©゙"doubtnut

India's Number 1 Education App

MATHS

BOOKS - BODY BOOKS PUBLICATION

RELATIONS AND FUNCTIONS

Example

1. Let T be the set of all triangles in a plane
with R a relation in T given by
$\left\{\left(T_{1}, T_{2}\right): T_{1} \cong T_{2}\right\}$ show that R is an equivalence relation.

- Watch Video Solution

2. * be a binary operation on Q,defined as
$a * b=\frac{3 a b}{5}$.Show that *is commutative.

- Watch Video Solution

3. *be a binary operation on Q,defined as
$a * b=\frac{3 a b}{5}$.Show that * is associative.
4. *be a binary operation on Q,defined as $a * b=\frac{3 a b}{5}$ Find the identity element of *if any.

- Watch Video Solution

5. Consider the following functions.f: $Z \rightarrow Z$ defined by $f(x)=3 x+7$
and $g: R \rightarrow R$ defind by $g(x)=2 x-3$. Of
the above two functions
one is a bijective function and the other is not.Give reason.

D Watch Video Solution

6. Which of the relations R on the set of the
real numbers is an equivalence relation?
(a). $x R y$ if $|x|=|y|$
7. Which of the relations R on the set of the real numbers is an equivalence relation?
(b) $x R y$ if $x-y \geq 0$

- Watch Video Solution

8. In the set of all natural numbers,let a relation defined by $\{(a, b): a, b \in N, a-b$ is divisible by 5$\}$.Prove that R is an equivalence relation.
9. If $f: R \rightarrow R$ is given by $f(x)=3 x-1$,
$g: R \rightarrow R$ is given by $g(x)=2 x$, show that
$f o g-g o f=1$.

- Watch Video Solution

10. Find the domain,range and inverse of
$f: x \rightarrow \frac{x-3}{2 x+1}$.
11. Prove that the function $f: N \rightarrow N$, defined by
$f(x)=x^{2}+x+1$ is one-one but not onto.

D Watch Video Solution

12. Consider the binary operation * on the set
$\{1,2,3,4,5\}$ given by the following table(i)ls *
commutative?.

$*$	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

D Watch Video Solution

13. Consider the binary operation * on the set
$\{1,2,3,4,5\}$ given by the following table.
(ii)Compute (2*3)*4 and2*(3*4).

$*$	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

D Watch Video Solution

14. Consider the binary operation * on the set
$\{1,2,3,4,5\}$ given by the following table.iii)

Compute (2*3)*(4*5).

$*$	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

D Watch Video Solution

15. Let * be a binary operation on N,defined
bya* $\mathrm{b}=a^{b}, a, b \in N$.is * associative or commutative?
16. If the following $f: R \rightarrow R$ is given by $f(x)=\frac{x+3}{3}$ and $g: R \rightarrow R$ is given by $g(x)=2 x-3$.Find fog

D Watch Video Solution
17. If the following $f: R \rightarrow R$ is given by $f(x)=\frac{x+3}{3}$ and $g: R \rightarrow R$ is given by $g(x)=2 x-3$.Find gof
18. If the following $f: R \rightarrow R$ is given by $f(x)=\frac{x+3}{3}$ and $g: R \rightarrow R$ is given by $g(x)=2 x-3$. .s $f^{-1}=g$

- Watch Video Solution

19. Consider $f: R_{+} \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$.Show that f is invertible
with $f^{-1}(y)=\left(\frac{\sqrt{y+6}-1}{3}\right)$
20. A is a non empty set and let*be a binary operation an $\mathrm{P}(\mathrm{A})$ the prower set of A defined by $X * Y=X \cap Y$ for $\mathrm{x}, Y \in P(A)$ (i) Show that $\mathrm{A}^{*} \mathrm{~B}=\mathrm{B}^{*} \mathrm{~A}$ for $\mathrm{A}, B \in P(A)$

- Watch Video Solution

21. A is a non empty set and let*be a binary operation an $\mathrm{P}(\mathrm{A})$ the prower set of A defined by $X * Y=X \cap Y$ for $\mathrm{x}, Y \in P(A)$ (ii)Show that * is associative.

