

# **MATHS**

# **BOOKS - BODY BOOKS PUBLICATION**

# **RELATIONS AND FUNCTIONS**

**Example** 

1. Let T be the set of all triangles in a plane

with R a relation in T given by

 $\{(T_1,T_2)\!:\!T_1\cong T_2\}$ show that R is an equivalence relation.



**2.** \* be a binary operation on Q,defined as  $a*b=\frac{3ab}{5}$  .Show that \*is commutative.



3. \*be a binary operation on Q,defined as  $a*b=rac{3ab}{5}$  .Show that \* is associative.

**4.** \*be a binary operation on Q,defined as  $a*b=\frac{3ab}{5}$  Find the identity element of \*if any.



**5.** Consider the following functions. $f\colon Z o Z$  defined by f(x)=3x+7 and  $g\colon R o R$  defind by g(x)=2x-3. Of

the above two functions

one is a bijective function and the other is

not. Give reason.



Watch Video Solution

**6.** Which of the relations R on the set of the real numbers is an equivalence relation?

(a). 
$$xRy$$
 if  $|x| = |y|$ 



7. Which of the relations R on the set of the real numbers is an equivalence relation?

$$(b)xRy$$
 if  $x-y\geq 0$ 



**Watch Video Solution** 

**8.** In the set of all natural numbers,let a relation defined by  $\{(a,b):a,b\in N,a-b \text{ is divisible by 5}\}$ . Prove that R is an equivalence relation.



**9.** If  $f\!:\!R o R$  is given by f(x)=3x-1,  $g\!:\!R o R$  is given by g(x)=2x,show that fog-gof=1.



Watch Video Solution

**10.** Find the domain,range and inverse of  $f\colon x o rac{x-3}{2x+1}.$ 



**11.** Prove that the function  $f\colon N o N$  , defined

by

 $f(x) = x^2 + x + 1$  is one-one but not onto.



**Watch Video Solution** 

12. Consider the binary operation \* on the set {1,2,3,4,5} given by the following table(i)Is

commutative?.

| * | 1 | 2 | 3 | 4 | 5   |
|---|---|---|---|---|-----|
| 1 | 1 | 1 | 1 | 1 | 1   |
| 2 | 1 | 2 | 1 | 2 | , 1 |
| 3 | 1 | 1 | 3 | 1 | 1   |
| 4 | 1 | 2 | 1 | 4 | 1   |
| 5 | 1 | 1 | 1 | İ | 5   |



# **Watch Video Solution**

**13.** Consider the binary operation \* on the set {1,2,3,4,5} given by the following table.

(ii)Compute (2\*3)\*4 and 2\*(3\*4).

| * | 1 | 2 | 3 | 4 | 5   |
|---|---|---|---|---|-----|
| 1 | 1 | 1 | 1 | 1 | 1   |
| 2 | 1 | 2 | 1 | 2 | , 1 |
| 3 | 1 | 1 | 3 | 1 | 1   |
| 4 | 1 | 2 | 1 | 4 | 1   |
| 5 | 1 | 1 | 1 | İ | 5   |



# Watch Video Solution

**14.** Consider the binary operation \* on the set {1,2,3,4,5} given by the following table.iii)

Compute (2\*3)\*(4\*5).

| * | 1 | 2 | 3   | 4 | 5   |
|---|---|---|-----|---|-----|
| 1 | 1 | 1 | 1   | 1 | 1   |
| 2 | 1 | 2 | 1   | 2 | , 1 |
| 3 | 1 | 1 | 3   | 1 | 1   |
| 4 | 1 | 2 | 1   | 4 | 1   |
| 5 | 1 | 1 | _ 1 | İ | 5   |



**15.** Let \* be a binary operation on N,defined bya\*b= $a^b, a,b \in N$ .is \* associative or commutative?



**16.** If the following  $f\!:\!R o R$ is given by  $f(x)=rac{x+3}{3}$  and  $g\!:\!R o R$  is given by g(x)=2x-3.Find fog



