©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - BODY BOOKS PUBLICATION

APPLICATION OF DERIVATIVES

Exercise

1. The radius of a balloon is increasing at the rate of $10 \mathrm{~cm} / \mathrm{sec}$. At what rate is the surface
area of the balloon increasing when the radius
is 15 cm .

D Watch Video Solution

2. Find the equation of the tangent to the
curve $\left(1+x^{2}\right) y=2-x$ where it crosses the X-axis.

D Watch Video Solution
3. The distance between the origin and the normal to the curve $y=e^{2 x}+x^{2}$ at $\mathrm{x}=0$ is

D Watch Video Solution

4. Choose the correct answer from the bracket

The slope of the normal to the curve $y=2 x^{2}+3 \sin \mathrm{x}$ at $\mathrm{x}=0$ is.

D Watch Video Solution

5. Find two positive numbers whose sum is 16 and the sum of whose Cubes is minimum.

- Watch Video Solution

6. A manufacture can sell x items at a price of

Rs. $\left(5-\frac{x}{100}\right)$ each. The cost price of x items
is $c(x)=\left(\frac{x}{5}+500\right)$. Write the selling price $S(x)$ of x items.
7. Find two positive numbers whose sum is 16 and the sum of whose Cubes is minimum.

- Watch Video Solution

8. A ball is thrown vertically upwards which satisfies the equation $S=80 t-16 t^{2}$. Find
the time required to reach the maximum height.
9. Show that the function given by $f(x)=3 x+17$ is strictly increasing on R.

D Watch Video Solution

10. Find the slope of the tangent to curve
$y=x^{3}-x+1$ at the point
whose x-coordinate is 2 .

D Watch Video Solution
11. Find the equation of tangents and normals to the given curves $y=x^{3}$ at $(1,1)$

D Watch Video Solution

12. Choose the correct answer from the bracket The slope of the normal to the curve $y=2 x^{2}+3 \sin \mathrm{x}$ at $\mathrm{x}=0$ is.

D Watch Video Solution

13. Use differentials to find the approximate value of $(0.009)^{\frac{1}{3}}$ up to 3 places of decimals.

- Watch Video Solution

14.

Consider the
function
$f(x)=\frac{-3}{4} x^{4}-8 x^{3}-\frac{45}{2} x^{2}+105$.
Find
$f^{\prime}(x)$.

- Watch Video Solution

15. Consider the
function
$f(x)=\frac{-3}{4} x^{4}-8 x^{3}-\frac{45}{2} x^{2}+105$.
Find
points of local maxima \& minima and corresponding maximum and minimum values.

- Watch Video Solution

16. Consider the curve $2 y=3-x^{2}$ Find the slope of the tangent to this curve at $\left(x_{1}, y_{1}\right)$.

D Watch Video Solution

17. Consider the curve $2 y=3-x^{2}$ Find the points on the curve at which tangent is parallel to the line $\mathrm{x}+\mathrm{y}=\mathrm{0}$.

- Watch Video Solution

18. Consider the curves $x=y^{2}$ and $x y=k$ Differentiate both the equations with respect to x .
19. Prove that the curve $x=y^{2}$ and $x y=k$ cut at right angles, if $8 k^{2}=1$.

D Watch Video Solution

20. The total profit y (in rupee) of a drug company from the manufacture and sale of x bottles of drug is given by
$y=\frac{-x^{2}}{300}+2 x-50$. How many bottles of drug must the company sell to obtain maximum profit.
21. The total profit y (in rupee) of a drug company from the manufacture and sale of x bottles of drug is given by $y=\frac{-x^{2}}{300}+2 x-50$. What is the maximum profit?

- Watch Video Solution

22. Of all the cylinders with given surface area,
show that the volume is maximum when height is equal to the diameter of the base.

- Watch Video Solution

23. A man 160 cm tall, walks away from a source of light situated at the top of a pole 6 m high, at the rate of $1.1 \mathrm{~m} / \mathrm{sec}$. How fast is the length of his shadow increasing when he is 1 m away from the pole?

- Watch Video Solution

24. It is given that at $x=1$, the function $x^{4}-62 x^{2}+a x+9$ attains its maximum value, on the interval [0,2]. Find the value of a ?

