© ${ }^{\prime}$ doubtnut

India's Number 1 Education App

MATHS

BOOKS - BODY BOOKS PUBLICATION

THREE DIMENSIONAL GEOMETRY

Example

1. Given the straight line $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$.

What are its direction rations?

- Watch Video Solution

2. Given the straight line $\frac{x+5}{1}=\frac{y+3}{4}=\frac{z-6}{-9}$

Obtain the equation of the straight line passing through
$(2,4,-1)$ and line parallel to the given line.

- Watch Video Solution

3. Equation of the plane passing through the intersecton of the
planes $x+y+z=6$ and $2 x+3 y+4 z+5=0$ and the point $(1,1,1)$ is
4. Find the equation of the plane through the points
$(2,2,1),(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z-$ 1=0.

D Watch Video Solution

5. Consider the points $(-1,2,4)$ and ($1,0,5$).Find the direction cosines of the line joining the two points.

- Watch Video Solution

6. The angle between the straight line
$r=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})$
and the plane $r .(2 \hat{i}-\hat{j}+\hat{k})=4$ is

- Watch Video Solution

7. Consider the cartesian equation of the line $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$ Write the co-ordinates of the point, in which the line passes through.

- Watch Video Solution

8. Consider the cartesian equation of the line $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$ Write the direction ratios of the line.

- Watch Video Solution

9. The cartestian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}$. Write its vector form.

- Watch Video Solution

10. Find the equation of the plane passing through the line of intersection of the planes $2 x-y=0,3 z-y=0$ and perpendicular to the plane $4 x+5 y-3 z=8$

- Watch Video Solution

11. Prove that the points (2,4,4),(1,5,4),(2,6,2) and (0,6,4) are coplanar.
12. Find the angle between the lines whose direction ratios are $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and $\mathrm{b}-\mathrm{c}, \mathrm{c}-\mathrm{a}, \mathrm{a}-\mathrm{b}$

- Watch Video Solution

13. Consider the pair of lines whose equations are .
$\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$
$\frac{x+1}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
Write the direction ratios of the lines.

- Watch Video Solution

14. Consider the pair of lines whose equations are .
$\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}$
$\frac{x+1}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
Find the angle between these two lines.

D Watch Video Solution

15. Find the equation of the plane passing through the intersection of the planes
$x+y+4 z+5=0 \quad$ and $\quad 2 x-y+3 z+6=0 \quad$ and contains the point $(1,0,0)$.
16. Prove that if a plane has the intercepts a, b, c and it is at a distance p units
from the origin, then $\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}}$

- Watch Video Solution

17. If O be the origin and the co-ordinates of P be $(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to OP.

- Watch Video Solution

18. Consider the equation of the line $3 x+4=4 y-1=1-4 z$.(i)

Find the direction ratios of this line.
19. Consider the equation of the line $3 x+4=4 y-1=1-4 z$.

What is the vector equation of a line passing through
$(2,4,6)$ and parallel to the above line?

- Watch Video Solution

20. Find the equation of the plane through the point
$(1,2,3)$ and perpendicular to the plane $x-y+z=2$ and $2 x+y-3 z=5$
21. Find the distance between the planes
$x-2 y+2 z-8=0$ and $6 y-3 x-6 z=57$

- Watch Video Solution

22. Consider the vector $4 \hat{i}+8 \hat{j}+\hat{k}$ (i) Find the direction cosines of the given vector

- Watch Video Solution

23. Find the angle between the planes $2 x-y+z=6$ and $x+y+2 z=7$.
24. Determine the point in $X Y$ plane which is equidistant from three point $A(2,0,3), B(0,3,2)$ and $C(0,0,1)$

- Watch Video Solution

25. The perpendicular distance of the point $(6,5,8)$ from y-axis is

- Watch Video Solution

26. Find the position vector of the point where the line
$\vec{r}=\hat{i}-\hat{j}+\hat{k}+t(\hat{i}+\hat{j}-\hat{k})$ meets the plane
$\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=5$

- Watch Video Solution

27. Let α, β, γ be the angle made by a line with the positive direction of the X, Y, Z axes respectively.(i) Write the direction cosines of the line.