**Watch Video Solution** 

**17.** If the following  $f\!:\!R o R$ is given by  $f(x)=rac{x+3}{3}$  and  $g\!:\!R o R$  is given by g(x)=2x-3. Find gof



**18.** If the following  $f\!:\!R o R$ is given by

$$f(x)=rac{x+3}{3}$$
 and  $g\!:\!R o R$  is given by  $g(x)=2x-3$  . Is  $f^{-1}=g$ 



Watch Video Solution

**19.** Consider  $f\colon R_+ o [-5,\infty)$  given by  $f(x)=9x^2+6x-5$ . Show that f is invertible with  $f^{-1}(y)=\left(rac{\sqrt{y+6}-1}{3}
ight)$ 



**20.** A is a non empty set and let\*be a binary operation an P(A)the prower set of A defined by  $X*Y=X\cap Y$  for X, $Y\in P(A)$ (i) Show that A\*B=B\* A for A, $B\in P(A)$ 



Watch Video Solution

**21.** A is a non empty set and let\*be a binary operation an P(A)the prower set of A defined by  $X*Y=X\cap Y$  for X, $Y\in P(A)$ (ii)Show that \* is associative.

**22.** Let S be the set of all sets and let  $R=\{(A,B):A\subset B\}$  i.e A is a proper subset of B.Show that R is (i).Transitive



**23.** Let S be the set of all sets and let  $R=\{(A,B):A\subset B\}$  i.e A is a proper subset of B.Show that R is Not reflexive

**24.** Let S be the set of all sets and let  $R=\{(A,B):A\subset B\}$  i.e A is a proper subset of B.Show that R is not symmetric



**25.** Prove that the function  $f\colon N o N$  f(x)=3x,is one -one and into.



**26.** If  $f:R \to R$  be defined by f(x) = 2x - 3

and  $g\!:\!R o R$  be defined by  $g(x)=rac{x+3}{2}$ 

.Show that  $foq = I_R = qof$ 



**Watch Video Solution** 

**27.** If  $f:R \to R$  be defined by f(x)=3x+2. Show that f is invertible.Find  $f^{-1}\!:\!R o R$ .Hence find  $f^{-1}(3)$  and  $f^{-1}(0)$ 



**28.** Consider the binary operation  $*:Q\to Q$  ,where Q is the set of rational numbers,is defined as a\*b=a+b-ab.(i).Is \* associative?Justify your answer.



element.

Watch Video Solution

**29.** Consider the binary operation  $*:Q\to Q$  where Q is the set of rational numbers as defined as a\*b=a+b-ab Is identity for \* exist? If yes, find the identity

**30.** Consider the binary operation  $*:Q \to Q$  where Q is the set of rational numbers as defined as a\*b=a+b-ab

Are elements of Q invertible? Is yes, find the inverse of an element in Q



**31.** A fuction  $f\colon R o R$  defined by

$$f(x)=rac{2x-3}{7}$$
 .Is f a one-one function?Why?



**32.** A fuction 
$$f\colon R o R$$
 defined by  $f(x)=rac{2x-3}{7}$  ii.Prove that f is invertible.



**33.** A fuction  $f\colon R o R$  defined by

$$f(x) = \frac{2x-3}{7} \, .$$

Find  $f^{-1}$ 



**Watch Video Solution** 

34. Show that the relation 'S' in set  $A = \{x \in z \colon 0 \leq x \leq 12\}$  given by S= {(a,b):a.bin z,|a-b|`is divisble by a} is an equivalence relation.



Let  $f: \{1, 2, 3\} \rightarrow \{3, 5, 7\}$ 35. and  $g: \{3, 5, 7\} \rightarrow \{7, 23, 47\}$  given by f(1)=3, f(2)=5, f(3)=g(3)=7, g(5)=23, g(7)=47 (i). Find



gof

**Watch Video Solution** 

**36.** Let Q be the set of Rational numbers and '

\* ' be the binary operation on Q defined by '

 $a*b=rac{ab}{4}$ ' for all a,b in Q.

Find the inverse element of ' \* ' on Q.

