

MATHS

BOOKS - BODY BOOKS PUBLICATION

QUESTION PAPER 2020

Exercise

1. Let R be a relation in the set N of natural

numbers given by $R = \{(a, b) : a = b - 2\}.$

 $(3,8)\in R$ c) $(6,8)\in R$ d) $(8,7)\in R$

Choose the correct answer.a) $(2,3) \in R$ b)

A. $(2,3)\in R$

B. $(3, 8) \in R$

 $\mathsf{C.}\left(6,8
ight)\in R$

D. $(8,7) \in R$

Answer:

2. Let * be a binary operation on the set Z of integers as a*b=a+b+1. Then find the identity element:

Watch Video Solution

3. Write two non-zero matrices A and B for which AB=0.

4. Express $A=\begin{bmatrix}1&-1\\2&3\end{bmatrix}$ as the sum of a symmetric matrix and a skew symmetric matrix.

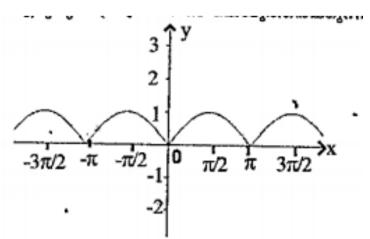
Watch Video Solution

5. using properties of determinants, prove

that
$$egin{array}{c|ccc} 1 & a & a^2 \ 1 & b & b^2 \ 1 & c & c^2 \ \end{array} = (a-b)(b-c)(c-a).$$

- 6. Which among the following is not true
 - A. A polynomial function is always continuous
 - B. A continuous function is always differentiable.
 - C. A differentiable is always continuous
 - D. log x is continuous for all x greater than zero

Answer:

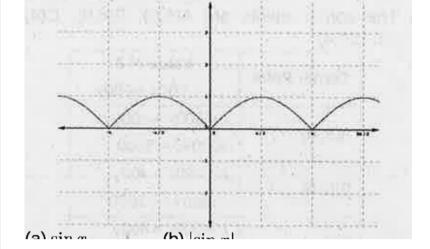

Watch Video Solution

7. Find
$$\dfrac{dy}{dx}$$
, if $x^2+y^2+xy=100$

Watch Video Solution

8. Identify the following function

- A. sinx
- B. $|\sin x|$
- C. sin|x|
- D. cos x


Answer:

Watch Video Solution

9. Identify the following function:

Is the function differentiable? Why?

Watch Video Solution

10. Find derivative of $y = \sqrt{\tan x}$

11. The slope of the tangent to the curve

$$y=e^{2x}$$
 at (0,1) is....a)1 b)2 c)0 d)-1

- **A.** 1
- B. 2
- C. 0
- D. -1

Answer:

12. Find the equation of a line perpendicular to the tangent to the curve $y=e^{2x}$ at (0,1)) and passing through (2,3).

Watch Video Solution

13. The general solution of a differential equation contains 3 arbitrary constants. Then what is the order of the differential equation?

A)2 B)3 C)0 D)1

A. 2

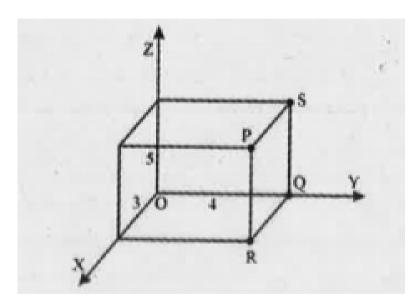
B. 3

C. 0

D. 1

Answer:

Watch Video Solution


14. Check whether $y=e^{-3x}$ is a solution of the differential equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$$

15. Consider the following figure:

Find the distance of PQ.

C.z=4

D. x = 3

Answer:

Watch Video Solution

16. Let $A = R - \{3\}$ and $B = R - \{1\}$ consider the function $f \colon A o B$ defined by $f(x) = \frac{x-2}{x-3}$. Is f one-one and onto? Justify your answer.