- Watch Video Solution

22. Let S be the set of all sets and let $R=\{(A, B): A \subset B\}$ i.e A is a proper subset of B.Show that R is (i).Transitive

- Watch Video Solution

23. Let S be the set of all sets and let
$R=\{(A, B): A \subset B\}$ i.e A is a proper subset of B.Show that R is Not reflexive

Watch Video Solution

24. Let S be the set of all sets and let
$R=\{(A, B): A \subset B\}$ i.e A is a proper subset of B.Show that R is not symmetric

- Watch Video Solution

25. Prove that the function $f: N \rightarrow N \mathrm{f}(\mathrm{x})=3 \mathrm{x}$, is one -one and into.
26. If $\mathrm{f}: R \rightarrow R$ be defined by $f(x)=2 x-3$ and $g: R \rightarrow R$ be defined by $g(x)=\frac{x+3}{2}$
.Show that $f o g=I_{R}=g o f$

- Watch Video Solution

27. If $\mathrm{f}: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+2$.Show
that f is invertible.Find $f^{-1}: R \rightarrow R$. Hence find $f^{-1}(3)$ and $f^{-1}(0)$
28. Consider the binary operation $*: Q \rightarrow Q$,where Q is the set of rational numbers, is defined as $a * b=a+b-a b .(i) . I s$ * associative? Justify your answer.

- Watch Video Solution

29. Consider the binary operation $*: Q \rightarrow Q$
where Q is the set of rational numbers as
defined as $a * b=a+b-a b$

Is identity for $*$ exist? If yes, find the identity element.

- Watch Video Solution

30. Consider the binary operation $*: Q \rightarrow Q$
where Q is the set of rational numbers as defined as $a * b=a+b-a b$

Are elements of Q invertible? Is yes, find the inverse of an element in Q

- Watch Video Solution

31. A fuction $f: R \rightarrow R$ defined by
$f(x)=\frac{2 x-3}{7}$.Is f a one-one function? Why?

D Watch Video Solution
32. A fuction $f: R \rightarrow R$ defined by
$f(x)=\frac{2 x-3}{7}$ ii.Prove that f is invertible.

D Watch Video Solution
33. A fuction $f: R \rightarrow R$ defined by
$f(x)=\frac{2 x-3}{7}$.
Find f^{-1}

D Watch Video Solution

34. Show that the relation ' S ' in set
$A=\{x \in z: 0 \leq x \leq 12\}$ given by $\mathrm{S}=$
$\{(a, b): a . b i n \quad z,|a-b|$ is divisble by $a\}$ is an equivalence relation.
35. Let $f:\{1,2,3\} \rightarrow\{3,5,7\} \quad$ and
$g:\{3,5,7\} \rightarrow\{7,23,47\}$ given
$f(1)=3, f(2)=5, f(3)=g(3)=7, g(5)=23, g(7)=47 \quad$ (i).Find
gof

D Watch Video Solution

36. Let Q be the set of Rational numbers and '
*' be the binary operation on Q defined by '
$a * b=\frac{a b}{4}$ 'for all a, b in Q .
Find the inverse element of ' * ' on Q.
37. Let Q be the set of Rational numbers and ' *' be the binary operation on Q defined by ' $a * b=\frac{a b}{4}$ for all a, b in Q .

Find the inverse element of ' * ' on Q.

- Watch Video Solution

38. Show that the function $f: R \rightarrow R$ defined by $f(x)=2 x-3$ is one-one and onto. Find
f^{-1}

- Watch Video Solution

39. Which of the following figure represents
the graph of a function on R which is onto but

A.

B.

C.

D.

Answer:
40. $A=\{1,2,3,4,6\}, *$ is a binary operation on A is defined as $a * b=H C F$ of a and b.

Represent * with the help of an operation table.

D Watch Video Solution

41. $A=\{1,2,3,4,6\}, *$ is a binary operation
on A is defined as $a * b=H C F$ of a and b .

Find the identity element.

- Watch Video Solution

42. $A=\{1,2,3,4,6\}, *$ is a binary operation on A is defined as $a * b=H C F$ of a and b . Draw its operation table.

Write a commutative binary operation on A with 3 as the identity element. (Hint:

Operation table may be used.

- Watch Video Solution

43. Give an example of a relation which is reflexive but not symmetric

- Watch Video Solution

44. Give an example of a relation which is transitive but not symmetric
(Watch Video Solution

45. Let $A=\{3,5\}$ and $B=\{7,11\}$.Let
 $R=\{(a, b): a \in A, b \in B, a-b$

odd\}.Show that R is an empty relation from A into B.