37. Let Q be the set of Rational numbers and '

\* ' be the binary operation on Q defined by '

$$a*b=rac{ab}{4}$$
' for all a,b in Q.

Find the inverse element of ' \* ' on Q.



Watch Video Solution

**38.** Show that the function  $f\colon R o R$  defined by f(x) = 2x - 3 is one-one and onto. Find



**39.** Which of the following figure represents the graph of a function on R which is onto but

not one-one.



A.



В.



C.



D.



#### **Answer:**



#### Watch Video Solution

**40.**  $A=\{1,2,3,4,6\}, *$  is a binary operation on A is defined as a\*b=HCF of a and b.

Represent \* with the help of an operation table.



**41.**  $A=\{1,2,3,4,6\}, \ st \ ext{is a binary operation}$  on A is defined as ast b=HCF of a and b.

Find the identity element.



Watch Video Solution

**42.**  $A=\{1,2,3,4,6\}, *$  is a binary operation on A is defined as a\*b=HCF of a and b. Draw its operation table.

Write a commutative binary operation on A with 3 as the identity element. ( Hint: Operation table may be used.



**43.** Give an example of a relation which is reflexive but not symmetric



**Watch Video Solution** 

**44.** Give an example of a relation which is transitive but not symmetric



**45.** Let A={3,5} and B={7,11}.Let  $R=\{(a,b):a\in A,b\in B,a-b\}$  is odd}.Show that R is an empty relation from A into B.



Watch Video Solution

**46.** Let \* be a binary operation on setQ of rational numbers such that  $a*b = (2a-b)^2 \colon a,b \in Q$  i.Find 3\*5



**47.** If  $f\colon R\to R$  be given by  $\mathsf{f}(\mathsf{x})=\left(3-x^3\right)^{\frac{1}{3}}$ , then (f o f) (x) is



**Watch Video Solution** 

**48.** Let \* be the binary operation on N given by x\*y=LCM of x,y.Find 9\*5?



**49.** Let A=N imes N and '\*' be the binary operation. On A defined by (a,b)\*(c,d) = (a+c,b+d). Show that ' \* ' is commutative and associative. Find the identity for ' \* ' on A if any.



Watch Video Solution

**50.** Show that the function f in  $A=R-\left\{rac{2}{3}
ight\}$  defined as  $f(x)=rac{4x+3}{6x-4}$  is one-one and onto.

51. Show that the function f in  $A=R-\left\{rac{2}{3}
ight\}$  defined as  $f(x)=rac{4x+3}{6x-4}$  is one-one and onto.Hence find  $f^{\,-1}$ 



**52.** If  $R_1$  and  $R_2$  are equivalence relations in a set A, show that  $R_1\cap R_2$  is also an equivalence relation.



**53.** Consider the set  $A = \{1, 2, 3, 4, 5\}$ , and

 $B=\{1,4,9,16,25\}$  and a function

$$f{:}\,A o B$$
 defined by  $f(1)=1$ ,  $f(2)=4$ ,

f(3) = 9, f(4) = 16 and f(5) = 25.

Show that f is one-to-one.



**Watch Video Solution** 

**54.** Consider the set  $A = \{1, 2, 3, 4, 5\}$ , and

 $B=\{1,4,9,16,25\}$  and a function

f(3) = 9, f(4) = 16 and f(5) = 25.

 $f\colon A o B$  defined by f(1)=1, f(2)=4,

Show that f is onto.



**55.** Consider the set  $A = \{1, 2, 3, 4, 5\}$ , and

 $B=\{1,4,9,16,25\}$  and a function

 $f\!:\!A o B$  defined by f(1)=1, f(2)=4,

f(3) = 9, f(4) = 16 and f(5) = 25.

Does  $f^{-1}$  exists? Explain.



**56.** Let  $f\!:\!R o R$  be given by  $f(x)=rac{2x+1}{3}$ 

find

fof and show that f is invertible.



