



# MATHS

# **BOOKS - BODY BOOKS PUBLICATION**

# THREE DIMENSIONAL GEOMETRY

## Example



2. Given the straight line  $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$ Obtain the equation of the straight line passing through (2,4,-1) and line parallel to the given line.

| Watch Video Solution |  |
|----------------------|--|
|                      |  |

3. Equation of the plane passing through the intersecton of the planes x + y + z = 6 and 2x + 3y + 4z + 5 = 0 and the point (1,1,1) is

**4.** Find the equation of the plane through the points (2,2,1),(9,3,6) and perpendicular to the plane 2x+6y+6z-1=0.



6. The angle between the straight line 
$$r = \left(\hat{i} + 2\hat{j} + \hat{k}\right) + \lambda\left(\hat{i} - \hat{j} + \hat{k}\right)$$
  
and the plane  $r.\left(2\hat{i} - \hat{j} + \hat{k}\right) = 4$  is



8. Consider the cartesian equation of the line 
$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$$
 Write the direction ratios of the line.





11. Prove that the points (2,4,4),(1,5,4),(2,6,2) and (0,6,4)

are coplanar.

12. Find the angle between the lines whose direction

ratios are a, b, c and b-c, c-a, a-b

Watch Video Solution

13. Consider the pair of lines whose equations are .

$$rac{x-2}{2} = rac{y-1}{5} = rac{z+3}{-3}$$
 and  $rac{x+1}{-1} = rac{y-4}{8} = rac{z-5}{4}$ 

Write the direction ratios of the lines.



14. Consider the pair of lines whose equations are .

$$\frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$$
 and 
$$\frac{x+1}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$$

Find the angle between these two lines.



15. Find the equation of the plane passing through the

intersection of the planes

x+y+4z+5=0 and 2x-y+3z+6=0 and

contains the point (1,0,0).



16. Prove that if a plane has the intercepts a, b, c and it is

at a distance p units

from the origin, then 
$$rac{1}{a^2}+rac{1}{b^2}+rac{1}{c^2}=rac{1}{p^2}$$

Watch Video Solution

**17.** If O be the origin and the co-ordinates of P be (1,2,-3),

then find the equation of the plane passing through P

and perpendicular to OP.



18. Consider the equation of the line 3x+4=4y-1=1-4z.(i)

Find the direction ratios of this line.





**20.** Find the equation of the plane through the point (1,2,3) and perpendicular to the plane x - y + z = 2 and 2x + y - 3z = 5



**23.** Find the angle between the planes 2x-y+z=6 and x+y+2z=7.

**24.** Determine the point in XY plane which is equidistant from three point A(2,0,3), B(0,3,2) and C(0,0,1)

**Watch Video Solution** 

**25.** The perpendicular distance of the point (6, 5, 8) from y-axis is



**26.** Find the position vector of the point where the line

$$\overrightarrow{r} = \hat{i} - \hat{j} + \hat{k} + t \Big( \hat{i} + \hat{j} - \hat{k} \Big)$$
 meets the plane

$$\overrightarrow{r}.\left(\hat{i}+\hat{j}+\hat{k}
ight)=5$$

Watch Video Solution

**27.** Let  $\alpha$ ,  $\beta$ ,  $\gamma$  be the angle made by a line with the positive direction of the X,Y,Z axes respectively.(i) Write the direction cosines of the line.

Watch Video Solution

**28.** If a line makes  $\alpha$ ,  $\beta$ ,  $\gamma$  with x,y,z axis respectively, then

prove that  $\sin^2 lpha + \sin^2 eta + \sin^2 \gamma = 2$ 

**29.** Suppose  $\alpha$ ,  $\beta$ ,  $\gamma$  are the angles made a line with the three axes respectively. Fill in the blank by choosing the correct answer from the barcket  $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$ = ..... (2,0,1,3)

Watch Video Solution

**30.** A straight line is passing through (3,8,3) and is parallel to the vector  $3\hat{i} - \hat{j} + k$ (i) Form its equation

## Watch Video Solution

**31.** A straight line is passing through (3,8,3) and is parallel to the vector  $3\hat{i} - \hat{j} + k$  Show that it is not



**32.** A straight line is passing through (3,8,3) and is parallel to the vector  $3\hat{i} - \hat{j} + k$ .Calculate the shortest distance between these lines  $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$ 



**33.** A variable plane is at a constant distance P from origin and meets the axes in A(p,0,0),B(0,q,0),C(0,0,r). (ii)Find The centriod of  $\triangle ABC$ .





36. Find the equation of the plane containing the lines

$$\frac{x-4}{1} = \frac{y-3}{4} = \frac{z-2}{5}$$
 and



**37.** Consider the planes 3x-4y+5z=10 and 2x+2y-3z=4 a.Write the equation of the planes through the line of intersection of the above planes.



