

MATHS

BOOKS - BODY BOOKS PUBLICATION

VECTOR ALGEBRA

Example

1. Prove that
$$\left(\overrightarrow{a} \times \overrightarrow{b}\right)^2 = \begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{a} & \overrightarrow{a} \cdot \overrightarrow{b} \\ \overrightarrow{a} \cdot \overrightarrow{b} & \overrightarrow{b} \cdot \overrightarrow{b} \end{vmatrix}$$
.

2. Using vectors, prove that angle in a semi circle is a right angle.

Watch Video Solution

3. Find a vector of magnitute 12 units perpendicular to the containing the vectors $4\hat{i} + 6\hat{j} - \hat{k}$ and $3\hat{i} + 8\hat{j} + \hat{k}$.

4. Show that the area of the parallelogram having diagonals $3\hat{i}+\hat{j}-2\hat{k}$ and $\hat{i}-3\hat{j}+4\hat{k}$ is $5\sqrt{3}$

5. Find the values of x for which the angle between the vectors $\overrightarrow{a} = 2x \hat{i} + 4x \hat{j} + \hat{k}$ and $\overrightarrow{b} = 7x \hat{i} - 2 \hat{j} + x \hat{k}$ is obtuse.

Watch Video Solution

6. If A(1,2,4) and B(2,-1,3) are two points (i)Find \overrightarrow{AB}

Watch Video Solution

7. If A(1,2,4) and B(2,-1,3) are two points (ii) Find unit vector along `vec(AB)

8. Show that the points with position vectors $2\hat{i}+6\hat{j}+3\hat{k},\,\hat{i}+2\hat{j}+7\hat{k}$ and $3\hat{i}+10\hat{j}-\hat{k}$ are collinear.

9. Let the vectors 'veca, vecb, vecc' be given as 'a_1 hati+a_2 hatj+a_3 hatk, b_1 hati+b_2 hatj+b_3 hatk, c_1 hati+c_2 hatj+c_3 hatk', Then show that 'veca xx(vecb+vecc)=veca xx vecb+veca xx vecc'

10. Consider a cube of side 'a' unit has one vertex at the origin O.

Show that the angle between the main diagonals of the above cube is $\cos^{-1}\!\left(\frac{1}{3}\right)$

Watch Video Solution

11. \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non zero vectors such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$, $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$. Prove that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are

mutually at right angle and $\left|\overrightarrow{b}\right|=1,\left|\overrightarrow{c}\right|=\left|\overrightarrow{a}\right|.$

Watch Video Solution

12. Find
$$\left|\overrightarrow{a} imes\overrightarrow{b}\right|$$
,If $\overrightarrow{a}=2\hat{i}-\hat{j}+3\hat{k}$ and $\overrightarrow{b}=\hat{i}+2\hat{j}-\hat{k}$

13. Choose the correct answer from the bracket. The angle between the vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} with magnitude 1 and 2 respectively having \overrightarrow{a} . $\overrightarrow{b} = \sqrt{3}$ a) $\frac{\pi}{3}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{6}$ d) $\frac{\pi}{2}$

$$\mathsf{B.}\;\frac{\pi}{4}$$

C.
$$\frac{\pi}{6}$$

D.
$$\frac{\pi}{2}$$

14.

Answer:

Watch Video Solution

 $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}, \, \overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k} \, \, ext{and} \, \, \overrightarrow{c} = k\hat{i} - 2\hat{j} + 3\hat{k}$

are coplaner then find the value of k.

the

vectors

15. Write two different vectors having same magnitude.

Watch Video Solution

16. Find the direction cosines of the vector $2\hat{i}+\hat{j}+3\hat{k}$

Watch Video Solution

17. Consider two points A and B with position vectors $\overrightarrow{OA} = \overrightarrow{a} - 4\overrightarrow{b}$ and $\overrightarrow{OB} = \overrightarrow{a} - \overrightarrow{b}$. Find the position vector of a point R which divides the line joining A and B in the ratio 2:1 internally

18. Find a unit vector perpedicular to each of the vector

$$\overrightarrow{a} + \overrightarrow{b}$$

and

$$\overrightarrow{a}-\overrightarrow{b}$$

where

$$\overrightarrow{a} = 2\hat{i} + \hat{j} + \hat{k} ext{ and } \overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$$

Watch Video Solution

19. Choose the correct answer from the backet. If a unit vector \widehat{a} makes angles $\frac{\pi}{4}$ with i and $\frac{\pi}{3}$ with j and acute angle θ with k.

then θ is

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{4}$$

C.
$$\frac{\pi}{3}$$

D. $\frac{\pi}{2}$

Answer:

Watch Video Solution

20. Find a unit vector \hat{a} .

Watch Video Solution

21. Write down a unit vector in XY plane, making an angle of 60° with the positive direction of x-axis.

22. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three coplanar vectors, then

$$\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}
ight]$$
 is

23. Find P,if $\overrightarrow{a}=-2\hat{i}-\hat{j}+2\hat{k}$ and $\overrightarrow{b}=\hat{i}+p\hat{j}+\hat{k}$ and $\overrightarrow{a} imes\overrightarrow{b}=3\hat{i}+4\hat{j}+5\hat{k}$.

