

MATHS

BOOKS - BODY BOOKS PUBLICATION

APPLICATION OF INTEGRALS

Exercise

1. Find the points of intersection of the parabola $y^2=8x$ and the line y=2x.

2. The area bounded by the parabola $y^2=8x$ and its latus rectum (in sq unit) is a)16/3 b) 32/3 c)8/3 d)64/3

Watch Video Solution

3. Find the area enclosed between the curve

 $x^2 = 4y$

and the line x = 4y - 2

4. Draw the graph of the function $y=x^2$ and $x=y^2$ in a coordinate axis.

Watch Video Solution

5. Consider the parabolas $y^2 = 4x$, $x^2 = 4y$ Find the point of intersection of the two parabolas.

6. Given the graphs of $y = x^2$ and $x = y^2$.

Express the area of the region bounded by the parabolas as a definite integral.

Watch Video Solution

7. Consider the parabolas $y=x^2$ and $y^2=x$.

Find the area of the region bounded by the two parabolas.

8. Find the area of the region bounded by the curve $y^2=8x$ and the x-axis at x=1 and x=3.

Watch Video Solution

9. Draw the rough sketch of $y^2+1=x$, $x\leq 2$ and find the area enclosed by the curve and the ordinate at x=2.

10. Using integration find the area of the region bounded by the curves $y=x^2+2$, y=x,x=0 and x=3.

Watch Video Solution

11. Draw a rough sketch of the region enclosed by $y^2 = x$ and x+y=2.

12. Draw a rough sketch of the curves y=x and $y=x^3$.

Watch Video Solution

13. Draw a rough sketch of the curves y=sinx and y=cosx as 'x' varies from 0 to $\pi/2$.

14. Find the points of intersection of the parabola $y^2=8x$ and the line y=2x.

Watch Video Solution

15. Find the area of the region bounded by the curve y=|x| and the x-axis between x=-4 and x=2.

16. Find the area bounded by the curve $y=\cos x$ between x=0 and $x=2\pi$

Watch Video Solution

17. Choose the correct answer. Smaller area enclosed by the circle $x^2+y^2=4$ and the line x+y=2 is:

18. Find the area of a circle of radius r, by integration.

Watch Video Solution

19. Find the area of the circle,

$$x^2 + y^2 = 16$$

which Is exterior to parabola

$$y^2 = 6x$$

20. The area of the triangular region whose sides are y = 2x + 1, y = 3x + 1 and x = 4 is a)5 b)6 c)7 d)8

Watch Video Solution

21. Choose the correct answer. Area of the region bounded by the curve $y^2=4x$, y-axis and the line y=3 is :

22. The area between $x=y^2$ and `x=4 is divided into two equal parts by the line x=a, find the value of a.

Watch Video Solution

23. Sketch the graph of y=|x+3| and evaluate $\int |x+3| {
m d} x$.

24. Find the area lying above x-axis and included between the circle $x^2+y^2=8x$ and parabola $y^2=4x$.

Watch Video Solution

25. Find the area of the region bounded by the $y^2=4ax$ and $x^2=4ay$, a>0

26. Using integration find the area of the region bounded by the parabola $y^2=4x$ and the circle $4x^2+4y^2=9$.

Watch Video Solution

27. Draw the graph of the function $y=x^2$ and $x=y^2$ in a coordinate axis.

28. Consider the functions $f(x)=\sin x$ and $g(x)=\cos x$ in the interval $[0,2\pi]$ Find the x coordinates of the meeting points of the functions.

Watch Video Solution

29. Consider the functions $f(x) = \sin x$ and $g(x) = \cos x$ in the interval

 $[0,2\pi]$

draw the rough sketch of the above function?

30. Consider the functions $f(x) = \sin x$ and

$$g(x) = \cos x$$
 in the interval

 $[0, 2\pi]$

find the area enclosed by these curves in the given interval?

31. Shade the area enclosed $x^2=4y,\,y=2,\,y=4$ and the y-axis in the

by

first quadrant?

Watch Video Solution

32. Find the area of the circle,

$$x^2 + y^2 = 16$$

which Is exterior to parabola

 $y^2 = 6x$

33. Draw a rough sketch of the graph of the function

$$y^2 = 4x$$

Watch Video Solution

34. Make a rough sketch of the curves $y=x^2$ and y=|x|.

35. The co-ordinates of the vertices of \triangle ABC are A(2,0), B(4,5) and C(6,3).Find the equations of the sides AB,BC and CA.

Watch Video Solution

36. The co-ordinates of the vertices of \triangle ABC are A(2,0), B(4,5) and C(6,3).Find the equations of the sides AB,BC and CA.

37. The area bounded by the curve y=f(x), x-axis and the line x=a and x=b is ?

A.
$$\int_a^b x dy$$

B.
$$\int_a^b y dx$$

C.
$$\int_a^b x^2 dy$$

D.
$$\int_a^b y^2 dx$$

Answer:

38. Area bounded by the curve y=f(x),x axis and the linesx=a and x=b is

A.
$$\int_a^b x dy$$

$$\mathsf{B.} \int_a^b x^2 dy$$

$$\mathsf{C}.\int_a^b y dx$$

D.
$$\int_a^b y^2 dx$$

Answer:

39. Find the area bounded by the curve y= sin x

with x-axis, between x=0 and $x=2\pi$

Watch Video Solution

40. Find the area of the region bounded by the curve

 $y^2 = x$

x-axis and the lines x=1 and x=4

41. Area bounded by the curves y=cosx , $x=\frac{n}{2}$

, x=0, y=0 is

A.
$$\frac{1}{2}$$

A.
$$\frac{1}{2}$$
B. $\frac{2}{\pi}$

$$\mathsf{D.}\,\frac{\pi}{2}.$$

Answer:

42. Find the area of the region bounded by the

$$y^2=4ax$$
 and $x^2=4ay$, a>0

Watch Video Solution

43. The area bounded by the curve above the

x-axis, between
$$x=a$$
 and $x=b$ is

A.
$$\int_{f(a)}^{b} y dy$$

$$\mathsf{B.} \int_a^{f(b)} x dx$$

C.
$$\int_a^b x dy$$

D.
$$\int_a^b y dx$$

Answer:

Watch Video Solution

44. Find the area of the circle

$$x^2 + y^2 = 4$$

using integration

Watch Video Solution

45. Consider the function

$$f(x) = |x| + 1, g(x) = 1 - |x|$$

sketch the graph and shade the enclosed region between them

Watch Video Solution

46. Consider the functions: f(x) = |x| - 1and g(x) = 1 - |x|. Find the area of their shaded region.

47. Find the point at which the circle $x^2+y^2=32$ intersects the positive x-axis.

Watch Video Solution

48. Shade the region in the first quadrant enclosed by x-axis, the line y=x and the circle $x^2 + x^2 = 22$

$$x^2 + y^2 = 32$$

49. Find the area bounded by the curve y= $\sin x$ with x-axis, between x=0 and $x=2\pi$

Watch Video Solution

50. Find the area of the region bounded by the ellipse $\dfrac{x^2}{4}+\dfrac{y^2}{9}=1.$

51. Choose the correct answer. Area lying between the curves $y^2 = 4x$ and y=2x is :

Watch Video Solution

52. Find the area between the curves y=x and $y=x^2$.

53. Choose the correct answer. Area bounded by the curve $y=x^3$, The x-axis and the ordinates.

x=-2 and x=1 is:

