

MATHS

BOOKS - MAXIMUM PUBLICATION

APPLICATION OF INTEGRALS

1. Consider the following figure

find the point of intersection (P) of the

parabola and the line.

2. using the given figure

find the area of the enclosed region

3. Consider the following figure

find the point of intersection (P) of the

parabola and the line.

4. using the given figure

find the area of the enclosed region

5. Consider the following figure

find the point of intersection P of the circle

 $x^2 + y^2 = 32$

and the line y = x

6. using the given figure

find the area of the enclosed region

7. Shade the area enclosed by $x^2 = 4y, y = 2, y = 4$ and the y-axis in the

first quadrant ?

8. Find the area of the region bounded by

$$x^2=4y,y=2,y=4$$

and the y-axis in the first quadrant?

9. Draw a rough sketch of the graph of the function

$$y^2 = 4x$$

10. Draw the graph of

$$y^2 = 4x$$

and y=x?

11. Find the points of intersection of $y^2 = 4x$ and y=x ?

12. Draw the graph of the function $y = x^2$ and

 $x = y^2$ in a coordinate axis.

Watch Video Solution

13. Using the figure

find the area of the shaded region as the sum

of the area of two triangles

14. Identify the function from the above graph

15. Using the figure

verify the area of the shaded region using integration

16. The figure given below contains a straight

line L with a slope

 $\sqrt{8}$

and a circle

Find the point of intersection P.

17. The figure given below contains a straight

line L with a slope

 $\sqrt{8}$

and a circle

Find the point of intersection P.

18. The figure given below contains a straight

line L with a slope

 $\sqrt{8}$

and a circle

Find the point of intersection P.

19. Using the given figure

Define the equation of the circle and ellipse in

the figure .

20. Using the given figure

find the area of the ellipse using integration

21. Using the given figure

find the area of the shaded region (using

formula to find the area of the circle)

23. Find the area of the region bounded by the

curve

$$y=x^2$$
 and $y=|x|$

24. Consider the functions $f(x) = \sin x$ and $g(x) = \cos x$ in the interval $[0, 2\pi]$

draw the rough sketch of the above function ?

Watch Video Solution

25. Consider the functions $f(x) = \sin x$ and $g(x) = \cos x$ in the interval

 $[0, 2\pi]$

find the area enclosed by these curves in the

given interval ?

27. Find the area of the circle,

$$x^2 + y^2 = 16$$

which Is exterior to parabola

$$y^2 = 6x$$

Watch Video Solution

28. Using the figure

define the equation of ellipse and circle in the

given figure

Watch Video Solution

29. Using the figure

find the area of ellipse using integration

30. Using the figure

find the area of the shaded region(Area of the

circle can be found by direct formula)

31. The area bounded by the curve y=f(x), x-axis

and the line x=a and x=b is ?

Watch Video Solution

32. Find the area enclosed between parabola

$$y = x^2$$

and the straight line 2x - y + 3 = 0

33. Find the area enclosed between the curve

 $x^2 = 4y$

and the line x = 4y - 2

34. Area of the shaded portion in the figure is

equal to

A.
$$\int_{d}^{c} f(x) dx$$

B. $\int_{c}^{d} f(x) dx$
C. $\int_{d}^{c} f(y) dx$
D. $\int_{c}^{d} f(y) dx$

Answer: D

$$y=x^3$$
 ,x = 0,y = 1,y = 4

Draw a rough sketch and shade the region bounded by these curves, Find area of the

shaded region

36. Consider the following figure

find the point of intersection P of the circle

$$x^2 + y^2 = 32$$

and the line y = x

37. using the given figure

find the area of the enclosed region

38. The area bounded by the curve above the

x-axis, between x = a and x = b is

A.
$$\int_{f(a)}^{b} y dy$$

B.
$$\int_{a}^{f(b)} y dy$$

C.
$$\int_{a}^{b} x dy$$

D.
$$\int_{a}^{b} y dx$$

Answer: D

Watch Video Solution

39. Find the area of the circle

$$x^2 + y^2 = 4$$

using integration

40. The area bounded by $y = 2\cos x$, the xaxis from x = 0 to $x = \frac{\pi}{2}$.a)0 b)1 c)2 d)-1

A. 0

B. 1

C. 2

D. -1

Answer: C

41. Find the area of the region bounded by the

$$y^2=4ax$$
 and $x^2=4ay$, a>0

Watch Video Solution

42. Consider the circle

$$x^2 + y^2 = 16$$

and the straight line

$$y=\sqrt{3}x$$

as shown in the figure

Find the points A and B as shown in the figure

and the straight line

$$y = \sqrt{3}x$$

as shown in the figure

find the area of the shaded region in the

figure using definite integrals 🔛

$$rac{x^2}{4} + rac{y^2}{9} = 1$$

45. Find the area enclosed between the curve

$$y^2 = x$$

, x=1,x=4 and x-axis

46. Using integration, find the area of the region bounded by the triangle whose vertices are {1,0},{2,2} and {3,1}

47. Using the given figure

Find the equation of AB

48. Using the given figure

Find the equation of AB

49. Find area of the shaded region using integration.

50. Consider the ellipse

$$rac{x^2}{9} + rac{y^2}{4} = 1$$

and the line

$$\frac{x}{3} + \frac{y}{2} = 1$$

Find the points where the line intersects the

ellipse?

ellipse and the line ?

52. Consider the ellipse

$$rac{x^2}{9} + rac{y^2}{4} = 1$$

and the line

$$rac{x}{3}+rac{y}{2}=1$$

find the area of the shaded region ?

53. Consider the function

$$f(x) = |x| - 1, g(x) = 1 - |x|$$

sketch the graph and shade the enclosed

region between them

54. Consider the function

$$f(x)=ert xert -1, g(x)=1-ert xert$$

Find the area of the shaded region

55. using the given figure

define the equation of the given curve

56. using the given figure

find the area of the enclosed region

57. using the given figure

find the area when a=10 and b=5

