

MATHS

BOOKS - MAXIMUM PUBLICATION

DETERMINANTS

Example

1. Using properties of determinants prove

$$\left|egin{array}{cccc} x & y & x+y \ y & x+y & x \ x+y & x & y \end{array}
ight|= \,-\,2ig(x^3+y^3ig)$$

2. If a,b,c are real numbers and

Watch Video Solution

3. solve using properties of determinants.

$$\left| egin{array}{cccc} 2x-1 & x+7 & x+4 \ x & 6 & 2 \ x-1 & x+1 & 3 \ \end{array}
ight| = 0$$

4. If $\begin{vmatrix} 3 & x \\ x & x \end{vmatrix} = \begin{vmatrix} -2 & 2 \\ 4 & 1 \end{vmatrix}$, find the value of x.

Watch Video Solution

$$\mathbf{5.}\,A = egin{bmatrix} 1 & -3 & 1 \ 2 & 0 & 4 \ 1 & 2 & -2 \end{bmatrix}$$

 $\mathsf{Calculate}|A|$

6.
$$A = egin{bmatrix} 1 & -3 & 1 \ 2 & 0 & 4 \ 1 & 2 & -2 \end{bmatrix}$$

Show that

$$A imes adjA=|A|I$$

$${f 7.}\,A = egin{bmatrix} 1 & -3 & 1 \ 2 & 0 & 4 \ 1 & 2 & -2 \end{bmatrix}$$

Find |3A|

8. Using properties of determinants prove the

following.

$$\left|egin{array}{cccc} a-b-c & 2a & 2a \ 2b & b-c-a & 2b \ 2c & 2c & c-a-b \end{array}
ight|=\left(a+b+c
ight)^3$$

9. Using properties of determinants prove the following.

$$\left|egin{array}{cccc} b+c & a & a \ b & c+a & b \ c & c & a+b \end{array}
ight|=4abc$$

10. If
$$\begin{vmatrix} 1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2 \end{vmatrix} = 40$$
,then $\begin{vmatrix} 1 & 4 & 3 \\ -3 & -1 & 5 \\ 2 & 2 & 2 \end{vmatrix} =$

A. 0

B. -40

C. 40

D. 2

Answer:

11. Calculate
$$\begin{vmatrix} 3 & -3 & 2 \\ 12 & -1 & 2 \\ 9 & 5 & 2 \end{vmatrix} =$$

Answer:

12.

Show

that

$$\Delta = egin{array}{cccc} -a^2 & ab & ac \ ba & -b^2 & bc \ ac & bc & -c^2 \ \end{array} = 4a^2b^2c^2$$

Watch Video Solution

13. Find x if $\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$

14. S.T

$$\left|egin{array}{ccc} x+a & b & c \ a & x+b & c \ a & b & x+c \end{array}
ight|=x^2(x+a+b+c)$$

15. Prove that
$$\begin{vmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{vmatrix}$$

$$= 2abc(a+b+c)^3$$

16. Let the value of a determinant is Δ .

Then the value of a determinant obtained by interchanging two rows is

- A. Δ
- $B.-\Delta$
- **C**. **O**
- D. 1

Answer:

17.

Show

that

$$\left| egin{array}{cccccc} a+b & b+c & c+a \ b+c & c+a & a+b \ c+a & a+b & b+c \ \end{array}
ight| = 2 \left| egin{array}{ccccc} a & b & c \ b & c & a \ c & a & b \ \end{array}
ight|$$

Watch Video Solution

18. Test the consistency

$$3x - y - 2z = 2, 2y - z = -1, 3x - 5y = 3$$

19. Consider the system of equations

$$2x - 3y = 7$$

and
$$3x+4y=5$$

Express the system in AX=B form.

Watch Video Solution

Consider the system of equations 20.

$$2x - 3y = 7$$

and
$$3x + 4y = 5$$

Find adjA

21. Consider the system of equations

$$2x - 3y = 7$$

and
$$3x + 4y = 5$$

Solve the system of equations.

Watch Video Solution

22. If A and B are matrices of order 3 such

that
$$|A| = -1$$
, $|B| = 3$,then $|3AB|$ is

A. -9

B. -27

C. -81

D. 9

Answer:

23. If
$$A=egin{bmatrix}1&\tan x\\-\tan x&1\end{bmatrix}$$
 ,Show that $A^TA^{-1}=egin{bmatrix}\cos 2x&-\sin 2x\\\sin 2x&\cos 2x\end{bmatrix}$

24. Consider

the

determinant

$$\Delta = egin{array}{cccc} x & x^2 & 1 + x^3 \ y & y^2 & 1 + y^3 \ z & z^2 & 1 + z^3 \ \end{pmatrix}$$
 ,

Where x,y,z are different.