**38.** Write the direction ratios of the line x=2y=3z.

**39.** Find the direction cosines of the vector  $2\hat{i}+2\hat{j}-\hat{k}$ 



$$egin{aligned} \dot{r} &= ig(2i-j-kig) + \lambdaig(3i-5j+2kig)$$
and $ec{r} &= ig(\hat{i}+\hat{j}+\hat{k}ig) + \muig(\hat{i}-\hat{j}+\hat{k}ig) \end{aligned}$ 

**42.** Find the vector equation of the plane passing through the intersection of the planes  $\bar{r}.(\hat{i}+\hat{j}+\hat{k})=6$  and  $\bar{r}.(2\hat{i}+3\hat{j}+4\hat{k})=-5$  at the point (1,1,1).

**Watch Video Solution** 

43. Distance between the two planes: '2 x+3 y+4 z=4' and

'4 x+6 y+8 z=(12)' is





**46.** Find the coordinates of the points where the line through (3,-4,-5) and

(2,-3,1) crosses the plane, passing through the point (2,2,1)

(3,0,1) and

(4,-1,0).



A. 1

B. 2

C. 0

D. 3

Answer:

# Watch Video Solution

**48.** The direction ratios of the line  $rac{x-6}{1} = rac{2-y}{2} = rac{z-2}{2}$ are a)6,-2,-2 b)1,2,2 c)6,1,-2 d)0,0,0 A. (6,-2,-2) B. (1,2,2) C. (6,1,-2) D. (0,0,0) **Answer:** 

Answer:



49. If the vector equation of a line is

 $ar{r}=i+j+k+\mu(2i-3j-4k)$  , then the Cartesian

equation of the line is

A. 
$$\frac{x+2}{2} = \frac{y+2}{4} = \frac{z+2}{1}$$
  
B.  $\frac{x-1}{2} = \frac{y-1}{-3} = \frac{z-1}{-4}$   
C.  $\frac{x+2}{1} = \frac{y+2}{4} = \frac{z+2}{1}$   
D.  $\frac{x-1}{2} = \frac{y-1}{1} = \frac{z-1}{-4}$ 

#### **Answer:**

50. If the Cartesian equation of a plane is 
$$x + y + z = 12$$
, then the vector equation of the plane is.... a) $\bar{r}$ .  $(2i + j + k) = 12$  b) $\bar{r}$ .  $(i + j + k) = 12$   
c) $\bar{r}$ .  $(i + j + 2k) = 12$  d) $\bar{r}$ .  $(i + 3j + k) = 12$ 

$$egin{aligned} \mathsf{A}. \overrightarrow{r}. \left(2\hat{i}+\hat{j}+\hat{k}
ight) &= 12 \ & \mathsf{B}. \overrightarrow{r}. \left(\hat{i}+\hat{j}+2\hat{k}
ight) &= 12 \ & \mathsf{C}. \overrightarrow{r}. \left(\hat{i}+\hat{j}+2\hat{k}
ight) &= 12 \ & \mathsf{D}. \overrightarrow{r}. \left(\hat{i}+3\hat{j}+\hat{k}
ight) &= 12 \end{aligned}$$

#### **Answer:**

51. Cartesian equation of two lines are  $\frac{x+2}{2} = \frac{y+2}{4} = \frac{z+2}{1}$ ,  $\frac{x-1}{2} = \frac{y-1}{-3} = \frac{z-1}{-4}$ 

.Write the vector equation of the lines.

Watch Video Solution



.find the shortest distance between the lines.

53. Consider the lines 
$$ar{r}=ig(\hat{i}+2\hat{j}+3\hat{k}ig)+\lambdaig(2\hat{i}-3\hat{j}-4\hat{k}ig)$$
, $ar{r}=ig(\hat{i}+\hat{j}+\hat{k}ig)+\muig(\hat{i}+3\hat{j}+2\hat{k}ig)$ 

Write the Cartesian equation.

Watch Video Solution

**54.**Considerthelines $\bar{r} = \left(\hat{i} + 2\hat{j} + 3\hat{k}\right) + \lambda \left(2\hat{i} - 3\hat{j} - 4\hat{k}\right)$ , $\bar{r} = \left(\hat{i} + \hat{j} + \hat{k}\right) + \mu \left(\hat{i} + 3\hat{j} + 2\hat{k}\right)$ 

Find the angle between the lines.



55. Let the vector equation of a plane be $\overrightarrow{r}.\left(2\hat{i}+4\hat{j}+3\hat{k}
ight)=12$ (i) Write the cartesian

equation of the plane.



56. Let the vector equation of a plane be 
$$\overrightarrow{r}.\left(2\hat{i}+4\hat{j}+3\hat{k}
ight)=12.$$
 Find the distance from the

point (2,1,3) to the plane

Watch Video Solution

57. Find the equation of the plane through the point (1,2,3) and perpendicular to the plane x - y + z = 2



the line.