D Watch Video Solution

25. The total profit y (in rupee) of a drug company from the manufacture and sale of x bottles of drug is given by
$y=\frac{-x^{2}}{300}+2 x-50$. How many bottles of
drug must the company sell to obtain maximum profit.

D Watch Video Solution

26. The total profit y (in rupee) of a drug company from the manufacture and sale of x bottles of drug is given by
$y=\frac{-x^{2}}{300}+2 x-50$. What is the maximum profit?

D Watch Video Solution
27. Sand is pouring from a pipe at the rate of
$12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on
the ground in such a way that the height of
the cone is always one-sixth of the radius of
the base. How fast if the height of the sand cone increasing when the height is 4 cm ?'

D Watch Video Solution

28. Water is running into a conical vessel, 15 cm deep and 5 cm in radius, at the rate of
$0.1 \mathrm{~cm}^{3} / \mathrm{sec}$. When the water is 6 cm deep, find at what rate is The water level rising.

- Watch Video Solution

29. Water is running into a conical vessel, 15 cm deep and 5 cm in radius, at the rate of $0.1 \mathrm{~cm}^{3} / \mathrm{sec}$. When the water is 6 cm deep, find at what rate isThe water surface area increasing.
30. Water is running into a conical vessel, 15 cm deep and 5 cm in radius, at the rate of $0.1 \mathrm{~cm}^{3} / \mathrm{sec}$. When the water is 6 cm deep, find at what rate is The wetted surface of the vessel increasing.

D Watch Video Solution

31. Show that all rectangles with a given perimeter, the square has the maximum area.
32. Show that all rectangles with a given perimeter, the square has the maximum area.

D Watch Video Solution

33. Find the slope of the curve $x^{2}+3 y=3$ at the point $(1,2)$.
34. Find the equation of the tangent to the curve $x^{2}+3 y=3$ parallel to the line $y-4 x+5=0$. Find also the equation of the normal to the curve at the point of contact.

- Watch Video Solution

35. Show that the following function does not
have a local maximum or a local minimum $f(x)$
$=x^{3}+x^{2}+x+1$.
36. Prove that the following functions do not
have maxima or minima $f(x)=e^{x}$

D Watch Video Solution

37. Prove that the following functions do not have maxima or minima $g(x)=\log x$

- Watch Video Solution

38. The combined resistance R of two resistors
$R_{1} \quad$ and $\quad R_{2}\left(R_{1}, R_{2}>0\right) \quad$ is given by
$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} . \quad$ If $\quad R_{1}+R_{2}=C$
constant), show that the maximum resistance

R is obtained by choosing $R_{1}=R_{2}$.

- Watch Video Solution

39. Show that all rectangles with a given perimeter, the square has the maximum area.
40. Show that the height of the cylinder of maximum volume that can
be inscribed in a sphere of radius is $\frac{2 R}{\sqrt{3}}$. Also find the maximum volume.

- Watch Video Solution

41. An edge of a variable cube is increasing at
the rate of $3 \mathrm{~cm} / \mathrm{s}$. How fast is the volume of
the cube increasing when the edge is 10 cm long?

D Watch Video Solution
42. Find the local maxima and local minima of
the following function $g(x)=x^{3}-3 x$. Also
find the local maximum and the local minimum
values.

- Watch Video Solution

43. Choose the correct answer from the bracket. The rate of change of the area of a circle with respect to its radius r at $r=10 \mathrm{~cm}$ is
A. 10π
B. 20π
C. 30π
D. 40π

Answer:

D Watch Video Solution
44. Find the intervals in which the function f given by $f(x)=x^{2}-6 x+5$ is Strictly increasing.

- Watch Video Solution

45. Find the intervals in which the function f
given by $f(x)=x^{2}-6 x+5$ is
Strictly decreasing.
46. Find the local minimum and local maximum value, if any, of the function
$f(x)=x^{3}-6 x^{2}+9 x+8$.