17. Let $A=R-\{3\}$ and $B=R-\{1\}$ consider the function $f\colon A\to B$ defined by $f(x)=rac{x-2}{x-3}$.Is it invertible?Why?

Watch Video Solution

18. Let $A=R-\{3\}$ and $B=R-\{1\}$ consider the function $f\colon A o B$ defined by $f(x)=rac{x-2}{x-3}.$ If invertible, find inverse of f(x).

19. If
$$xy < 1, \tan^{-1} x + \tan^{-1} y$$
=...... a)

$$an^{-1}igg(rac{x-y}{1+xy}igg)$$

b)
$$an^{-1} igg(rac{x+y}{1-xy} igg)$$
 c) $rac{ an x + an y}{1- an x an y}$ d)

 $\frac{\tan x - \tan y}{1 - \tan x \tan y}$

A.
$$\tan^{-1}\left(\frac{x-y}{1+xy}\right)$$

B.
$$\tan^{-1}\left(\frac{x+y}{1-xy}\right)$$

C.
$$\frac{\tan x + \tan y}{1 - \tan x \cdot \tan y}$$

D.
$$\frac{\tan x - \tan y}{1 + \tan x \cdot \tan y}$$

Answer:

20. Solve
$$an^{-1}2x+ an^{-1}3x=rac{\pi}{4}$$

21. Find
$$\frac{dy}{dx}$$
 if $y=x^x+x^{\sin x}$.

23.
$$\int \!\! rac{f(x)}{ an x} dx = \log \! | an x| + c$$
, then $f(x)$ is

A. cot x

 $B. \sec^2 x$

 $\mathsf{C}.\cos ec^2x$

 $\mathsf{D}.\cot^2 x$

Answer:

24. If
$$\frac{d}{dx}f(x)=4x^3-\frac{3}{x^4}$$
 such that

$$f(2)=0$$
, then $f(x)$ is a) $x^4+rac{1}{x^3}-rac{129}{8}$ b)

$$x^3 + rac{1}{x^4} + rac{129}{8}$$
 c) $x^4 + rac{1}{x^3} + rac{129}{8}$ d) $x^3 + rac{1}{x^4} - rac{129}{8}$

Watch Video Solution

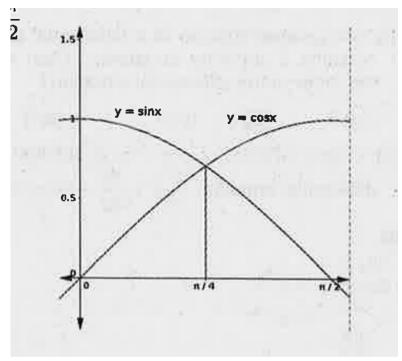
25. The area bounded by the curve y=f(x), x-axis and the line x=a and x=b is?

A.
$$\int_a^b x dy$$

$$\mathsf{B.} \int_a^b y dx$$

C.
$$\int_a^b x^2 dy$$

C.
$$\int_a^b x^2 dy$$
 D. $\int_a^b y^2 dx$


Answer:

Watch Video Solution

26. From the following figure, find the area of the region bounded by the curves $y = \sin x$,

 $y=\cos x$ and x axis as x varies from 0 to $\frac{x}{2}$

27. Form the differential equation corresponding to the curve y=mx

28. Consider the D.E $\dfrac{dy}{dx} + \dfrac{y}{x} = x^2$ Solve the D.F.

Watch Video Solution

29. Find a unit vector perpendicular to the plane ABC where A,B,C are point (1,1,2),(2,3,5) and (1,5,5).

30. The Cartesian equation of two lines are

$$rac{x+1}{7}=rac{y+1}{-6}=rac{z+1}{1}$$
 and $rac{x-3}{1}=rac{y-5}{-2}=rac{z-7}{1}$.Write the vector equations.