Express the above determinant as sum of two determinants.

Watch Video Solution

25. Consider

the

determinant

$$\Delta=egin{array}{cccc} x&x^2&1+x^3\ y&y^2&1+y^3\ z&z^2&1+z^3 \end{array}$$
 ,

Where x,y,z are different.

Show that if $\Delta=0$,then 1+xyz=0

Watch Video Solution

26. The value of the determinant

$$\begin{vmatrix} \sin 10 & -\cos 10 \\ \sin 80 & \cos 80 \end{vmatrix}$$
 is

A. -1

B. 1

C. 0

D. -2

Answer:

Watch Video Solution

27. Using properties of determinants,

show that

$$egin{array}{c|ccc} a&a^2&b+c\ b&b^2&c+a\ c&c^2&a+b \end{array} = (b-c)(c-a)(a-b)(a+b+c)$$

28. Choose the correct answer from the bracket. Consider a sqare matrix of order 3. Let $C_{11},\,C_{12},\,C_{13}$ are cofactors of the elements $a_{11},\,a_{12},\,a_{13}$ respectively, then

$$a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$
 is

A. 0

B. |A|

C. 1

D. none of these

Answer:

Watch Video Solution

29. Verify A(adjA)=(adjA)A=|A|I for the

matrix
$$A = egin{bmatrix} 5 & -2 \ 3 & -2 \end{bmatrix}$$
 that,where $I = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$

Watch Video Solution

30. Consider the following system of equations

$$x + 2y = 4, 2x + 5y = 9$$

If
$$A = \left[egin{array}{cc} 1 & 2 \ 2 & 5 \end{array}
ight]$$
 , find $|A|$

31. Consider the following system of equations

$$x + 2y = 4, 2x + 5y = 9$$

Express the above system of equations in the form AX=B

32. Consider the following system of equations

$$x + 2y = 4, 2x + 5y = 9$$

Find $adjA, A^{-1}$

33. Consider the following system of equations

$$x + 2y = 4, 2x + 5y = 9$$

Solve the system of equations.

34. Consider the point

A(-2, -3), B(3, 2), C(-1, -8)

Find the area of ΔABC

35. Consider the point A(-2,-3),B(3,2),C(-1,-8)

Find third vertex of any other triangle with same area and base AB

Watch Video Solution

36. Find the inverse of the following

$$A = egin{bmatrix} 1 & 2 & 3 \ 0 & 2 & 4 \ 0 & 0 & 5 \end{bmatrix}$$

37. Find the inverse of the following

$$A = egin{bmatrix} 1 & 0 & 0 \ 3 & 3 & 0 \ 5 & 2 & -1 \end{bmatrix}$$

Watch Video Solution

38. Find the inverse of the following

$$A = egin{bmatrix} 2 & 1 & 3 \ 4 & -1 & 0 \ -7 & 2 & 1 \end{bmatrix}$$

39. Find the inverse of the following

$$A = egin{bmatrix} 1 & -1 & 2 \ 0 & 2 & -3 \ 3 & -2 & 4 \end{bmatrix}$$

Watch Video Solution

40. Consider the system of equations

$$5x+2y=4,7x+3y=5.$$
lf $A=egin{bmatrix} 5&2\7&3 \end{bmatrix}$, X=[[x],

[y]]

and
$$B = \left\lceil rac{4}{5}
ight
ceil$$

 $\mathsf{Find}|A|$

41. Consider the system of equations

$$5x+2y=4,7x+3y=5$$
.lf $A=egin{bmatrix} 5&2\7&3 \end{bmatrix}$, X=[[x],

[y]]

$$\mathsf{and} B = \left[\begin{matrix} 4 \\ 5 \end{matrix} \right]$$

Find A^{-1}

42. Consider the system of equations

$$5x+2y=4,7x+3y=5.$$
lf $A=egin{bmatrix} 5&2\7&3\end{bmatrix}$, $X=egin{bmatrix} x\y \end{bmatrix}$

and $B = \left\lceil rac{4}{5}
ight
ceil$

43. Let A be a square matrix of order 'n' then|KA|=

- **44.** Find x if $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$
 - Watch Video Solution

45. Choose the correct answer from the

bracket. The value of the determinant

$$\left|egin{array}{cccc} 0 & p-q & p-r \ q-p & 0 & q-r \ r-p & r-q & 0 \end{array}
ight|$$
 is