- Watch Video Solution

47. Choose the correct answer from the bracket. The slope of the tangent to the curve $y=x^{3}-2 x+3$ at $\mathrm{x}=1$ is......
A. 0
B. 1
C. 2
D. 3

Answer:

D Watch Video Solution
48. Find points on the curve $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ at which the tangents are

Parallel to x-axis.
49. Find points on the curve $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ at which the tangents are Parallel to y -axis.

- Watch Video Solution

50. Use differential to approximate $\sqrt{25.6}$
51. Choose the correct answer from the bracket. The function $f(x)=\cos x$ is strictly decreasing in the interval ___a) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
b) $(0,2 \pi)$ c) $(0, \pi) \mathrm{d})(-\pi, \pi)$
А. $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
B. $(0,2 \pi)$
C. $(0, \pi)$
D. $(-\pi, \pi)$

Answer:

52. Find the equation of the tangent to the curve $y=x^{2}-4 x+5$ which is parallel to the line $2 x+y+5=0$.

- Watch Video Solution

53. Find the absolute maximum and minimum

> values of a function f given by
> $f(x)=x^{3}-9 x+8$ on $[-4,2]$.
54. Prove that the function $f(x)=\log \sin x$ is strictly increasing in $\left(0, \frac{\pi}{2}\right)$ and strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$

D Watch Video Solution

55. Find the approximate change in volume of a cube of side x meters caused by an increase in the side by 3%.
56. A wire of length 28 m is cut into two pieces.

One of the Pieces is be made into a square and
the other in to a circle. What should be the length of the two pieces so that combined area of the square and the circle is minimum using differentiation?

D Watch Video Solution

57. Consider the function $y=\frac{\log x}{x}, x>0$

Find the extreme points of $f(x)$.

- Watch Video Solution

58. Consider the function $y=\frac{\log x}{x}, x>0$ Find the maximum or minimum values if any.

- Watch Video Solution

59. A rectangle sheet of tin with adjacent sides

45 cm and 24 cm is to be made into a box without top, by cutting off equal squares from the corners the folding up the flaps.

Taking the side of the square cut off as x, express the volume of the box as the function of x.

D Watch Video Solution

60. An rectangle sheet of tin with adjascent
sides 45 cm and 24 cm is to be made into a
box without top, by cutting off equal squares
of side x from the corners the folding up the
flaps.

For what value of x, the volume of the box will be maximum.

D Watch Video Solution

61. The slope of the tangent to the curve $y=x^{3}$ inclined at an angle 60° to x-axis is

D Watch Video Solution

62. Consider the function $y^{2}=4 x+5$ Find a
point on the curve at which the tangent is
parallel to the line $y=2 x+7$.

- Watch Video Solution

63. Find the approximate value of $\sqrt{0.037}$.

D Watch Video Solution

64. Consider the function $f(x)=x^{2}$ in [-2,1]

Find the local maximum or minimum if any.
65. Consider the function $f(x)=x^{2}$ in $[-2,1]$

Find the absolute maximum and minimum.

- Watch Video Solution

66. Of all the cylinders with given surface area, show that the volume is maximum when height is equal to the diameter of the base .

- Watch Video Solution

67. Sand is pouring from a pipe at the rate of
$12 \mathrm{~cm}^{3} / \mathrm{s}$. The falling sand forms a cone on
the ground in such a way that the height of
the cone is always one-sixth of the radius of the base. How fast if the height of the sand cone increasing when the height is 4 cm ?'

- Watch Video Solution

68. If the radius of a sphere is measured as $9 m$
with an error of $0.03 m$, then find the
approximate error in calculating its surface area.

D Watch Video Solution

69. Two equal sides of an isosceles triangle with fixed base 'a' are decreasing at the rate of
$9 \mathrm{~cm} / \mathrm{s}$ How fast is the area of the triangle decreasing when the two sides are equal to 'a'.

- Watch Video Solution

70.

Consider
the
function
$f(x)=(x+1)^{3}(x-3)^{3}$ Find $\mathrm{f}^{\prime}(\mathrm{x})$.

D Watch Video Solution

71.

Consider
the
function
$f(x)=(x+1)^{3}(x-3)^{3}$ Find critical points
of $f(x)$.