D Watch Video Solution

46. Let * be a binary operation on setQ of
$a * b=(2 a-b)^{2}: a, b \in Q$ i.Find 3*5
47. If $f: R \rightarrow R$ be given by $\mathrm{f}(\mathrm{x})=\left(3-x^{3}\right)^{\frac{1}{3}}$, then $(f \circ f)(x)$ is

- Watch Video Solution

48. Let * be the binary operation on N given by $x^{*} y=$ LCM of x, y.Find $9 * 5$?

- Watch Video Solution

49. Let $A=N \times N$ and ' $*$ ' be the binary operation. On A defined by
$(a, b) *(c, d)=(a+c, b+d)$. Show that ' $*$ '
is commutative and associative. Find the identity for ' * ' on A if any.

D Watch Video Solution

50. Show that the function f in
$A=R-\left\{\frac{2}{3}\right\}$ defined as $f(x)=\frac{4 x+3}{6 x-4}$ is one-one and onto.
51. Show that the function f in
$A=R-\left\{\frac{2}{3}\right\}$ defined as $f(x)=\frac{4 x+3}{6 x-4}$ is one-one and onto. Hence find f^{-1}

- Watch Video Solution

52. If R_{1} and R_{2} are equivalence relations in a set A , show that $R_{1} \cap R_{2}$ is also an equivalence relation.
53. Consider the set $A=\{1,2,3,4,5\}$, and
$B=\{1,4,9,16,25\} \quad$ and \quad a function
$f: A \rightarrow B$ defined by $f(1)=1, f(2)=4$,
$f(3)=9, f(4)=16$ and $f(5)=25$.
Show that f is one-to-one.

- Watch Video Solution

54. Consider the set $A=\{1,2,3,4,5\}$, and $B=\{1,4,9,16,25\} \quad$ and \quad a function
$f: A \rightarrow B$ defined by $f(1)=1, f(2)=4$,
$f(3)=9, f(4)=16$ and $f(5)=25$.
Show that f is onto.

- Watch Video Solution

55. Consider the set $A=\{1,2,3,4,5\}$, and
$B=\{1,4,9,16,25\} \quad$ and \quad a function
$f: A \rightarrow B$ defined by $f(1)=1, f(2)=4$,
$f(3)=9, f(4)=16$ and $f(5)=25$.
Does f^{-1} exists? Explain.
56. Let $f: R \rightarrow R$ be given by $f(x)=\frac{2 x+1}{3}$ find
fof and show that f is invertible.

- Watch Video Solution

57. Let R be a Relation in the set
$A=\{1,2,3,4,5,6\}$ define as
$R=\{(x, y): y=2 x-1\}$
Write R in roster form and find it's domain and
range
58. Let R be a Relation in the set
$A=\{1,2,3,4,5,6\}$ define as
$R=\{(x, y): y=2 x-1\}$
Is R an equivalance relation? Justify.

- Watch Video Solution

59. The relation R defined on the $A=\{-1,0,1\}$ as
$R=\left\{(a, b): a^{2}=b\right\}$

Check whether R is reflexive,symmetric and transitive

- Watch Video Solution

60. The relation R defined on the $A=\{-1,0,1\}$ as
$R=\left\{(a, b): a^{2}=b\right\}$
Check whether R is reflexive,symmetric and transitive
61. Let $A=\{1,2,3\}$. Give an example of a relation on A which is

Symmetric but neither reflexive nor transitive.

D Watch Video Solution

62. Let $A=\{1,2,3\}$. Give an example of a relation on A which is

Transitive but neither reflexive nor symmetric.

D Watch Video Solution

63. Let be a function defined by $f(x)=\sqrt{x}$ is
a function if it defined from $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}^{`}$

- Watch Video Solution

64. Check the injectivity and surjectivity of the following functions
$f: N \rightarrow N$ defined by $f(x)=x^{3}$

D Watch Video Solution

65. Check the injectivity and surjectivity of the following functions
$f: R \rightarrow R$ given by $f(x)=[x]$

D Watch Video Solution

66. Find fog and gof if $f(x)=|x|$ and
$g(x)=|3 x+4|$

D Watch Video Solution
67. Find fog and gof if $f(x)=16 x^{4}$ and $g(x)=x^{\frac{3}{4}}$

D Watch Video Solution

68. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$.

Show that $f o f(x)=x$, for all $x \neq \frac{2}{3}$.

D Watch Video Solution
69. Let $S=\{(1,2),(2,3),(3,4)\}$.Find the domain and range of S .

D Watch Video Solution
70. Let $\mathrm{S}=\{(1,2),(2,3),(3,4)\}$. Find S^{-1}

- Watch Video Solution

71. Let $S=\{(1,2),(2,3),(3,4)\}$. Find the domain and range os S^{-1}
72.

Consider
$f:\{3,4,5,6\} \rightarrow\{8,10,12,13,14\}$ and
$f=\{(3,8),(4,10),(5,12),(6,14)\}$.
State
whether f has inverse? Give reason.

- Watch Video Solution

73. Consider $f: R \rightarrow R$ given by
$f(x)=3 x+2$ show that f is invertible. Find
the inverse of f

- Watch Video Solution

74. Choose the correct answer from the
bracket.If $x \neq 1$ and $f(x)=\frac{x+1}{x-1}$ is a real
function, then fof $(2)=\ldots \quad(1,2,3,4)$ and What is
the inverse of f.

D Watch Video Solution
75. Choose the correct answer from the bracket.If $x \neq 1$ and $f(x)=\frac{x+1}{x-1}$ is a real function, then fof $(2)=\ldots \quad(1,2,3,4)$.Find $f(3)+f^{-1}(3)$

- Watch Video Solution

76. Determine whether the following is a binary operation or not?Justify $a * b=2^{a b}$ defined on Z
77. Determine whether * is commutative or associative if $a * b=\frac{a b}{6}, a, b \notin R$

- Watch Video Solution

78. Consider the binary operation $*: Q \rightarrow Q$ where Q is the set of rational numbers as defined as $a * b=a+b-a b$

Find $2 * 3$
79. Consider the binary operation $*: Q \rightarrow Q$
where Q is the set of rational numbers as defined as $a * b=a+b-a b$

Is identity for $*$ exist? If yes, find the identity element.

D Watch Video Solution

80. Consider the binary operation $*: Q \rightarrow Q$
where Q is the set of rational numbers as
defined as $a * b=a+b-a b$

Are elements of Q invertible? Is yes, find the inverse of an element in Q

D Watch Video Solution

81. State the reason for the relation R in the set $\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$ not to be transitive.

- Watch Video Solution

82. Show that the function f in
$A=R-\left\{\frac{2}{3}\right\}$ defined as $f(x)=\frac{4 x+3}{6 x-4}$ is
one-one and onto. Hence find f^{-1}

D Watch Video Solution

83. Let R be a.relation from Q to Q defined by
$R=\{(a, b): a, b \in Q$ and $a-b \in Z\}$. Show
that
i) $(a, a) \in R$ for all $a \in Q$
ii) $(a, b) \in R$ implies that $(b, a) \in R$
iii) $(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$.

- Watch Video Solution

84. Let R be a.relation from Q to Q defined by
$R=\{(a, b): a, b \in Q$ and $a-b \in Z\}$. Show
that
i) $(a, a) \in R$ for all $a \in Q$
ii) $(a, b) \in R$ implies that $(b, a) \in R$
iii) $(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$.

Watch Video Solution

85. Let R be a.relation from Q to Q defined by
$R=\{(a, b): a, b \in Q$ and $a-b \in Z\}$. Show that
i) $(a, a) \in R$ for all $a \in Q$
ii) $(a, b) \in R$ implies that $(b, a) \in R$
iii) $(a, b) \in R$ and $(b, c) \in R$ implies that $(a, c) \in R$.
86. In each of the following cases, states
whether the function is one-one,
onto or bijective. Justify your answer.
$f: R \rightarrow R$ defined by $\mathrm{f}(\mathrm{x})=3-4 \mathrm{x}$

- Watch Video Solution

87. In each of the following cases, states
whether the function is one-one,
onto or bijective. Justify your answer.
$f: R \rightarrow R$ defined by $\mathrm{f}(\mathrm{x})=1+x^{2}$
88. In each of the following cases,state whether the function is onto,one to one or bijective.Justify your answer if $: N \rightarrow N$ defined by
$f(n)= \begin{cases}\frac{n+1}{2} & \text { nisodd } \\ \frac{n}{2} & \text { niseven }\end{cases}$

D Watch Video Solution

89. In each of the following cases,state whether the function is onto,one to one or
bijective.Justify your answer 'if:NrarrN defined by
$f(n)=\{((n+1) / 2, n$ is odd $),(n / 2, n$ is even $):\}$

- Watch Video Solution

90. In each of the following cases,state
whether the function is onto, one to one or bijective.Justify your answer 'if:NrarrN defined by
$f(n)=\{((n+1) / 2, n$ is odd $),(n / 2, n$ is even $):\}$
91. In each of the following cases,state whether the function is onto, one to one or bijective.Justify your answer 'if:NrarrN defined by
$f(n)=\{((n+1) / 2, n$ is odd $),(n / 2, n$ is even $):\}$

D Watch Video Solution

92. Prove that the greatest integer function $f: R \rightarrow R$ given by $f(x)=[x]$ is neither one-
one nor onto, where [x] denotes the greatest integer less than or equal to x .