D Watch Video Solution

28. If a line makes α, β, γ with $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis respectively, then prove that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$
29. Suppose α, β, γ are the angles made a line with the three axes respectively. Fill in the blank by choosing the $\begin{array}{ll}\text { correct answer from } \\ \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\ldots & (2,0,1,3)\end{array}$

D Watch Video Solution

30. A straight line is passing through $(3,8,3)$ and is parallel to the vector $3 \hat{i}-\hat{j}+k$ (i) Form its equation

D Watch Video Solution

31. A straight line is passing through $(3,8,3)$ and is parallel to the vector $3 \hat{i}-\hat{j}+k$ Show that it is not
coplanar with the lines $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$

D Watch Video Solution

32. A straight line is passing through $(3,8,3)$ and is parallel to the vector $3 \hat{i}-\hat{j}+k$. Calculate the shortest distance between these lines $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$

- Watch Video Solution

33. A variable plane is at a constant distance P from origin and meets the axes in $A(p, 0,0), B(0, q, 0), C(0,0, r)$.
(ii)Find The centriod of $\triangle A B C$.
34. Find The equation of the plane passing through the points(2,1,0),(3,-2,-2) and (3,1,7).

D Watch Video Solution

35. Find x such that the four points
$\mathrm{A}(3,2,1) \mathrm{B}(4, \mathrm{x}, 5), \mathrm{C}(4,2,-2)$ and $\mathrm{D}(6,5-1)$ are coplanar.

- Watch Video Solution

36. Find the equation of the plane containing the lines

$$
\frac{x-4}{1}=\frac{y-3}{4}=\frac{z-2}{5}
$$

$\frac{x-3}{1}=\frac{y-2}{-4}=\frac{z+3}{5}$

D Watch Video Solution

37. Consider the planes $3 x-4 y+5 z=10$ and $2 x+2 y-3 z=4$
a.Write the equation of the planes through the line of intersection of the above planes.

D Watch Video Solution

38. Write the direction ratios of the line $x=2 y=3 z$.

- Watch Video Solution

39. Find the direction cosines of the vector $2 \hat{i}+2 \hat{j}-\hat{k}$

- Watch Video Solution

40. Find the distance of the point $(2,3,4)$ from the plane
$\bar{r} .(3 i-6 j+2 k)=-11$.

- Watch Video Solution

41. Find the shortest distance between the lines

$$
\begin{aligned}
& \vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\lambda(3 \hat{i}-5 \hat{j}+2 \hat{k}) \text { and } \\
& \vec{r}=(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}-\hat{j}+\hat{k})
\end{aligned}
$$

42. Find the vector equation of the plane passing through the intersection of the planes
$\bar{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6$ and $\bar{r} .(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$ at the point $(1,1,1)$.

- Watch Video Solution

43. Distance between the two planes: ' $2 x+3 y+4 z=4$ ' and
' $4 x+6 y+8 z=(12)$ ' is
44. Find the shortest distance between the skew lines $\vec{r}=s \hat{k}$ and $\vec{r}=(1-t) \hat{i}+t \hat{j}$

- Watch Video Solution

45. If a line makes α, β, γ with $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis respectively, then prove that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$

- Watch Video Solution

46. Find the coordinates of the points where the line
through ($3,-4,-5$) and
$(2,-3,1)$ crosses the plane,passing through the point $(2,2,1)$
$(3,0,1)$ and
(4,-1,0).

D Watch Video Solution

47. If a line in the space makes angle α, β and γ with the coordinates axes, then $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma$ is equal to a)1 b)2 c)0 d)3
A. 1
B. 2
C. 0
D. 3
48. The direction ratios of the line $\frac{x-6}{1}=\frac{2-y}{2}=\frac{z-2}{2}$ are a) $6,-2,-2 \quad$ b) $1,2,2 \quad$ c) $6,1,-2$ d) 0,0,0
A. $(6,-2,-2)$
B. $(1,2,2)$
C. $(6,1,-2)$
D. $(0,0,0)$

Answer:

49. If the vector equation of a line is
$\bar{r}=i+j+k+\mu(2 i-3 j-4 k)$, then the Cartesian equation of the line is
A. $\frac{x+2}{2}=\frac{y+2}{4}=\frac{z+2}{1}$
B. $\frac{x-1}{2}=\frac{y-1}{-3}=\frac{z-1}{-4}$
C. $\frac{x+2}{1}=\frac{y+2}{4}=\frac{z+2}{1}$
D. $\frac{x-1}{2}=\frac{y-1}{1}=\frac{z-1}{-4}$

Answer:

D Watch Video Solution

50. If the Cartesian equation of a plane is $x+y+z=12$, then the vector equation of the plane is.... a) $\bar{r} .(2 i+j+k)=12 \mathrm{~b}) \bar{r} .(i+j+k)=12$
c) $\bar{r} \cdot(i+j+2 k)=12 \mathrm{~d}) \bar{r} \cdot(i+3 j+k)=12$
A. $\vec{r} \cdot(2 \hat{i}+\hat{j}+\hat{k})=12$
В. $\vec{r} \cdot(\hat{i}+\hat{j}+2 \hat{k})=12$
C. $\vec{r} \cdot(\hat{i}+\hat{j}+2 \hat{k})=12$
D. $\vec{r} \cdot(\hat{i}+3 \hat{j}+\hat{k})=12$

Answer:

51. Cartesian equation of two lines are $\frac{x+2}{2}=\frac{y+2}{4}=\frac{z+2}{1}, \frac{x-1}{2}=\frac{y-1}{-3}=\frac{z-1}{-4}$

Write the vector equation of the lines.

D Watch Video Solution

52. Cartesian equation of two lines are $\frac{x+2}{2}=\frac{y+2}{4}=\frac{z+2}{1}, \frac{x-1}{2}=\frac{y-1}{-3}=\frac{z-1}{-4}$
.find the shortest distance between the lines.

D Watch Video Solution

53.

$\bar{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}-3 \hat{j}-4 \hat{k})$
$\bar{r}=(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}+3 \hat{j}+2 \hat{k})$
Write the Cartesian equation.

D Watch Video Solution

54.

Consider
the
lines
$\bar{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}-3 \hat{j}-4 \hat{k})$
$\bar{r}=(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}+3 \hat{j}+2 \hat{k})$
Find the angle between the lines.
55. Let the vector equation of a plane be $\vec{r} \cdot(2 \hat{i}+4 \hat{j}+3 \hat{k})=12(\mathrm{i}) \quad$ Write the cartesian equation of the plane.

- Watch Video Solution

56. Let the vector equation of a plane be $\vec{r} \cdot(2 \hat{i}+4 \hat{j}+3 \hat{k})=12$. Find the distance from the point $(2,1,3)$ to the plane

- Watch Video Solution

57. Find the equation of the plane through the point
$(1,2,3)$ and perpendicular to the plane $x-y+z=2$
and $2 x+y-3 z=5$

- Watch Video Solution

58. Find the distance between the planes
$x-2 y+2 z-8=0$ and $6 y-3 x-6 z=57$

- Watch Video Solution

59. Consider the Cartesian equation of line $\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-5}{-2}$ Find the vector equation of the line.
60. Consider the Cartesian equation of a line $\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-5}{-2}$

Find the intersecting point with the plane $5 x+2 y-6 z-7=0$

- Watch Video Solution

61. Consider the Cartesian equation of line
$\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-5}{-2}$
Find the angle made by the line with the plane $5 x+2 y-6 z-7=0$
62. Consider the vector equation of two planes
$\bar{r} \cdot(2 i+j+k)=3, \bar{r}(i-j-k)=4$

Find vector equation of any plane through the intersection of the above two planes.

D Watch Video Solution

63. Consider the vector equation of two planes
$\bar{r} .(2 i+j+k)=3, \bar{r} .(i-j-k)=4 \quad$ Find \quad vector equation of the plane through the intersection of the above planes and the point (1,2,-1).

D Watch Video Solution

$$
\begin{aligned}
& \vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \\
& \vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

Show that these lines are not coplanar.

- Watch Video Solution

$$
\begin{aligned}
& \text { 65. Consider the straight lines } \\
& \vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \\
& \vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

Compute the shortest distance between the lines.

