©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - BODY BOOKS PUBLICATION

Chemical Kinetics

Example

1. Total number of atoms, lons or molecules of
the reactants involved in the reaction is
termed as its \qquad
2. The rate at which a substance reacts depends on its
A. Molecular weight
B. Atomic weight
C. Active mass
D. Atomic number

Answer:
3. In __order reaction the rate of a reaction does not change with the concentration of the reactants.

D Watch Video Solution

4. Increasing the temperature of an aqueous
solution will cause
A. Decrease in molarity

B. Decrease In molality

C. Decrease in mole fraction
D. None of these

Answer:

D Watch Video Solution
5. The reaction which is blomolecular but order is one is called

6. The time required for 100% completion of a

zero order reaction Is

A. 2 a
B. a / k
C. $k / 2$
D. $2 a / k$

Answer:

D Watch Video Solution
7. Which of these does not Influence the rate of reaction
A. Nature of the reactant

B. Temperature of the reactant

C. Concentration of the reactant
D. Molecularity of the reactant

Answer:

- Watch Video Solution

8. The fastest step in the reaction mechanism is called rate determining step". Check whether this statement is true or false?

D Watch Video Solution

9. For the reaction $A+B \rightarrow C$, itls found that doubling the concentration of A Increases
the rate by 4 times, and doubling the concentration of B doubles the reaction rate.

What is the overall order of the reaction?
A. 1
B. 3
C. 4
D. 0

Answer:

- Watch Video Solution

10. In the Arrheniusequation,E represents
A. the energy below which colliding molecules will not react
B. the energy above which colliding molecules will react.
C. the total energy of the colliding molecules.
D. none of thes

Answer:

11. Following graph is a plot of the rate of reaction concentration of the reactant. What is the order of the reaction.

D Watch Video Solution
12. Following graph is a plot. of the rate of reaction VS concentration of the reactant What is the order of the reaction?

Concentration

13. Order of the photochemical reaction occurlng between Hydrogen and Chlorine is
A. first order
B. zero order
C. second order

D. third second

Answer:

D Watch Video Solution

14. Observe the relationship between the first two terms and fill in the blanks. First order reaction : s^{-1} Zero order reaction :

- Watch Video Solution

15. Choose the correctly matched pair.
A. Unimolecular reaction

$$
\mathrm{NH}_{4} \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

B. Bimoiecular

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}(g)
$$

C. TrImolecular
reaction:
$2 \mathrm{HI}(g) \rightarrow \mathrm{H}_{2}(g)+I_{2}(g)$
D.

Answer:
(Watch Video Solution
16. Identify the order of a reaction if the units of its rate constant is $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$

D Watch Video Solution

17. What Is the rate of disappearance of hydrogen in the reaction ? $3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$

D Watch Video Solution

18. The temperature dependence of is expressed by Arrhenius equation.

D Watch Video Solution
19. The energy needed to form the intermediate called activated complex is known as

D Watch Video Solution
20. The number of collisions per second per unit volume of the reaction mixture is called ____.

D Watch Video Solution
21. Can we have reactions which proceed with constant rate?

- Watch Video Solution

22. Instantaneous rate of reaction is preferred to average rate. Why?

D Watch Video Solution
23. Identity the graph (A or B), represents the change in concentration of reactant with time.

D Watch Video Solution

24. In a class room discussion a student argues that average rate and instantaneous
rate are same.Do you agree with this arguement? justify your answer.

D Watch Video Solution

25. In a class room discussion a student argues that average rate and instantaneous rate are same.Justify your answer

D Watch Video Solution

26. From the rate expression for the following reaction determine the order of reaction and dimensions of the rate constant. $3 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}(g)+\mathrm{NO}_{2}(g)$,Rate $=K[\mathrm{NO}]^{2}$.

D Watch Video Solution

27. If half-life of a reaction is directly proportional to Initial concentration of the reactant, what Is the order of the reaction?
28. Give a relation which connects rate constant with temperature.

D Watch Video Solution

29. For first order reaction half-life period Is

Independent of initial concentration and
Inversely proportional to the rate
constant.Give relation for the above In the
case of zero order reaction.
30. For first order reaction half-life period Is Independent of initial concentration and Inversely proportional to the rate constant.