**Watch Video Solution** 

57. Let R be a Relation in the set

 $A = \{1, 2, 3, 4, 5, 6\}$  define as

 $R = \{(x, y) : y = 2x - 1\}$ 

Write R in roster form and find it's domain and range

58. Let R be a Relation in the set

$$A=\{1,2,3,4,5,6\}$$
 define as

$$R = \{(x, y) : y = 2x - 1\}$$

Is R an equivalance relation? Justify.



**Watch Video Solution** 

**59.** The relation R defined on the A={-1,0,1} as

$$R=\left\{ (a,b)\!:\!a^2=b
ight\}$$

Check whether R is reflexive, symmetric and transitive



**Watch Video Solution** 

60. The relation R defined on the A={-1,0,1} as

$$R = \left\{ (a, b) \colon a^2 = b \right\}$$

Check whether R is reflexive, symmetric and transitive



**61.** Let  $A=\{1,2,3\}$ . Give an example of a relation on A which is

Symmetric but neither reflexive nor transitive.



**Watch Video Solution** 

**62.** Let  $A=\{1,2,3\}$ . Give an example of a relation on A which is

Transitive but neither reflexive nor symmetric.



**63.** Let be a function defined by  $f(x) = \sqrt{x}$  is a function if it defined from  $f: N \to N$ 



Watch Video Solution

**64.** Check the injectivity and surjectivity of the following functions

$$f{:}\,N o N$$
 defined by  $f(x)=x^3$ 



65. Check the injectivity and surjectivity of the following functions

$$f{:}R o R$$
 given by  $f(x)=[x]$ 



**Watch Video Solution** 

**66.** Find fog and gof if f(x) = |x| and g(x) = |3x + 4|



**67.** Find fog and gof if  $f(x) = 16x^4$  and  $g(x) = x^{rac{3}{4}}$ 



## **Watch Video Solution**

**68.** If  $f(x) = \frac{4x+3}{6x-4}, x \neq \frac{2}{3}$ .

Show that fof(x)=x, for all  $x
eq rac{2}{3}$ .



**69.** Let S={(1,2),(2,3),(3,4)}. Find the domain and range of S.



Watch Video Solution

**70.** Let S={(1,2),(2,3),(3,4)}. Find  $S^{-1}$ 



**Watch Video Solution** 

**71.** Let S={(1,2),(2,3),(3,4)}. Find the domain and range os  $S^{\,-1}$ 

**72.** Consider

 $f\!:\!\{3,4,5,6\} o \{8,10,12,13,14\}$  and

 $f = \{(3, 8), (4, 10), (5, 12), (6, 14)\}.$  State whether f has inverse? Give reason.



**73.** Consider  $f\colon R o R$  given by f(x)=3x+2 show that f is invertible. Find

the inverse of f



Watch Video Solution

**74.** Choose the correct answer from the bracket.If  $x \neq 1$  and  $f(x) = \frac{x+1}{x-1}$  is a real function,then fof(2)=\_\_\_\_(1,2,3,4) and What is the inverse of f.



**75.** Choose the correct answer from the bracket.If x 
eq 1and  $f(x) = rac{x+1}{x-1}$  is a real fof(2)=\_\_\_\_(1,2,3,4).Find function, then  $f(3) + f^{-1}(3)$ 



Watch Video Solution

76. Determine whether the following is a binary operation or not?Justify  $ast b=2^{ab}$ defined on 7



**77.** Determine whether \* is commutative or associative if  $a*b=\frac{ab}{6}, a,b \not\in R$ 



Watch Video Solution

**78.** Consider the binary operation \*:Q o Q where Q is the set of rational numbers as defined as a\*b=a+b-ab

Find 2 \* 3



**79.** Consider the binary operation  $*:Q\to Q$  where Q is the set of rational numbers as defined as a\*b=a+b-ab Is identity for \* exist? If yes, find the identity element.