- Watch Video Solution

66. Find the foot and hence the length of the perpendicular from $P(5,7,3)$ to the line $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.Find also the equation of the plane in which the perpendicular and the given straight line lie.

- Watch Video Solution

67. The length of the shortest distance between the two
lines $r=(-3 i+6 j)+s(-4 i+3 j+2 k)$ and
$r=(-2 i+7 k)+t(-4 i+j+k)$ is

- Watch Video Solution

68. A line passes through the point $(3,-2,5)$ and parallel to the vector $\hat{i}+2 \hat{j}+\hat{k}$ What is the vector equation of the line?

D Watch Video Solution

69. If a plane intersects the co-ordinate axes at a,b,c respectively,write the equation of the plane.

- Watch Video Solution

70. Find the vector and cartesian equations of the plane that passes through
the point $(1,0,-2)$ and normal to the plane is $\hat{i}+\hat{j}-\hat{k}$
71. Write all the direction cosines of x-axis.

D Watch Video Solution

72. If a line makes α, β, γ with $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis respectively, then prove that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$

D Watch Video Solution

73. A line makes equal angles with the coordinate axis .

Find the direction cosines.
74. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)^{\prime}$

D Watch Video Solution

75. The Cartesian equation of two lines are given by
$\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}, \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$
Write the vector equation of these lines.

D Watch Video Solution

76. Find the equation of a plane which makes x, y, z intercepts respectively as $1,2,3$

- Watch Video Solution

77. Find the angle between the lines $\frac{x-3}{1}=\frac{y-1}{5}=\frac{z+3}{-3}$ and $\frac{x+1}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$

D Watch Video Solution

78. The lines $x-1=y=z$ is perpendicular to the line.....a)

$$
\begin{aligned}
& \frac{x-2}{1}=\frac{y-1}{2}=\frac{z}{-3} \quad \text { b) } x-2=y-2=z \\
& \frac{x-2}{1}=\frac{y-1}{2}=\frac{z}{3} \text { d) } \mathrm{x}=\mathrm{y}=\mathrm{z} / 2
\end{aligned}
$$

A. $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z}{-3}$
B. $x-2=y-2=z$
c. $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z}{3}$
D. $x=y=\frac{z}{2}$

Answer:

- Watch Video Solution

79. Find the shortest distance between the lines whose vector

$$
\begin{aligned}
& \vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \\
& \vec{r}=(4 \hat{i}+5 \hat{j}+6 \hat{k})+\mu(2 \hat{i}+3 \hat{j}+\hat{k})
\end{aligned}
$$

and
80. Distance of the point $(0,0,1)$ from the plane
$x+y+z=3$ a) $\frac{1}{\sqrt{3}}$ units b) $\frac{2}{\sqrt{3}}$ units c) $\sqrt{3}$ units d) $\frac{\sqrt{3}}{2}$ units
A. $\frac{1}{\sqrt{3}}$
B. $\frac{2}{\sqrt{3}}$
C. $\sqrt{3}$
D. $\frac{\sqrt{3}}{2}$

Answer:

81. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to $x-y+z=0$

- Watch Video Solution

Exercise

1. Find the shortest distance between the lines l_{1} and l_{2}
$\bar{r}=\hat{i}+\hat{j}+\lambda(2 \hat{i}-\hat{j}+k)$ and
$\bar{r}=2 \hat{i}+\hat{j}-\hat{k}+\mu^{\prime}(3 \hat{i}-5 \hat{j}+2 \hat{k})$
2. Show that the line $A B$ is perpendicular $C D$ if A, B, C, D are the points (2,3,4),(5,4,-1),(3,6,2),(1,2,0) respectively.

- Watch Video Solution

3. Find the values of p so that the lines
$\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2}$
and
$\frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ are at right angles.

- Watch Video Solution

4. The foot of the perpendicular drawn from origin to a

Plane is (4,-2,5).

How far is the plane from origin?

- Watch Video Solution

5. Find the equation of the plane passing through the point $(-1,-1,2)$ and perpendicular to the plane $3 x+2 y-3 z=1$ and $5 x-4 y+z=5$.