The slope of the line in a graph of logK Vs $\frac{1}{T}$ for a reaction is -5841 . Calculate energy of activation for this reaction.
$\left[R=8.314 J K^{-1} \mathrm{~mol}^{-1}\right]$.

- Watch Video Solution

31. A first order reaction is 20% complete in 10 min . Calculate the specific rate constant of the reaction.

- Watch Video Solution

32. A first order reaction is 20% complete in ten minutes. Calculate time taken for the reaction to go upto 75% completion.
33. Mention the factors that affect the rate of a chemical reaction.

D Watch Video Solution

34. The rate constant for a first order reaction
is $60(s)^{\wedge}(-1)$.How much time will it take to
reduce the initial concentration of the reactant to its ${ }^{`} 1 / 16$ th value?
35. From the rate expression for the following reactions determine the order of reaction and the dimensions of the rate constant.
$\mathrm{H}_{2} \mathrm{O}_{2(a q)}+3 \mathrm{I}_{a q}+2 \mathrm{H}^{+}{ }_{-}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{R}+I_{3}$
Rate $=\mathrm{K}\left[\mathrm{H}_{-} 2 \mathrm{O} _2\right]\left[I^{-}\right]$

- Watch Video Solution

36. From the rate expression for the following
reactions determine the order of reaction and
the dimensions of the rate constant.
$C_{2} H_{5} C I_{(g)} \rightarrow C_{2} H_{2(g)}+H C I(g)$ Rate $=\mathrm{K}$ $\left[C_{2} H_{5} C I\right]$

D Watch Video Solution

37. For a reaction, $A+H_{2} O \rightarrow B$, the rate law is rated [A]. What Is its molecularity and the order of reaction?

D Watch Video Solution
38. 75% of a reaction of first order was completed in 64 minutes. When was its half completed?

D Watch Video Solution

39. Rate of a reaction is the change in concentration of reactant or product per unit
time.what does the slope of the graph represent, variation In the concentration vs time for a zero order reaction?
40. For a reaction $A+B \rightarrow C+D$. The order with respect to A is 1 and that of B is 2 . Write the rate law expression for the reaction.

- Watch Video Solution

41. For a reaction $A+B \rightarrow C+D$. The order with respect to A is 1 and that of B is 2 . How is the rate affected when the concentration of B Is trippled?

- Watch Video Solution

42. For a reaction $A+B \rightarrow C+D$. The order with respect to A is 1 and that of B is 2 .

How is the rate affected when the concentration of both A and B are doubled?

- Watch Video Solution

43. Study the following reaction.
$2 \mathrm{SO}_{2}(g)+O_{2(g) \rightarrow 2 S O_{3(g) \Delta H}}=-196.6 \mathrm{KJ}$ Here to get
more yield of SO_{3}, a catalyst L Is used. Draw a graph which conveys the fact that activation energy of a catalysed reaction Is different from that of an uncatalysed reaction.

- Watch Video Solution

44. An archaeological substance contained wood had only 66.66% of C^{14} found in a tree.

Calculate the age of the sample if the half life of C^{14} Is 5730 years.
45. Identify theorder of each of the following reaction.For a reaction $A \rightarrow B$, the rate constant has the same unit as the rate of the reaction.

- Watch Video Solution

46. Identify theorder of each of the following reaction.For a reaction $X \rightarrow Y$, half-life of the reaction is independent of Initial concentration of X .
47. Identify the order of each of the following reaction. For a reaction $P \rightarrow Q$, the rate increases four times when the concentration of P is doubled.

- Watch Video Solution

48. Some statements related to kinetic are given below.The number of reactant molecules
whose concentration changes can determine the rate.

D Watch Video Solution
49. Some statements related to kinetic are given below. The order of a reaction may be a fraction.

D Watch Video Solution
50. Some statements related to kinetic are given below. In certain cases, the rate is independent of the concentration of the reactants illustrate and substantiate the above statements.

- Watch Video Solution

51. The rate equation of the reaction , $x A+y B+2 C \rightarrow$ Products in given as Rate $=$
$\mathrm{K}[A]^{n}[B]^{m}$.Calculate the order of the reaction with respect to A, B and C .