Answer:

46. Consider
$$\begin{vmatrix} a & a+b & a+b+c \\ 2a & 3a+2b & 4a+3b+2c \\ 3a & 6a+3b & 10a+6b+3c \end{vmatrix}$$

Watch Video Solution

47. Let
$$\begin{vmatrix} 1 & 3 & 2 \\ 2 & 0 & 1 \\ 3 & 4 & 3 \end{vmatrix} = 3$$
, then what is the value $\begin{vmatrix} 1 & 3 & 2 \\ 3 & 4 & 3 \end{vmatrix} = \begin{vmatrix} 6 & 7 & 6 \\ 3 & 4 & 3 \end{vmatrix}$

(Hint: Use the properties of determinants)

48. Using properties of determinants show

that

$$egin{array}{|c|c|c|c|} 1+a & 1 & 1 \ 1 & 1+b & 1 \ 1 & 1 & 1+c \ \end{array} = abc igg(1+rac{1}{a}+rac{1}{b}+rac{1}{c}igg)$$

49. If
$$A = egin{bmatrix} 2 & -3 & 5 \ 3 & 2 & -4 \ 1 & 1 & -2 \end{bmatrix}$$

 $\mathsf{Find}|A|$

50. If
$$A = egin{bmatrix} 2 & -3 & 5 \ 3 & 2 & -4 \ 1 & 1 & -2 \end{bmatrix}$$

Find adjA.

51. Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
 is A singular?

52. Let
$$A = egin{bmatrix} 1 & -1 & 1 \ 2 & 1 & -3 \ 1 & 1 & 1 \end{bmatrix}$$

Find adjA.

Watch Video Solution

53. Let
$$A = egin{bmatrix} 1 & -1 & 1 \ 2 & 1 & -3 \ 1 & 1 & 1 \end{bmatrix}$$

Obtain A^{-1} .

54. Let
$$A=egin{bmatrix}1&-1&1\2&1&-3\1&1&1\end{bmatrix}$$

Using A^-1 solve the system of

$$x - y + z = 4$$

equations

$$2x + y - 3z = 0$$

$$x + y + z = 2$$

55. Solve the following system of linear equations.

x + y + z = 3.

y-z=0,

2x - y = 1

Watch Video Solution

56. Solve the following system of linear equations.

$$x+2y+5z=10,$$

$$x-y-z=-2,$$

$$2x + 3y - z = -11$$

57. If
$$f(x)=egin{bmatrix}\cos x & -\sin x & 0 \ \sin x & \cos x & 0 \ 0 & 0 & 1\end{bmatrix}$$

Find f(-x)

Watch Video Solution

58. Solve the following system of linear equations.

$$x+2y+5z=10,$$

$$x-y-z=-2,$$

$$2x + 3y - z = -11$$

59. Solve the following system of linear equations.

$$x+y+z=3,$$

$$y-z=0$$
,

$$2x - y = 1$$

60. If
$$A = \left[egin{array}{cc} 2 & 3 \ 1 & -2 \end{array}
ight]$$
 and $A^{-1} = kA$,then

the value of 'k' is

61. If
$$A = egin{bmatrix} 1 & -1 & 1 \ 2 & -1 & 0 \ 1 & 0 & 0 \end{bmatrix}$$
 ,

Find A^2

Watch Video Solution

62. If
$$A = egin{bmatrix} 1 & -1 & 1 \ 2 & -1 & 0 \ 1 & 0 & 0 \end{bmatrix}$$
 ,

Show that $A^2=A^{-1}$

63. Arjun' purchased 3 pens,2 purses and 1 instrument box and pays Rs. 410. From the same shop 'Deeraj' purchases 2 pens,1 purse and 2 instrument boxes and pays Rs.290, while 'Sindhu' purchases 2 pens,2 purses,2 instrument boxes and pays Rs. 440. Translate the equation into system of linear equations.

64. Arjun' purchased 3 pens,2 purses and 1 instrument box and pays Rs. 410.From the

same shop 'Deeraj' purchases 2 pens,1

purse and 2 instrument boxes and pays

Rs.290,while 'Sindhu' purchases 2pens,2

purses,2 instrument boxes and pays Rs.

440.

The cost of one pen, one purse and one instrument box using matrix method.