- **24.** $\vec{a} \times \vec{a}$ is equal to
 - Watch Video Solution

25. Find the area of a triangle with vertices A(2,3,1),B(1,1,2) and C(1,2,1).

Watch Video Solution

26. Consider the points A(0,-2,1),B(1,-1,-2) and C(-1,1,0) lyind in the plane. Compute \overrightarrow{AB} and \overrightarrow{AC} .

Watch Video Solution

27. Consider the points A(0,-2,1),B(1,-1,-2) and C(-1,1,0) lyind in the plane. Find $\overrightarrow{AB} imes \overrightarrow{AC}$

$$\overrightarrow{a}=7\hat{i}-2\hat{j}+\hat{k}, \ \overrightarrow{b}=\hat{i}-2\hat{j}+2\hat{k} \ \ ext{and} \ \ \overrightarrow{c}=3\hat{i}-8\hat{k}$$
 .i Compute $\overrightarrow{a} imes\overrightarrow{b}$ and $\overrightarrow{a} imes\overrightarrow{c}$.

Watch Video Solution

29.

$$\overrightarrow{a} = 7\hat{i} - 2\hat{j} + \hat{k}, \, \overrightarrow{b} = \hat{i} - 2\hat{j} + 2\hat{k} \, \, ext{and} \, \, \overrightarrow{c} = 3\hat{i} - 8\hat{k}$$

Let

.ii Are the products \overrightarrow{a} . $(\overrightarrow{b} \times \overrightarrow{c})$ and $(\overrightarrow{a} \times \overrightarrow{b})$. \overrightarrow{c} obtained are same?

30.

Let

 $\overrightarrow{a}=7\hat{i}-2\hat{j}+\hat{k}, \overrightarrow{b}=\hat{i}-2\hat{j}+2\hat{k} \ ext{and} \ \overrightarrow{c}=3\hat{i}-8\hat{k}$ and $\overrightarrow{d}=-\hat{j}+\hat{k}$.(i) Find $\overrightarrow{b}-\overrightarrow{a}$

Watch Video Solution

31.

Let

 $\overrightarrow{a}=7\hat{i}-2\hat{j}+\hat{k}, \overrightarrow{b}=\hat{i}-2\hat{j}+2\hat{k} ext{ and } \overrightarrow{c}=3\hat{i}-8\hat{k}$ and $\overrightarrow{d}=-\hat{j}+\hat{k}$.(iii)Find the unit vector along

$$\overrightarrow{b}-\overrightarrow{a}$$

32. Given the position vectors of three points

$$A\Big(\hat{i}-\hat{j}+2\hat{k}\Big), B\Big(4\hat{i}+5\hat{j}+8\hat{k}\Big) \ \ {
m and} \ \ C\Big(3\hat{i}+3\hat{j}+6\hat{k}\Big)$$
 . Find the projection of \overrightarrow{ABonAC} .

33. Given the position vectors of three points $A\Big(\hat{i}-\hat{j}+2\hat{k}\Big), B\Big(4\hat{i}+5\hat{j}+8\hat{k}\Big) ext{ and } C\Big(3\hat{i}+3\hat{j}+6\hat{k}\Big)$

. Prove that A,B and C are collinear.

34. Consider the following quadrilateral ABCD in which

P,Q,R,S are the mid points of the sides.

If \overrightarrow{a} is any vector, prove that

$$\overrightarrow{a} = \Big(\overrightarrow{a}\cdot i\Big)i + \Big(\overrightarrow{a}\cdot j\Big)j + \Big(\overrightarrow{a}\cdot k\Big)k.$$

Watch Video Solution

35. If \overrightarrow{a} and \overrightarrow{b} are unit vectors inclined at an angle θ ,then prove that $\sin\!\left(\frac{\theta}{2}\right)=\frac{1}{2}\Big|\overrightarrow{a}-\overrightarrow{b}\Big|$

36. If $\overrightarrow{a}=x\hat{i}+2\hat{j}-z\hat{k}$ and $\overrightarrow{b}=3\hat{i}-y\hat{j}+\hat{k}$ are two equal vectors then write the value of x+y+z.

Watch Video Solution

37. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that $\left|\overrightarrow{a}\right| = 5, \left|\overrightarrow{b}\right| = 12 \,\, ext{and} \,\, \left|\overrightarrow{c}\right| = 13$ and $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ find \overrightarrow{a} , \overrightarrow{b} + \overrightarrow{b} , \overrightarrow{c} + \overrightarrow{c} \overrightarrow{a}

38. If i+j+k, 2i+5j, 3i+2j-3k, i-6j-k

respectively are the position vector of points A,B,C and D. Then find the angle between the vectors \overrightarrow{AB} and \overrightarrow{CD} .