- Watch Video Solution

52. The rate equation of the reaction , $x A+y B+2 C \rightarrow$ Products in given as Rate $=$ $\mathrm{K}[A]^{n}[B]^{m}$.Calculate the molecularity of the reaction.

- Watch Video Solution

53. The rate equation of the reaction, $x A+y B+2 C \rightarrow$ Products in given as Rate $=$ $\mathrm{K}[A]^{n}[B]^{m}$.Calculate the overall order of the reaction.

- Watch Video Solution

54. Decomposition of ammonia on metal
surface is a zero order reaction.Give the rate law of this reaction.
55. Decomposition of ammonia on metal surface is a zero order reaction. Plot rateconcentration graph for this reaction.

D Watch Video Solution

56. Decomposition of ammonia on metal surface is a zero order reaction.Plot rateconcentration graph for this reaction.
57. The decomposition of $N_{2} O_{5}$ In $C C I_{4}$ solution has been studied by monitoring the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ In the solution. Initially the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is 2.33 M and after

184 minutes, it Is reduced to 2.08 M . The reaction takes place according to the equation. $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ Calculate the average rate of this reaction.

D Watch Video Solution

58. The decomposition of $N_{2} O_{5}$ In $C C I_{4}$ solution has been studied by monitoring the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ In the solution. Initially the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is 2.33 M and after

184 minutes, it Is reduced to 2.08 M . The reaction takes place according to the equation. $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ What Is the rate of production NO_{2} during this period?

D Watch Video Solution

59. Explain a pseudo order reaction with an example.

D Watch Video Solution

60. Ammonia and Oxygen react at high temperature according to equation.
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The rate of formation of $\mathrm{NO}=$
$4 \times 10^{-4} \mathrm{~mol} / \mathrm{L} / \mathrm{S}$. Calculate rate of
disappearance of NH_{3}.
61. Ammonia and Oxygen react at high temperature according to equation.
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

The rate of formation of $\mathrm{NO}=$
$4 \times 10^{-4} \mathrm{~mol} / \mathrm{L} / \mathrm{S}$. Calculate rate of formation of water.

D Watch Video Solution

62. Assign the order of the following reaction.
$H_{2(g)}+C I_{2(g) \vec{\hbar} 2 H C I G}$.

- Watch Video Solution

63. Derive theintegratedrateequation for the

First order reaction and give the expression
for half-life of reaction.

D Watch Video Solution
64. A reaction is second order with respect to
a reactant. How is the rate of reaction affected
if the concentration of the reactant Is reduced to half?

D Watch Video Solution

65. Identify the reaction order If the rate constant Is $4 \times 10^{-5} \mathrm{Lmol}^{-1} \mathrm{sec}^{-1}$
66. For a reaction suppose the activation energy Is zero. What is the value of rate constant at 300 K ? If K is $1.6 \times 10^{8} S^{-1}$ at 280 $\mathrm{K}\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right.$.

D Watch Video Solution

67. How will you differentiate between reaction
rate and rate constant?
68. Graphically represent the dependence of half-life, and Initial concentration of reactant for a zero order and first order reaction.

D Watch Video Solution

69. Does molecularity has any meaning for a complex reaction? Explain
70. Can a reaction have zero activation energy?

D Watch Video Solution

71. "Activation energies are low for fast reaction and high for slow reactions" a) Justify
the statement. b) The rate of a reaction quadruples when the temperature changes from 310 K to 330 K . Calculate the activation,

$$
R=8.314 J k^{-1}(\mathrm{~mol})^{-1}
$$

D Watch Video Solution

72. "Activation energies are low for fast reaction and high for slow reactions" a) Justify
the statement. b) The rate of a reaction quadruples when the temperature changes from 310 K to 330 K . Calculate the activation, energy of the reaction
$R=8.314 J k^{-1}(\mathrm{~mol})^{-1}$
73. In a classroom discussion about order and moleculrity of a reaction,Ramu argued that "there are reactions which appear to be of higher order but actually follows first order kinetics"How far is his statement true? Give your opinion in this regard. Justify your answer using suitable example.

- Watch Video Solution

74. In a class room discussion about order and molecularity of a chemical reaction, Ramu argued that "there are reactions which appear to be of higher order but actually follow first order kinetics.List out any three Important differences between order and molecularity.