60. Consider the Cartesian equation of a line  $\frac{x-3}{2} = \frac{y+1}{3} = \frac{z-5}{-2}$ 

Find the intersecting point with the plane

$$5x + 2y - 6z - 7 = 0$$

**61.** Consider the Cartesian equation of line  
$$\frac{x-3}{2} = \frac{y+1}{3} = \frac{z-5}{-2}$$
  
Find the angle made by the line with the plane  
 $5x + 2y - 6z - 7 = 0$ 

62. Consider the vector equation of two planes

 $ar{r}.~(2i+j+k)=3, ar{r}(i-j-k)=4$ 

Find vector equation of any plane through the intersection of the above two planes.



**63.** Consider the vector equation of two planes  $\bar{r}$ . (2i + j + k) = 3,  $\bar{r}$ . (i - j - k) = 4 Find vector equation of the plane through the intersection of the above planes and the point (1,2,-1).





Show that these lines are not coplanar.





Compute the shortest distance between the lines.

**66.** Find the foot and hence the length of the perpendicular from P(5,7,3) to the line  $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$ . Find also the equation of the plane in which the perpendicular and the given straight line lie.

**Watch Video Solution** 

#### 67. The length of the shortest distance between the two

lines 
$$r=(-3i+6j)+s(-4i+3j+2k)$$
and

$$r = (-2i+7k) + t(-4i+j+k)$$
 is

**68.** A line passes through the point (3,-2,5) and parallel to the vector  $\hat{i} + 2\hat{j} + \hat{k}$  What is the vector equation of the line?



69. If a plane intersects the co-ordinate axes at a,b,c

respectively, write the equation of the plane.



70. Find the vector and cartesian equations of the plane

that passes through

the point (1, 0, -2) and normal to the plane is  $\hat{i}+\hat{j}-\hat{k}$ 





Watch Video Solution

73. A line makes equal angles with the coordinate axis .

Find the direction cosines.

74. Find the equation of the plane through the intersection of the planes 3x - y + 2z - 4 = 0 and x + y + z - 2 = 0 and the point (2,2,1)

**Watch Video Solution** 

**75.** The Cartesian equation of two lines are given by  $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}, \frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$ 

Write the vector equation of these lines.

**76.** Find the equation of a plane which makes x,y,z intercepts respectively as 1,2,3



78. The lines x-1=y=z is perpendicular to the line.....a)  

$$\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{-3} \qquad \text{b}x - 2 = y - 2 = z \qquad \text{c})$$

$$\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{3} \qquad \text{d}x=y=z/2$$

A. 
$$\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{-3}$$

B. x-2=y-2=z  
C. 
$$\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{3}$$
  
D.  $x = y = \frac{z}{2}$ 

#### Answer:

Watch Video Solution

79. Find the shortest distance between the lines whose

$$egin{array}{lll} {
m vector} & {
m equations} & {
m are} \ ec{r} &= \left(\hat{i}+2\hat{j}+3\hat{k}
ight)+\lambda \left(\hat{i}-3\hat{j}+2\hat{k}
ight) & {
m and} \ ec{r} &= \left(4\hat{i}+5\hat{j}+6\hat{k}
ight)+\mu \left(2\hat{i}+3\hat{j}+\hat{k}
ight) \end{array}$$

# **80.** Distance of the point(0,0,1) from the plane x + y + z = 3 a) $\frac{1}{\sqrt{3}}$ units b) $\frac{2}{\sqrt{3}}$ units c) $\sqrt{3}$ units d) $\frac{\sqrt{3}}{2}$ units

A. 
$$\frac{1}{\sqrt{3}}$$
  
B. 
$$\frac{2}{\sqrt{3}}$$
  
C. 
$$\sqrt{3}$$
  
D. 
$$\frac{\sqrt{3}}{2}$$

#### Answer:

81. Find the equation of the plane through the line of intersection of the planes x+y+z=1 and 2x+3y+4z=5 which is perpendicular to x-y+z=0
Watch Video Solution



# **1.** Find the shortest distance between the lines $l_1$ and $l_2$

$$ar{r}=\hat{i}+\hat{j}+\lambda\Big(2\hat{i}-\hat{j}+k\Big)$$
 and $ar{r}=2\hat{i}+\hat{j}-\hat{k}+\mu^{ ext{-}}\Big(3\hat{i}-5\hat{j}+2\hat{k}\Big)$ 

2. Show that the line AB is perpendicular CD if A,B,C,D are

the points (2,3,4),(5,4,-1),(3,6,2),(1,2,0) respectively.



**4.** The foot of the perpendicular drawn from origin to a Plane is (4,-2,5).





**5.** Find the equation of the plane passing through the point (-1,-1,2) and perpendicular to the plane 3x+2y-3z=1 and 5x-4y+z=5.