D Watch Video Solution

93. Let R be a relation in the set N of natural numbers given by $R=\{(a, b): a=b-2\}$.

Choose the correct answer.a) $(2,3) \in R$ b)
$(3,8) \in R \mathrm{c})(6,8) \in R \mathrm{~d})(8,7) \in R$
A. $(2,3) \in R$
B. $(3,8) \in R$
C. $(6,8) \in R$
D. $(8,7) \in R$

Answer:

D Watch Video Solution
94. Let $*$ be a binary operation on the set Z of integers as $a * b=a+b+1$. Then find the identity element:
95. Let $A=R-\{3\}$ and $B=R-\{1\}$

Consider the function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$

Is f one-one and onto? Justify your answer.

D Watch Video Solution

96. Let $A=R-\{3\}$ and $B=R-\{1\}$
consider the function $f: A \rightarrow B$ defined by
$f(x)=\frac{x-2}{x-3}$.Is it invertible?Why?

D Watch Video Solution

97. Let $A=R-\{3\}$ and $B=R-\{1\}$ consider the function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$.If invertible,find inverse of $\mathrm{f}(\mathrm{x})$.

- Watch Video Solution

98. If $f(x)=\sin x, g(x)=x^{2}, x \in R$, then
find $(f o g)(x)$

- Watch Video Solution

99. Let u and v be two functions defined on R
as $u(x)=2 x-3$ and $v(x)=\frac{3+x}{2}$.Prove
that u and v are inverse to each other.

D Watch Video Solution

100. The function P is defined as "to each person on the earth is assigned a date of birth." is this a function one-one? Give reason.

D Watch Video Solution

101. Consider the function $f:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $g(x)=\cos x$.

Show that f and g are one-one functions.

D Watch Video Solution

102. Consider the function $f:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $g(x)=\cos x$.

Is $f+g$ one-one?Why?
103. The number of one-one function from a set containing 2 elements to a set containing 3 element is.........a)2 b)3 c) 6 d) 8
A. 2
B. 3
C. 6
D. 8

- Watch Video Solution

104. If $f(x)=\frac{x}{x-1}, x \neq 1$

Find $\mathrm{fof}(\mathrm{x})$

- Watch Video Solution

105. if $f(x)=\frac{x}{x-1}, x \neq 1$ find the inverse of
f

- Watch Video Solution

106. Let
$A=N \times N$ and $*$
be a binary operation on A defined by (a,b)*
$(c, d)=(a+c, b+d)$

Find $(1,2)^{*}(2,3)$

D Watch Video Solution

107. Let $A=N x N$ and '*' be a binary operation on

A defined by $(a, b)^{*}(c, d)=(a+c, b+d)$.Prove that '*'
is commutative.
108. Let $A=N \times N$ and let * be a binary operation on A defined by
$(a, b)^{*}(c, d)=(a c, b d)$ show that
(i) $\left(A,{ }^{*}\right)$ is associative
(ii) $\left(A,{ }^{*}\right)$ is commutative

- Watch Video Solution

109. Let R be relation defined on $A=\{1,2,3\}$

$$
\text { by } R=\{(1,3),(3,1),(2,2)\} \text { is }
$$

A. Reflexive
B. Symmetric
C. Transitive
D. Reflexive but not transitive

Answer:

D Watch Video Solution
110. Find fog and gof if $\mathrm{f}(\mathrm{x})=|x|+1$ and

$$
g(x)=2 x-1
$$

111. Let $*$ be a binary operation defined on
$N \times N$ by $(a, b) *(c, d)=(a+c, b+d)$

Find the identity element for $*$ if it exists.