- Watch Video Solution

75. At a certain temperature, $\mathrm{T} K$ the endothermic reaction $A \rightarrow B$ proceeds
completely to the end. Determine sign of
$\Delta G(+$ or -$)$ for the reaction $B \rightarrow A$ at the temperature, T K.

D Watch Video Solution

76. Enthalpy and Entropy changes of two reactions are given below: Find out whether they are spontaneous or not at $27^{\circ} C$. Justify.
a) $\Delta H=26 \mathrm{~kJ} / \mathrm{mole}, \Delta S=8.3 \mathrm{~J} / \mathrm{K} / \mathrm{mole}$
b) $\Delta H=-393.4 \mathrm{~kJ} / \mathrm{mole}, \Delta S=6 \mathrm{~J} / \mathrm{K} / \mathrm{mole}$

- Watch Video Solution

77. Mention the factors that affect the rate of a chemical reaction.

D Watch Video Solution

78. A reaction is second order with respect to a reactant. How is the rate of reaction affected.
if the concentration of the reactant is doubled
79. A reaction is second order with respect to a
reactant. How is the rate of reaction affected if
the concentration of the reactant Is reduced to half?

D Watch Video Solution

80. A reaction is first order in A and second
order in B.Write the differential rate equation
for the reaction.
81. A reaction is first order in A and second order in B. How isthe rate affected on increasing the concentration of B three times?

- Watch Video Solution

82. A reaction is first order in A and second
order in B.How is the rate affected when the concentration of both A and B is doubled?
83. Calculate the half-life of a first order reaction from their rate constants given below: i) $200(s)^{-1}$

D Watch Video Solution

84. Calculate the half-life of a first order reaction from their rate constants given below. 2 min

D Watch Video Solution
85. Calculate the half-life of a first order reaction from their rate constants given below.4years ${ }^{-1}$.

D Watch Video Solution

86. For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.
87. The rate constant for the decomposition of hydrocarbons is $2.418 x 10^{-5}(s)^{-1}$ at $546(\sim K)$
. if the energy of activation is $179.9 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$, what wilt be the value of pre-exponential factor:

D Watch Video Solution

88. For a reaction $A+B \rightarrow C+D$, the rate equation is, Rate $=K[A]^{3 / 2}[B]^{1 / 2}$. Give the overall order and molecularity of reaction.
89. The temperature dependence of the rate of
a chemical reaction can be explained by Arrhenius equation.Give Arrhenius equation.

D Watch Video Solution

90. The temperature dependence of the rate of a chemical reaction can be explained by

Arrhenius equation. The rate of a chemical reaction doubles for an increase of 10 K in absolute temperature from 300 K . Calculate
the activation energy(Ea)?
$\left.R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \log 2=0.3010\right]$.

D Watch Video Solution

91. For the reaction, $2 N O_{(g)}+O_{2(g)} \rightarrow$
$2 \mathrm{NO}_{2(g)}$ the rate law is given as. Rate $=\mathrm{k}$
$[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$ The order of the reaction with respect to O_{2} is

D Watch Video Solution

92. The rate constant of.a reaction at 293 K is
$1.7 \times 10^{5} s^{-1}$ When the temperature Is increased by 20.K, the rate constant is increased to $2.57 \times 10^{5} s^{-1}$. Calculate Ea and

A of the reaction.

- Watch Video Solution

93. Identify the order of reaction if the unit of rate constant is $m o l L^{-1} S^{-1}$.
94. Plot a graph showing variation in the concentration of reactants against time for a zero order reaction.

- Watch Video Solution

95. What do you mean by zero order of a reaction?
96. The initial concentration of the first order reaction, $\mathrm{N}_{2} \mathrm{O}_{5(g)} \rightarrow 2 \mathrm{NO}_{2(g)}+\frac{1}{2} \mathrm{O}_{2(g)}$ was $1.24 \times 10^{-2} \mathrm{molL} L^{-1}$. The concentration of N2O5 after ' 1 ' hour was $0.20 \times 10-2 \mathrm{~mol} \mathrm{~L}-1$ Calculate the rate constant of the reaction at 300 K.