Watch Video Solution

**80.** Consider the binary operation \*:Q o Q where Q is the set of rational numbers as defined as a\*b=a+b-ab

Are elements of Q invertible? Is yes, find the inverse of an element in Q



**Watch Video Solution** 

81. State the reason for the relation R in the set  $\{1,2,3\}$  given by  $R=\{(1,2),(2,1)\}$  not to be transitive.



**82.** Show that the function f in  $A=R-\left\{rac{2}{3}
ight\}$  defined as  $f(x)=rac{4x+3}{6x-4}$  is



**Watch Video Solution** 

one-one and onto.Hence find  $f^{\,-1}$ 

**83.** Let R be a relation from Q to Q defined by

 $R=\{(a,b)\!:\!a,b\in Q ext{ and } a-b\in Z\}$ . Show

that

i)  $(a,a) \in R$  for all  $a \in Q$ 

ii)  $(a,b) \in R$  implies that  $(b,a) \in R$ 

iii)  $(a,b) \in R$  and  $(b,c) \in R$  implies that  $(a,c) \in R.$ 



**84.** Let R be a.relation from Q to Q defined by

 $R = \{(a,b) : a,b \in Q \text{ and } a-b \in Z\}$ . Show

i) 
$$(a,a)\in R$$
 for all  $a\in Q$ 

i)  $(a,a) \in \mathbf{A}$  for all  $a \in \mathcal{Q}$ 

that

iii)  $(a,b)\in R$  and  $(b,c)\in R$  implies that

ii)  $(a,b) \in R$  implies that  $(b,a) \in R$ 

 $(a,c)\in R.$ 

**85.** Let R be a.relation from Q to Q defined by

 $R=\{(a,b)\!:\!a,b\in Q ext{ and } a-b\in Z\}$ . Show

i)  $(a,a) \in R$  for all  $a \in Q$ 

ii)  $(a,b) \in R$  implies that  $(b,a) \in R$ 

iii)  $(a,b)\in R$  and  $(b,c)\in R$  implies that

 $(a,c)\in R.$ 



that

**86.** In each of the following cases, states whether the function is one-one, onto or bijective. Justify your answer.  $f: R \to R$  defined by f(x) = 3 - 4x



Watch Video Solution

**87.** In each of the following cases, states whether the function is one-one, onto or bijective. Justify your answer.  $f: R \to R$  defined by  $f(x) = 1 + x^2$ 

**88.** In each of the following cases, state whether the function is onto, one to one or bijective. Justify your answer if  $:N \to N$  defined by

$$f(n) = \left\{ egin{array}{ll} rac{n+1}{2} & nisodd \ rac{n}{2} & niseven \end{array} 
ight.$$



**89.** In each of the following cases, state whether the function is onto, one to one or

bijective.Justify your answer 'if:NrarrN defined by

 $f(n)=\{((n+1)/2,n \text{ is odd}),(n/2,n \text{ is even}):\}$ 



**Watch Video Solution** 

**90.** In each of the following cases, state whether the function is onto, one to one or bijective.Justify your answer 'if:NrarrN defined by

 $f(n)=\{((n+1)/2,n \text{ is odd}),(n/2,n \text{ is even}):\}$ 



**91.** In each of the following cases, state whether the function is onto, one to one or bijective. Justify your answer 'if: NrarrN defined by



**Watch Video Solution** 

 $f(n)=\{((n+1)/2,n \text{ is odd}),(n/2,n \text{ is even}):\}$ 

**92.** Prove that the greatest integer function  $f\colon R o R$  given by f(x)=[x] is neither one-

one nor onto, where [x] denotes the greatest integer less than or equal to x.



**Watch Video Solution** 

numbers given by  $R=\{(a,b)\!:\!a=b-2\}.$  Choose the correct answer.a) $(2,3)\in R$  b)

**93.** Let R be a relation in the set N of natural

 $(3,8)\in R$  c) $(6,8)\in R$  d) $(8,7)\in R$ 

A.  $(2,3)\in R$ 

 $\texttt{B.}\,(3,8)\in R$ 

 $C.(6,8) \in R$ 

D.  $(8,7) \in R$ 

#### **Answer:**



**Watch Video Solution** 

**94.** Let \* be a binary operation on the set Z of integers as a\*b=a+b+1. Then find the identity element:



**95.** Let  $A = R - \{3\}$  and  $B = R - \{1\}$ 

Consider the function  $f\colon\! A o B$  defined by

$$f(x) = \frac{x-2}{x-3}$$

Is f one-one and onto? Justify your answer.



