©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - BODY BOOKS PUBLICATION

APPLICATION OF INTEGRALS

Exercise

1. Find the points of intersection of the parabola $y^{2}=8 x$ and the line $\mathrm{y}=2 \mathrm{x}$.
2. The area bounded by the parabola $y^{2}=8 x$ and its latus rectum (in sq unit) is a) $16 / 3$ b) $32 / 3 \mathrm{c}) 8 / 3 \mathrm{~d}) 64 / 3$

- Watch Video Solution

3. Find the area enclosed between the curve
$x^{2}=4 y$
and the line $x=4 y-2$
4. Draw the graph of the function $y=x^{2}$ and $x=y^{2}$ in a coordinate axis.

- Watch Video Solution

5. Consider the parabolas $y^{2}=4 x, x^{2}=4 y$

Find the point of intersection of the two parabolas.
6. Given the graphs of $y=x^{2}$ and $x=y^{2}$.

Express the area of the region bounded by the parabolas as a definite integral.

- Watch Video Solution

7. Consider the parabolas $y=x^{2}$ and $y^{2}=x$.

Find the area of the region bounded by the two parabolas.
8. Find the area of the region bounded by the curve $y^{2}=8 x$ and the x-axis at $\mathrm{x}=1$ and $\mathrm{x}=3$.

D Watch Video Solution

9. Draw the rough sketch of $y^{2}+1=x, x \leq 2$ and find the area enclosed by the curve and the ordinate at $x=2$.

D Watch Video Solution

10. Using integration find the area of the region bounded by the curves $y=x^{2}+2$, $y=x, x=0$ and $x=3$.

D Watch Video Solution

11. Draw a rough sketch of the region enclosed
by $y^{2}=x$ and $\mathrm{x}+\mathrm{y}=2$.

D Watch Video Solution
12. Draw a rough sketch of the curves $y=x$ and $y=x^{3}$.

D Watch Video Solution
13. Draw a rough sketch of the curves $y=\sin x$ and $y=\cos x$ as ' x ' varies from 0 to $\pi / 2$.

- Watch Video Solution

14. Find the points of intersection of the parabola $y^{2}=8 x$ and the line $\mathrm{y}=2 \mathrm{x}$.

D Watch Video Solution

15. Find the area of the region bounded by the
curve $y=|x|$ and the x-axis between $x=-4$ and $x=2$.

D Watch Video Solution
16. Find the area bounded by the curve $y=\cos x$ between $x=0$ and $x=2 \pi$

D Watch Video Solution

17. Choose the correct answer. Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is:

D Watch Video Solution

18. Find the area of a circle of radius r, by
integration.

D Watch Video Solution
19. Find the area of the circle ,
$x^{2}+y^{2}=16$
which Is exterior to parabola
$y^{2}=6 x$

- Watch Video Solution

20. The area of the triangular region whose sides are $y=2 x+1, y=3 x+1$ and $x=4$ is a) 5 b) 6 c) 7 d) 8

D Watch Video Solution

21. Choose the correct answer. Area of the region bounded by the curve $y^{2}=4 x$, y-axis and the line $y=3$ is :
22. The area between $x=y^{2}$ and $\begin{gathered} \\ x\end{gathered}=4$ is divided into two equal parts by the line $x=a$, find the value of a.

D Watch Video Solution

23. Sketch the graph of $y=|x+3|$ and
evaluate $\int_{-6}^{0}|x+3| \mathrm{dx}$.

D Watch Video Solution
24. Find the area lying above x-axis and included between the circle $x^{2}+y^{2}=8 x$ and parabola $y^{2}=4 x$.

D Watch Video Solution

25. Find the area of the region bounded by the
$y^{2}=4 a x$ and $x^{2}=4 a y, \mathrm{a}>0$

D Watch Video Solution
26. Using integration find the area of the region bounded by the parabola $y^{2}=4 x$ and the circle $4 x^{2}+4 y^{2}=9$.

D Watch Video Solution

27. Draw the graph of the function $y=x^{2}$ and
$x=y^{2}$ in a coordinate axis.

D Watch Video Solution

28. Consider the functions $f(x)=\sin x$ and $g(x)=\cos x$ in the interval $[0,2 \pi]$ Find the x coordinates of the meeting points of the functions.

- Watch Video Solution

29. Consider the functions $f(x)=\sin x$ and
$g(x)=\cos x$ in the interval
$[0,2 \pi]$
draw the rough sketch of the above function?
30. Consider the functions $f(x)=\sin x$ and $g(x)=\cos x$ in the interval
$[0,2 \pi]$
find the area enclosed by these curves in the given interval ?