D Watch Video Solution

97. The molecularity of reaction
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ is
A. 5
B. 2
C. 3
D. 0

Answer:

- Watch Video Solution

98. What do you mean by rate of a reaction?

99. What will be the effect of temperature on a rate of a reaction?

D Watch Video Solution
100. A first order reaction is found to have a
rate constant, $k=5.5 \times 10^{-4} s^{-1}$. Find out
the half-life of the reaction.

D Watch Video Solution
101. The term order and molecularity are common in chemical kinetics. What do you mean by order and molecularity?

D Watch Video Solution

102. The term order and molecularity are common in chemical kinetics. Write two factor influencing rate of a reaction
103. The term order and molecularity are common in chemical kinetics. Write Arrhenius equation.

D Watch Video Solution

104. Consider a general reaction
$a A+b B \rightarrow c C+d D$

The rate expression for the reaction is Rate $=$ $k[A]^{x}[B]^{y}$.Establish the significance of (a+b) and $(x+y)$ term in terms of order and molecularity.

- Watch Video Solution

105. Consider a general reaction
$a A+b B \rightarrow c C+d D$

The rate expression for the reaction is Rate $=$
$k[A]^{x}[B]^{y}$.Write any two differences between order and molecularity.

D Watch Video Solution

106. 'Reaction with zero order is possible but zero molecularity is not".Justify the statement.

D Watch Video Solution

107. For a general reaction $A+B \rightarrow$

Products, rate law Is given as rate $=K[A][B]^{2}$
What is rate law?

D Watch Video Solution
108. For a general reaction $A+B \rightarrow$

Products, rate law Is given as rate $=K[A][B]^{2}$.

What Is the unit of rate constant for the above reaction?

D Watch Video Solution

109. For a general reaction $A+B \rightarrow$

Products, rate law Is given as rate $=K[A][B]^{2}$
.Give any 2 differencesbetween order and molecularity of a reaction.
110. Zero order reaction means that the rate of a reaction is independent of the concentration of reactants. Write an example for a zero order reaction.
(Watch Video Solution
111. Zero order reaction means that the rate of a reaction is independent of the concentration
of reactants. Write the integral rate expression for the zero order reaction, $R \rightarrow P$

D Watch Video Solution
112. The rate constant of a reaction is
$1.2 \times 10^{-5} s^{-1}$.The order of the reaction is ______-

D Watch Video Solution
113. Radioactive decay is a

- Watch Video Solution

114. Consider the composition reaction given below. $2 \mathrm{HI}(g) \rightarrow \mathrm{H}_{2}(g)+I_{2}(g)$.The rate of appearatance of hydrogen is equal to times the rate of disappearance of HI .

D Watch Video Solution

115. Consider the decomposition reaction given below. $2 \mathrm{HI}(g) \rightarrow \mathrm{H}_{2}(g)+I_{2}(g)$. Write
the differential rate expression of this reaction with respect of the reactant.

D Watch Video Solution

116. A first order reaction has a rate constant $1.15 \times 10^{-3} s^{-1}$. How long will 5 g of this reactant take to reduce to 3 g ?

D Watch Video Solution

117. Rate of a reaction is the change in concentration of any one of the reactants or any one of the products in unit tim.Express the rate of the following reaction in terms of reactants and products
$2 \mathrm{NO}(g)+\mathrm{O}_{2(G)} \rightarrow 2 \mathrm{NO}_{2(G)}$

D Watch Video Solution

118. Rate of a reaction is the change in concentration of any one of the reactant or
any one of the products in unit time.
$\mathrm{N}_{2} \mathrm{O}_{5(g) \rightarrow 2 \mathrm{NO}\left(2(g)+\mathrm{O}_{2(g)}\right.}$ is a first order recation find the unit of K.

D Watch Video Solution

119. By deriving the equation for $t_{1 / 2}$ of first order reaction. Prove that $t_{1 / 2}$ is independent of initial concentration of its reacting spectes.

D Watch Video Solution

120. The conversion of molecule A to B follows
second order kinetics its rate equation for the
second order reaction is rate $={ }^{`} K[A]^{\wedge} 2$.If the
concentration of A is increased to 4 times how
will it affect the formation of B.

- Watch Video Solution

121. The conversion of molecule A to B follows second order kinetics. Indicate the order and
molecularity of the reaction given below:

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{H} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

- Watch Video Solution