**96.** Let 
$$A=R-\{3\}$$
 and  $B=R-\{1\}$  consider the function  $f\colon A o B$  defined by  $f(x)=rac{x-2}{x-3}.$  Is it invertible? Why?



**97.** Let  $A=R-\{3\}$  and  $B=R-\{1\}$  consider the function  $f\colon A\to B$  defined by  $f(x)=rac{x-2}{x-3}$ . If invertible, find inverse of f(x).



Watch Video Solution

**98.** If  $f(x)=\sin x, g(x)=x^2, x\in R$  , then find (fog)(x)



**99.** Let u and v be two functions defined on R as u(x)=2x-3 and  $v(x)=rac{3+x}{2}$  .Prove that u and v are inverse to each other.



Watch Video Solution

100. The function P is defined as "to each person on the earth is assigned a date of birth." is this a function one-one? Give reason.



**101.** Consider the function  $f:\left[0,\frac{\pi}{2}\right] o R$ 

given by  $f(x) = \sin x$  and  $g \colon \left[0, \frac{\pi}{2}\right] o R$ 

given by  $g(x) = \cos x$ .

Show that f and g are one-one functions.



**Watch Video Solution** 

**102.** Consider the function  $f: \left[0, \frac{\pi}{2}\right] \to R$ given by  $f(x) = \sin x$  and  $g \colon \left[0, \frac{\pi}{2}\right] o R$ given by  $g(x) = \cos x$ .

Is f + g one-one?Why?

## Watch Video Solution

3 element is.....a)2 b)3 c)6 d)8

103. The number of one-one function from a set containing 2 elements to a set containing

A. 2

B. 3

D. 8

C. 6

**Answer:** 

**104.** If 
$$f(x)=rac{x}{x-1}$$
 , $x
eq 1$ 

Find fof(x)



**105.** if 
$$f(x)=rac{x}{x-1}$$
 , $x
eq 1$  find the inverse of



**106**, Let

$$A=N imes N$$
 and  $*$ 

be a binary operation on A defined by (a,b)\*

$$(c,d) = (a + c,b + d)$$

Find (1,2)\*(2,3)



**Watch Video Solution** 

107. Let A=NxN and '\*' be a binary operation on

A defined by (a,b)\*(c,d)=(a+c,b+d) .Prove that '\*'

is commutative.



**108.** Let A=N imes N and let  $^*$  be a binary operation on A defined by

 $(a,b)^*(c,d)$ =(ac,bd) show that

(i) (A,\*) is associative

(ii)(A,\*) is commutative



**Watch Video Solution** 

**109.** Let R be relation defined on  $A=\{1,2,3\}$  by  $R=\{(1,3),(3,1),(2,2)\}$  is

- A. Reflexive
- B. Symmetric
- C. Transitive
- D. Reflexive but not transitive

#### **Answer:**



**Watch Video Solution** 

110. Find fog and gof if f (x)=|x|+1 and g(x)=2x-1



Watch Video Solution

111. Let \* be a binary operation defined on

$$N imes N$$
 by  $(a,b)*(c,d)=(a+c,b+d)$ 

Find the identity element for \* if it exists.



**Watch Video Solution** 

**112.** Prove that the function  $f\!:\!R o R$  given by f(x)=2x is one-one and onto.



**113.** The function  $f\colon N o N$  given by

$$f(x) = 2x$$



**114.** The function  $f\!:\!N o N$  given by

$$f(x) = 2x$$



**115.** The function  $f\!:\!N o N$  given by

$$f(x) = 2x$$



**116.** Find gof(x), if  $f(x)=8x^3$  and  $g(x)=x^{\frac{1}{3}}$ 



**117.** Let \* be an operation such that a\*b=LCM of a and b defined on the set

 $A = \{1, 2, 3, 4, 5\}$ . Is \* a binary operation? Justify your answer.