- Watch Video Solution

72. Find the intervals in which the function $f(x)=(x+1)^{3}(x-3)^{3}$ strictly increasing or decreasing.

- Watch Video Solution

73. Find the point on the curve $y=x^{3}-11 x+5$ at which the tangent is $y=x-11$
74. Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $8 / 27$ of the volume of the sphere.

- Watch Video Solution

75. A ladder 5 m long is leaning against a wall.

The bottom of the ladder is pulled along the ground, away from the wall, at the rate of $2 \mathrm{~cm} / \mathrm{s}$. How fast is its height on the decreasing when the foot of the ladder is 4 m away from the wall.

- Watch Video Solution

76. An open box is made by removing squares of equal size from the corners of a tin sheet of size $16 \mathrm{~cm} \times 10 \mathrm{~cm}$ and folding up the sides of the box so obtained. With the help of figure, obtain the relation $\mathrm{V}=\mathrm{x}(16-2 \mathrm{x})(10-2 \mathrm{x})$.

- Watch Video Solution

77. An open box is made by removing squares
of equal size from the corners of a tin sheet of
size $16 \mathrm{~cm} \times 10 \mathrm{~cm}$ and folding up the sides of
the box so obtained. What is the value of x for which V is maximum?

D Watch Video Solution
78. What is the slope of the tangent and normal at $(1,1)$ on the curve $y=x^{3}$.
79. A water tank is in the shape of a right circular cone with its axis vertical and vertex down. Its height and diameter are same. Water is powered into it at a constant rate of $2 m^{3} / \min$ ute. With the help of figure obtain the relation $V=\frac{1}{12} \pi h^{3}$.

- Watch Video Solution

80. A water tank is in the shape of a right circular cone with its axis vertical and vertex
down. Its height and diameter are same. Water
is powered into it at a constant rate of $2 m^{3} / \min u t e$. Find the rate at which water level is increasing when depth of water in the tank is 6 m .

D Watch Video Solution

81. Find the interval in which the function
$x^{3}-6 x^{2}+9 x+15$ is increasing.

D Watch Video Solution

82. A window is in the form of a rectangle surmounted by a semicircle as shown in the
figure. The perimeter of the window is 5 metres. If r is the radius of the semicircle and x is the length of the larger side of the rectangle, find a relation between r, x.

D Watch Video Solution

83. A window is in the form of a rectangle surmounted by a semicircle as shown in the figure. If r is the radius of the semicircle and x
is the length of the larger side of the rectangleThe perimeter of the window is 5 metres Find the area of the window in terms of r.

D Watch Video Solution

84. A window is in the form of a rectangle
surmounted by a semicircle as shown in the
figure. The perimeter of the window is 5 metres. Find the dimensions of the window so
that the greatest possible light may be admitted.

D Watch Video Solution

85. A rectangle sheet of tin with adjacent sides

45 cm and 24 cm is to be made into a box
without top, by cutting off equal squares from
the corners the folding up the flaps.

Taking the side of the square cut off as x, express the volume of the box as the function of x.

Watch Video Solution

86. An rectangle sheet of tin with adjascent sides 45 cm and 24 cm is to be made into a box without top, by cutting off equal squares of side x from the corners the folding up the flaps.

For what value of x, the volume of the box will be maximum.
87. What is the slope of the tangent and normal at (1,1) on the curve $y=x^{3}$.

- Watch Video Solution

88. A wire of length 28 m is cut into two pieces.

One of the Pieces is be made into a square and
the other in to a circle. What should be the
length of the two pieces so that combined area of the square and the circle is minimum using differentiation?
89. A car starts from a point P at time $t=0$ seconds and stops at point Q. The distance x, in metres, covered by it, in t seconds is given by $x=t^{2}\left(2-\frac{t}{3}\right)$ Find the time taken by it to reach Q and also find distance between P and Q .

D Watch Video Solution

90. Show that the function given by
$f(x)=\sin x$ is
a) strictly increasing in $\left(0, \frac{\pi}{2}\right)$
b) Strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$
c) Neither increasing nor decreasing in $(0, \pi)$.

D Watch Video Solution

91. Show that the function given by
$f(x)=\sin x$ is
a) strictly increasing in $\left(0, \frac{\pi}{2}\right)$
b) Strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$
c) Neither increasing nor decreasing in $(0, \pi)$.