- Watch Video Solution

31. Shade the area enclosed by
$x^{2}=4 y, y=2, y=4$ and the y-axis in the
first quadrant ?

- Watch Video Solution

32. Find the area of the circle,
$x^{2}+y^{2}=16$
which Is exterior to parabola
$y^{2}=6 x$

D Watch Video Solution
33. Draw a rough sketch of the graph of the
function
$y^{2}=4 x$

- Watch Video Solution

34. Make a rough sketch of the curves $y=x^{2}$ and $\mathrm{y}=|\mathrm{x}|$.

- Watch Video Solution

35. The co-ordinates of the vertices of
$\triangle A B C$ are $\mathrm{A}(2,0), \mathrm{B}(4,5)$ and $\mathrm{C}(6,3)$. Find the equations of the sides $A B, B C$ and $C A$.

D Watch Video Solution

36. The co-ordinates of the vertices of
$\triangle A B C$ are $\mathrm{A}(2,0), \mathrm{B}(4,5)$ and $\mathrm{C}(6,3)$. Find the equations of the sides $A B, B C$ and $C A$.

37. The area bounded by the curve $y=f(x), x$-axis

 and the line $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ is ?$$
\begin{aligned}
& \text { A. } \int_{a}^{b} x d y \\
& \text { B. } \int_{a}^{b} y d x \\
& \text { C. } \int_{a}^{b} x^{2} d y \\
& \text { D. } \int_{a}^{b} y^{2} d x
\end{aligned}
$$

Answer:

38. Area bounded by the curve $y=f(x)$,x axis and the lines $\mathrm{x}=\mathrm{a}$ and $x=b$ is
A. $\int_{a}^{b} x d y$
B. $\int_{a}^{b} x^{2} d y$
C. $\int_{a}^{b} y d x$
D. $\int_{a}^{b} y^{2} d x$

Answer:
(Watch Video Solution
39. Find the area bounded by the curve $y=\sin x$ with x -axis, between $\mathrm{x}=0$ and $x=2 \pi$

D Watch Video Solution

40. Find the area of the region bounded by
the curve
$y^{2}=x$
x-axis and the lines $x=1$ and $x=4$

- Watch Video Solution

41. Area bounded by the curves $\mathrm{y}=\cos \mathrm{x}, x=\frac{\pi}{2}$, $x=0, y=0$ is
A. $\frac{1}{2}$
B. $\frac{2}{\pi}$
C. 1
D. $\frac{\pi}{2}$.

Answer:

D Watch Video Solution
42. Find the area of the region bounded by the $y^{2}=4 a x$ and $x^{2}=4 a y, \mathrm{a}>0$

- Watch Video Solution

43. The area bounded by the curve above the
x-axis, between $x=a$ and $x=b$ is
A. $\int_{f(a)}^{b} y d y$
B. $\int_{a}^{f(b)} x d x$
C. $\int_{a}^{b} x d y$
D. $\int_{a}^{b} y d x$

Answer:

- Watch Video Solution

44. Find the area of the circle
$x^{2}+y^{2}=4$
using integration

D Watch Video Solution

45. Consider the function
$f(x)=|x|+1, g(x)=1-|x|$
sketch the graph and shade the enclosed

region between them

D Watch Video Solution

46. Consider the functions: $f(x)=|x|-1$
and $g(x)=1-|x|$. Find the area of their shaded region.

- Watch Video Solution

47. Find the point at which the circle $x^{2}+y^{2}=32$ intersects the positive x -axis.

- Watch Video Solution

48. Shade the region in the first quadrant enclosed by x-axis, the line $y=x$ and the circle $x^{2}+y^{2}=32$

- Watch Video Solution

49. Find the area bounded by the curve $y=\sin x$ with x -axis, between $\mathrm{x}=0$ and $x=2 \pi$

D Watch Video Solution
50. Find the area of the region bounded by the
ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.

D Watch Video Solution
51. Choose the correct answer. Area lying between the curves $y^{2}=4 x$ and $\mathrm{y}=2 \mathrm{x}$ is:

- Watch Video Solution

52. Find the area between the curves $y=x$ and $y=x^{2}$.

- Watch Video Solution

53. Choose the correct answer. Area bounded by the curve $y=x^{3}$, The x -axis and the ordinates.
$x=-2$ and $x=1$ is:

- Watch Video Solution