Watch Video Solution

39. If i+j+k, 2i+5j, 3i+2j-3k, i-6j-k respectively are the position vector of points A,B,C and D. Then

Deduce that \overrightarrow{AB} parallel to \overrightarrow{CD} .

40. Find the area of the parallelogram whose adjacent determined by the vectors are $\overrightarrow{a} = \hat{i} - \hat{j} + \overset{\wedge}{3k} ext{and} \overset{
ightarrow}{b} = \overset{\wedge}{2i} - \overset{\wedge}{7i} + \hat{k} \, .$

Watch Video Solution

41. If 'veca.veca=0' and 'veca. vecb=0', then what can be concluded about the vector 'vecb'?

Watch Video Solution

42. Let the vectors \overrightarrow{a} and \overrightarrow{b} be such that

$$\left|\overrightarrow{a}\right|=3$$
and $\left|\overrightarrow{b}\right|=rac{\sqrt{2}}{3}$,then $\overrightarrow{a} imes\overrightarrow{b}$ is a unit vector, if

the angle between \overrightarrow{a} and \overrightarrow{b} is : a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$

43. Find a unit vector perpendicular to the plane ABC where A,B,C are point (1,1,2),(2,3,5) and (1,5,5).

44. The Cartesian equation of two lines are

$$rac{x+1}{7}=rac{y+1}{-6}=rac{z+1}{1}$$
 and $rac{x-3}{1}=rac{y-5}{-2}=rac{z-7}{1}$.Write the vector equations.

45. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three coplanar vectors, then

$$\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$$
 is

- A. 1
- B. 0
- C. -1
- D. not defined

Answer:

Watch Video Solution

46. If $|\overrightarrow{a}|=2$, $|\overrightarrow{b}|=3$ and θ is the angle between \overrightarrow{a} and \overrightarrow{b} . Then the maximum value of \overrightarrow{a} . \overrightarrow{b} occurs when

$$\theta$$
=....a) $\frac{\pi}{2}$ b) π c)0 d) $\frac{\pi}{4}$

A. $\frac{\pi}{2}$

B.
$$\pi$$

D. $\frac{\pi}{4}$

Watch Video Solution

47. If $\overrightarrow{b}=2\hat{i}+\hat{j}-\hat{k},\overrightarrow{c}=\hat{i}+3\hat{k}$ and \overrightarrow{a} is a unit vector. Find the maximum value of scalar triple product

 $\left|\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right|$

48. The position vectors of three points A,B,C are given to be i+3j+3k , 4i+4k, -2i+4j+2k

respectively.Find the angle between \overrightarrow{AB} and \overrightarrow{AC}

Watch Video Solution

49. The position vectors of three points A,B,C are given be i+3j+3k , 4i+4k, (-2i+4j+2k)respectively

 \overrightarrow{AC} having magnitude 9 units.

50. If $\bar{a}, \bar{b}, \bar{c}$ are coplaner vectors , write the vector perpendicular to \bar{a}

Watch Video Solution

51. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar,prove that $\overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{c} + \overrightarrow{a}$ are coplanar.

Watch Video Solution

52. Prove that $\left[\overrightarrow{a} + \overrightarrow{b}\overrightarrow{b} + \overrightarrow{c}\overrightarrow{c} + \overrightarrow{a}\right] = 2\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$

53. Show that if $\overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{c} + \overrightarrow{a}$ are coplanar then \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are also coplanar.

54. If
$$\overrightarrow{a}=3\hat{i}+2\hat{j}+2\hat{k}, \overrightarrow{b}=\hat{i}+2\hat{j}-2\hat{k}$$
 Find $\overrightarrow{a}+\overrightarrow{b}$ and $\overrightarrow{a}-\overrightarrow{b}$

55. If
$$\overrightarrow{a}=3\hat{i}+2\hat{j}+2\hat{k}, \ \overrightarrow{b}=\hat{i}+2\hat{j}-2\hat{k}.$$
 Find a unit vector perpendicular to both $\overrightarrow{a}+\overrightarrow{b}$ and $\overrightarrow{a}-\overrightarrow{b}$

watch video Solution

56. Consider the points A(1.2.7),B(2,6,3),C(3,10,-1) find \overline{AB} , \overline{BC}

Watch Video Solution

Exercise

1. If \overrightarrow{a} and \overrightarrow{b} are unit vectors inclined at an angle θ ,then prove that $\sin\left(\frac{\theta}{2}\right)=\frac{1}{2}\Big|\overrightarrow{a}-\overrightarrow{b}\Big|$