D Watch Video Solution

92. Prove that the function given by
$f(x)=\cos x$ is
(a) Strictly decreasing in $(0, \pi)$
(b) Strictly increasing in $(\pi, 2 \pi)$ and
(c) neither increasing nor decreasing in
$(0,2 \pi)$

D Watch Video Solution
93. Find the points on the curve $y=x^{3}$ at which the slope of the tangent is equal to the y-coordinate of the point.

D Watch Video Solution

94. Consider parametric forms given by
$x=a \sin ^{3} t, y=b \cos ^{3} t$ Find $\frac{d y}{d x}$.
95. Consider parametric forms given by $x=a \sin ^{3} t, y=b \cos ^{3} t$ Find the equation of tangent at $t=\frac{\pi}{2}$.

D Watch Video Solution

96. Find the equation of the tangent line to

the curve $y=x^{2}-2 x+7$ which is
a) parallel to the line $2 x-y+9=0$
b) perpendicular to the line $5 y-15 x=13$

D Watch Video Solution

97. Find the equation of the tangent line to
the curve $y=x^{2}-2 x+7$ which is
a) parallel to the line $2 x-y+9=0$
b) perpendicular to the line $5 y-15 x=13$

- Watch Video Solution

98. Use differentials to find the approximate
value of $(15)^{\frac{1}{4}}$ up to 3 places of decimals.

D Watch Video Solution

99. Prove that the following functions do not have maxima or minima $g(x)=\log x$

- Watch Video Solution

100. Show that all rectangles with a given perimeter, the square has the maximum area.

- Watch Video Solution

101. The slope of the tangent to the curve

$$
y=e^{2 x} \text { at }(0,1) \text { is.....a) } 1 \text { b) } 2 \text { c) } 0 \text { d) }-1
$$

A. 1
B. 2
C. 0
D. -1

Answer:

D Watch Video Solution
102. Find the intervals in which the function
$f(x)=x^{2}+2 x-5$ strictly increasing or decreasing.

D Watch Video Solution

103. Find the equation of tangents and normals to the given curves $y=x^{3}$ at $(1,1)$

D Watch Video Solution

104. Find local maximum and local minimum if
any for the function. $h(x)=\sin x+\cos x$.
$0<x<\left(\frac{\pi}{2}\right)$

- Watch Video Solution

105. Find the slope of tangent line to the curve
$y=x^{2}-2 x+1$

D Watch Video Solution
106. $f(x)$ is a strictly increasing function, if $f^{\prime}(x)$
is........a)Positive b)Negative c) 0 d)None of these
A. positive
B. negative
C. 0
D. None of these

Answer:
(D) Watch Video Solution
107. Show that the function F given by
$f(x)=x^{3}-3 x^{2}+4 x, x \in R$
is strictly increasing

D Watch Video Solution

108. Find the slope of the tangent to the curve
$y=(x-2)^{2}$ at $\mathrm{x}=1$

D Watch Video Solution

109. Find a point at which the tangent to the
curve $y=(x-2)^{2}$ is parallel to the chord
joining the point $A(2,0)$ and $B(4,4)$

- Watch Video Solution

110. The slope of the normal to the curve,

$$
y^{2}=4 x \text { at }(1,2) \text { is }
$$

A. 1
B. $\frac{1}{2}$
C. 2
D. -1

Answer:

D Watch Video Solution

111. Find the intervals in which the function
$2 x^{3}+9 x^{2}+12 x-1$ is strictly increasing.

- Watch Video Solution

112. The rate of change of volume of a sphere with respect to its radius when radius is 1 unit.
A. 4π
B. π
C. π
D. $\frac{\pi}{2}$

Answer:

D Watch Video Solution
113. Find two positive numbers whose sum is

16 and the sum of whose Cubes is minimum.