31. Find the shortest distance between the lines $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$ and

$$\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$$

32. If a plane intersects the co-ordinate axes at a,b,c respectively,write the equation of the plane.

Watch Video Solution

33. Find the vector and cartesian equations of the plane that passes through the point (1, 0, -2) and normal to the plane is $\hat{i}+\hat{j}-\hat{k}$

34. Let two independent events A and B such that P(A)=0.3,P(B)=0.6.Find

P(A and B)

Watch Video Solution

35. Let two independent events A and B such that P(A)=0.3,P(B)=0.6

Find P(A and not B)

36. Let two independent events A and B such that P(A)=0.3.P(B)=0.6

Find P(A or B)

Watch Video Solution

37. Given two independent events A and B such that P(A) = 0.3, P(B)=0.6`. find P(neither A nor B)

38. Let $A=\left[a_{ij}
ight]_{2 imes3}$ where $a_{ij=i+j}$. construct A.

Watch Video Solution

39. Let $A=\left[a_{ij}
ight]_{2 imes3}$ where $a_{ij=i+j}$. construct A.Find AA' and hence prove that AA' is

symmetric.

40. For any square matrix A,prove that `A+A' is symmetric.

Watch Video Solution

41. If A is a skew symmetric matrix of order 3. Then prove that it's determinant is zero. (without using examples).

42. Given
$$egin{bmatrix} 2+x & 3 & 4 \ 1 & -1 & 2 \ x & 1 & 5 \end{bmatrix}$$
 is a singular matrix.

Find the value of x

Watch Video Solution

43. Given A and B are square matrices of order

2 such that |A|=-1, |B|=3. Find |3AB|.

44. Find the intervals in which the function $f(x)=x^2+2x-5$ strictly increasing or decreasing.

Watch Video Solution

45. Find the equation of tangents and normals to the given curves $y=x^3$ at (1,1)

46. Find local maximum and local minimum if any for the function. $h(x) = \sin x + \cos x$.

$$0 < x < \left(\frac{\pi}{2}\right)$$

Watch Video Solution

47. Integrate the following

$$\int \frac{dx}{1 + \frac{x^2}{4}}$$

48. Integrate the following

$$\int \frac{x}{(x-1)(x-2)} dx$$

Watch Video Solution

49. Integrate the following $\int_{\hat{a}}^{\frac{\pi}{2}} x \cos x dx$

Watch Video Solution

50. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three coplanar vectors, then $\left| \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right|$ is

B. 0

C. -1

D. not defined

Answer:

51. If
$$\left|\overrightarrow{a}\right|=2$$
, $\left|\overrightarrow{b}\right|=3$ and θ is the angle between \overrightarrow{a} and \overrightarrow{b} . Then the maximum value of \overrightarrow{a} . \overrightarrow{b} occurs when θ =.....a) $\frac{\pi}{2}$ b) π c)0 d) $\frac{\pi}{4}$

A.
$$\frac{\pi}{2}$$

B. π

C. 0

D.
$$\frac{\pi}{4}$$

Answer:

52. If
$$\overrightarrow{b}=2\hat{i}+\hat{j}-\hat{k}$$
, $\overrightarrow{c}=\hat{i}+3\hat{k}$ and \overrightarrow{a} is a unit vector. Find the maximum value of

scalar triple product $\begin{vmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{vmatrix}$

Watch Video Solution

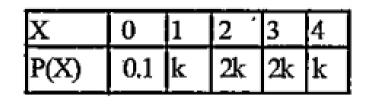
53. Solve the linear programming problem graphically:

 $\mathsf{Max}: z = 3x + 2y$

Subject to:

 $x + 2y \le 10, 3x + y \le 15, x \ge 0, y \ge 0$

54. The probability distribution of a random variable X is given in the following table:


Find k.

			7		
Χ	0	1	2	3	4
P(X)	0.1	k	2k	2k	k

55. The probability distribution of a random variable X is given in the following table: Find

the probability that X lies between 1 and 4.

Watch Video Solution

56. The probability distribution of a random variable X in given in the following table:

Find the mean of X.

V					4
X	U	1	2	3	4
P(X)	0.1	k	2k	2k	k

57. The probability distribution of a random variable X is given in the following table: find variance of X

X	0	1	2	3	4
P(X)	0.1	k	2k	2k	k

0