- Watch Video Solution

112. Prove that the function $f: R \rightarrow R$ given by $f(x)=2 x$ is one-one and onto.
113. The function $f: N \rightarrow N$ given by
$f(x)=2 x$

- Watch Video Solution

114. The function $f: N \rightarrow N$ given by
$f(x)=2 x$
(Watch Video Solution
115. The function $f: N \rightarrow N$ given by
$f(x)=2 x$

D Watch Video Solution
116. Find $g \circ f(x)$, if $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$

- Watch Video Solution

117. Let $*$ be an operation such that $a * b=L C M$ of a and b defined on the set
$A=\{1,2,3,4,5\}$. Is $*$ a binary operation? Justify your answer.

D Watch Video Solution

118. What is the minimum number of pairs to
form a non-zero reflexive relation on a set of n elements?

D Watch Video Solution
119. On the set R of real numbers, S is a relation defined as
$S=\{(x, y) / x \in R, y \in R, x+y=x y\}$.
Find $a \in R$ such that 'a' is never the first element of an ordered pair in S. Also find
$b \in R$ such that ' b ' is never the second element of an ordered pair in S .

D Watch Video Solution

120.

$f(x)=\frac{3 x+4}{x-2}, x \neq 2$. Find a function on a
suitable domain
such that
$g \circ f(x)=x=f \circ g(X)$.

D Watch Video Solution

121. Let R be the relation on the set N of natural numbers given by
$R=\{(a, b): a-b>2 b>3\}$
Choose the correct answer
A. $(4,1) \in R$
B. $(5,8) \in R$
C. $(8,7) \in R$
D. $(10,6) \in R$

Answer:

- Watch Video Solution

122. If $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$, find $g(f(x))$ and $f(g(x))$
123. Let $*$ be a binary operation on the set Q of rational numbers defined by $a * b=\frac{a b}{3}$. Check whether * is commutative and associative?

- Watch Video Solution

124. Consider $f: R \rightarrow R$ given by
$f(x)=5 x+2$

Show that f is one-one.

- Watch Video Solution

125. Consider $f: R \rightarrow R$ given by
 $f(x)=5 x+2$

Is f invertible? Justify your answer.

- Watch Video Solution

126. Let * be a binary operation on N defined by $a * b=H C F$ of a and b

Is $*$ commutative?
127. Let * be a binary operation on N defined by $a * b=H C F$ of a and b

Is * associative?

- Watch Video Solution

128. *: $R \times R \rightarrow R$ is given by $a * b=3 a^{2}-b$
.Find the value of $2 * 3.1 \mathrm{~s}$ * commutative? Justify your answer.

129. $f: R \rightarrow R$ is defined by

 $f(x)=x^{2}-3 x+2$ Find $f o f(x)$ and $f o f(1)$.
- Watch Video Solution

130. Give a relation on a set $A=\{1,2,3,4\}$
which is reflexive, symmetric and not transitive.
131. Show that $f:[-1,1] \rightarrow R$ given by $f(x)=\frac{x}{x+2}$ is one-one.

D Watch Video Solution

132. Let '*' be a binary operation on Q^{+} defined by ' $a * b=\frac{a b}{6}$ '. Find the inverse of 9 with respect to ' $*$ '.

D Watch Video Solution

1. If the mapping of f and g are given by $F=$ $\{(1,2),(3,5),(4,1)$ ang $g=\{(2,3),(5,1),(1,3)\}$ then write fog.

- Watch Video Solution

2. Give an example of a relation, which is

Reflexive and symmetric but not transitive

D Watch Video Solution
3. Let $*$ ' be the binary operation on N given by $a *$ ' $b=$ L.c.m. of a and b. Find $5 * 7,20 * 16$

D Watch Video Solution

4. Let $*$ ' be the binary operation on N given
by $a *$ ' $b=$ L.c.m. of a and b . Is $*$ commutative ?

- Watch Video Solution

5. Let* be the binary operation on N given by
a*b=LCM of a and $b, l s$ * associative?

D Watch Video Solution
6. Let* be the binary operation on N given by $a * b=L C M$ of a and b.Find the identity of * in N
7. Let* be the binary operation on N given by $a * b=L C M$ of a and b.Which element of N are invertible for the operation*?

- Watch Video Solution

8. Function $\mathrm{f}: R \rightarrow R$ are defined
respectively,by
$f(x)=x^{2}+3 x+1, g(x)=2 x-3$,find $f o g$
9. Function $\mathrm{f}: R \rightarrow R$ are defined
respectively,by
$f(x)=x^{2}+3 x+1, g(x)=2 x-3$,find $g \circ f$

- Watch Video Solution

10. Show that the function $f: R \rightarrow R$ given by
$f(x)=x+x^{3}$ is a bijective function.

D Watch Video Solution