D Watch Video Solution

114. The slope of the tangent to the curve given
$x=1-\cos \theta, y=\theta-\sin \theta$ by at $\theta=\frac{\pi}{2}$
A. 0
B. -1
C. 1
D. Not defined

Answer:

D Watch Video Solution

115. Find the intervals in which the function $f(x)=x^{2}-4 x+6$ is strictly decreasing.

- Watch Video Solution

116. Find the minimum and maximum value, if any, of the function $f(x)=(2 x-1)^{2}+3$

D Watch Video Solution

117. Which of the following function has neither local maxima nor local minima?

> a) $f(x)=x^{2}+x \quad$ b) $f(x)=\log x$ $f(x)=x^{3}-3 x+3$ d) $f(x)=3+|x|$
A. $f(x)=x^{2}+x$
B. $f(x)=\log x$
C. $f(x)=x^{3}-3 x+3$
D. $f(x)=3+|x|$.

Answer:

D Watch Video Solution

118. Find the equation of the tangent to the
curve $y=3 x^{2}$ at $(1,1)$
119. Use differentiation to approximate $\sqrt{36.6}$.

- Watch Video Solution

120. Which of the following function is always
increasing? a) $x+\sin 2 x$
b) $x-\sin 2 x$ c) $2 x+\sin 3 x$ d) $2 x-\sin x$
A. $x+\sin 2 x$
B. $x-\sin 2 x$
C. $2 x+\sin 3 x$

D. $2 x-\sin x$

Answer:

D Watch Video Solution

121. The radius of a cylinder increases at a rate of $1 \mathrm{~cm} / \mathrm{s}$ and its height decreases at a rate of $1 \mathrm{~cm} / \mathrm{s}$. Find the rate of change of its volume when the radius is 5 cm and the height is 15
cm . If the volume should not change even
when the radius and height are changed, what
is the relation between the radius and height?

D Watch Video Solution

122. Write the equation of tangent at $(1,1)$ on
the curve $2 x^{2}+3 y^{2}=5$.

D Watch Video Solution

123. Which of the following function is increasing for all values of x in its domain? a)
$\left.\sin x \mathrm{~b}) \log x \mathrm{c}) x^{2} \mathrm{~d}\right)|x|$
A. $\operatorname{Sin} x$
B. $\log x$
C. x^{2}
D. $|x|$

Answer:

- Watch Video Solution

124. Find a point on the curve $y=(x-2)^{2}$ at which the tangent is parallel to the chord joining the points $(2,0)$ and $(4,4)$.

- Watch Video Solution

125. Find the maximum profit that a company can make, if the profit function is given by

$$
p(x)=41-24 x-6 x^{2}
$$

126. Find the slope of the normal to the curve
$y=\sin \theta$ at $\theta=\frac{\pi}{4}$

- Watch Video Solution

127. Show that the function
$x^{3}-6 x^{2}+15 x+4$
is strictly increasing in R .
(D) Watch Video Solution
128. Show that all rectangles with a given perimeter, the square has the maximum area.

D Watch Video Solution

> 129. Show that the function
> $x^{3}-3 x^{2}+6 x-5$ is strictly increasing on R .

D Watch Video Solution

130. Find the interval in which the function
$f(x)=\sin x+\cos x, 0 \leq x \leq 2 \pi$ is strictly increasing or strictly decreasing.

D Watch Video Solution

131. The slope of the tangent to the curve
$y=x^{3}-1$ at $\mathrm{x}=2$ is.

D Watch Video Solution
132. Use differentiation to approximate $\sqrt{36.6}$.

- Watch Video Solution

133. Find two numbers whose sum is 24 and whose product as large as possible.

- Watch Video Solution

134. Find the equation of the tangentto the
ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $\left(x_{1}, y_{1}\right)$

- Watch Video Solution

135. Find the intervals in which the function $f(x)=2 x^{3}-15 x^{2}+36 x+1$ is increasing

- Watch Video Solution

136. Find the intervals in which the function
$f(x)=2 x^{\wedge} 3-15 x^{\wedge} 2+36 x+1$ is increasing
137. Find the approximate value of $(626)^{1 / 4}$.

- Watch Video Solution

138. Find two positive numbers x and y such that $x+y=60$ and $x y^{3}$ is maximum.

- Watch Video Solution

139. If the radius of a sphere is measured as
$9 m$ with an error of $0.03 m$, then find the
approximate error in calculating its surface area.

- Watch Video Solution

