vanish any where, then prove that $f(-5) \neq f(5)$

149. Verify mean value theorem for the function $f(x)=x^2-4x-3$ in the interval [1,4] .

150. Verify Lagrange 's mean value theorem, if $f(x)=x^3-5x^2-3x$ in the interval [a,b], where a=1 and b=3. Find all $c\in(1,3)$ at which f'(c)=0.

152. Differentiate the following w.r.t x $\sin^3 x + \cos^6 x$

153. Differentiate the following w.r.t x $(5x)^{3\cos 2x}$

154. Differentiate the following w.r.t x $(\log x)^{\log x}, x>1$

155. Differentiate the following w.r.t.x $x^x + x^a + a^x + a^a$ for some fixed a>0 and x>0

157. If x= a(cos t +t sin t) and y=a(sin t - t cos t), find $\frac{d^2y}{dx^2}$

Find

Watch Video Solution

 $\frac{dy}{dx}, \quad ext{if} \quad y = 12(1-\cos t), \, x = 10(t-\sin t). \, \frac{\pi}{2} < t < \frac{\pi}{2}$

Watch Video Solution

158. If $y=e^{a\cos^{-1}x}$, then show that

$$(1-x^2)y_2-xy_1-a^2y=0$$