**Watch Video Solution** 

118. What is the minimum number of pairs to form a non - zero reflexive relation on a set of n elements?



**119.** On the set R of real numbers, S is a relation defined as

$$S = \{(x, y) / x \in R, y \in R, x + y = xy\}.$$

Find  $a\in R$  such that 'a' is never the first element of an ordered pair in S. Also find  $b\in R$  such that 'b' is never the second element of an ordered pair in S.



**120.** Consider the function  $f(x)=rac{3x+4}{x-2}, \, x 
eq 2.$  Find a function on a suitable domain such that gof(x)=x=fog(X).



Watch Video Solution

**121.** Let R be the relation on the set N of natural numbers given by

$$R = \{(a,b) : a-b > 2b > 3\}$$

Choose the correct answer

A. 
$$(4, 1) \in R$$

B. 
$$(5,8)\in R$$

$$\mathsf{C.}\,(8,7)\in R$$

D. 
$$(10,6)\in R$$

## **Answer:**



**122.** If 
$$f(x)=8x^3$$
 and  $g(x)=x^{\frac{1}{3}}$ , find  $g(f(x))$  and  $f(g(x))$ 

### Watch Video Solution

**123.** Let \* be a binary operation on the set Q of rational numbers defined by  $a*b=\frac{ab}{3}$ .

Check whether \* is commutative and associative?



**124.** Consider  $f\!:\!R o R$  given by

f(x) = 5x + 2

Show that f is one-one.



**125.** Consider  $f \colon R o R$  given by

$$f(x) = 5x + 2$$

Is f invertible? Justify your answer.



**126.** Let \* be a binary operation on N defined

by a st b = HCF of a and b

Is \* commutative?

**127.** Let \* be a binary operation on N defined

by a \* b = HCF of a and b

Is \* associative?



Watch Video Solution

**128.** \*:R imes R o R is given by $a*b=3a^2-b$ 

.Find the value of 2\*3.Is \* commutative?Justify



your answer.



**129.**  $f\!:\!R o R$  is defined by

$$f(x)=x^2-3x+2$$
 Find  $fof(x)$  and  $fof(1)$ .



**130.** Give a relation on a set  $A=\{1,2,3,4\}$  which is reflexive, symmetric and not transitive.



**131.** Show that  $f{:}[-1,1] o R$  given by

$$f(x) = rac{x}{x+2}$$
 is one-one.



Watch Video Solution

**132.** Let '\*' be a binary operation on  $Q^+$  defined by ' $a*b=\frac{ab}{6}$ '. Find the inverse of 9 with respect to '\*'.



**1.** If the mapping of f and g are given by F= {(1,2),(3,5),(4,1) ang g={(2,3),(5,1),(1,3)} then write fog.



**Watch Video Solution** 

**2.** Give an example of a relation, which is Reflexive and symmetric but not transitive



3. Let \* ' be the binary operation on N given

by a\* ' b= L.c.m. of a and b. Find  $5*7,\,20*16$ 



Watch Video Solution

**4.** Let \* be the binary operation on N given by a\* b= L.c.m. of a and b. Is \* commutative?



**5.** Let\* be the binary operation on N given by a\*b=LCM of a and b,ls \* associative?



**Watch Video Solution** 

**6.** Let\* be the binary operation on N given by a\*b=LCM of a and b.Find the identity of \* in N



**7.** Let\* be the binary operation on N given by a\*b=LCM of a and b.Which element of N are invertible for the operation\*?



**Watch Video Solution** 

**8.** Function  $f \colon R o R$  are defined respectively,by

$$f(x)=x^2+3x+1, g(x)=2x-3$$
,find  $fog$ 



**9.** Function  $f \colon R o R$  are defined

respectively,by

$$f(x)=x^2+3x+1,$$
  $g(x)=2x-3$ ,find  $gof$ 



**10.** Show that the function  $f{:}R o R$  given by

$$f(x) = x + x^3$$
 is a bijective function.