65. If
$$A = egin{bmatrix} 2 & -3 & 5 \ 3 & 2 & -4 \ 1 & 1 & -2 \end{bmatrix}$$

Find A^{-1}

66. If
$$A = egin{bmatrix} 2 & -3 & 5 \ 3 & 2 & -4 \ 1 & 1 & -2 \end{bmatrix}$$

Using it solve the system of equations

$$2x - 3y + 5z = 16$$

$$3x + 2y - 4z = -4$$

$$x + y - 2z = -3$$

Watch Video Solution

67. Consider the following system of equations

$$x + y + 3z = 5$$

$$x + 3y - 3z = 1$$

$$-2x - 4y - 4z = -10$$

Convert the given system in the form AX = B

Watch Video Solution

68. Consider the following system of equations

$$x + y + 3z = 5$$

$$x + 3y - 3z = 1$$

$$-2x - 4y - 4z = -10$$

Find A^{-1}

69. Consider the following system of equations

$$x + y + 3z = 5$$

$$x + 3y - 3z = 1$$

$$-2x - 4y - 4z = -10$$

Hence solve the system of equations.

Watch Video Solution

70. Solve the following system of equations by

matrix method

$$x + 2y + 5z = 10$$

$$x-y-z=-2$$
 '2x+3y-z=-11`

Watch Video Solution

71. If
$$A = egin{bmatrix} 3 & -2 & 3 \ 2 & 1 & -1 \ 4 & -3 & 2 \end{bmatrix}$$

Find ert A ert

72. If
$$A = egin{bmatrix} 3 & -2 & 3 \ 2 & 1 & -1 \ 4 & -3 & 2 \end{bmatrix}$$

Find $A^{\,-1}$

73. If
$$A = egin{bmatrix} 3 & -2 & 3 \ 2 & 1 & -1 \ 4 & -3 & 2 \end{bmatrix}$$

Solve the linear equations

$$3x - 2y + 3z = 8$$

$$2x + y - z = 1$$

$$4x - 3y + 2z = 4$$

74. If
$$\begin{bmatrix} 2 & 5 \ -3 & 7 \end{bmatrix} imes A = \begin{bmatrix} 17 & -1 \ 47 & -13 \end{bmatrix}$$
 then

Find the 2x2 matrix A.

75. If
$$egin{bmatrix} 2 & 5 \ -3 & 7 \end{bmatrix} imes A = egin{bmatrix} 17 & -1 \ 47 & -13 \end{bmatrix}$$
 then

Find A^2 .

Watch Video Solution

76. Prove that
$$\begin{vmatrix} 1! & 2! & 3! \\ 2! & 3! & 4! \\ 3! & 4! & 5! \end{vmatrix} = 4!$$

77. Using properties of determinants prove the

following.

$$egin{bmatrix} 1 & a & bc \ 1 & b & ca \ 1 & c & ab \end{bmatrix} = (a-b)(b-c)(c-a)$$

78. Using properties of determinants prove the following.

$$egin{array}{|c|c|c|c|c|} 1 & 1 & 1 \ a & b & c \ a^3 & b^3 & c^3 \ \end{array} = (a-b)(b-c)(c-a)(a+b+c)$$

79. Using properties of determinants prove the

following.

$$\left|egin{array}{ccc|c} 1 & x & x^2 \ x^2 & 1 & x \ x & x^2 & 1 \end{array}
ight|=\left(1-x^3
ight)^2$$

80. Consider the matrix $A = \begin{bmatrix} 2 & 5 \\ 3 & 2 \end{bmatrix}$

Find adj(A)

81. Consider the matrix $A = \left[egin{array}{cc} 2 & 5 \ 3 & 2 \end{array}
ight]$

Find A^{-1}

Watch Video Solution

82. Consider the matrix $A = \begin{bmatrix} 2 & 5 \\ 3 & 2 \end{bmatrix}$

Using A^{-1} solve the system of linear

equations 2x + 5y = 1, 3x + 2y = 7

83. Consider the matrix
$$A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$$

Using the column operation

$$C_1
ightarrow C_1+C_2+C_3$$
,

show that
$$|A|=(a+b+c)egin{bmatrix} 1 & b & c \ 1 & c & a \ 1 & a & b \end{bmatrix}$$

84. Consider the matrix
$$A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$$

show that $|A|=-\left(a^3+b^3+c^3-3abc
ight)$

85. Consider the matrix
$$A = \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$$

Find $A \times adj(A)$ if a=1, b=10, c=100`

Watch Video Solution

86. If
$$A = egin{bmatrix} 1 & 1 & 5 \ 0 & 1 & 3 \ 0 & -1 & -2 \end{bmatrix}$$

what is the value of |3A|?

87. Find the equation of the line joining the points(1,2) and (-3,-2) using determinants.

Watch Video Solution

88. Show that

$$egin{bmatrix} 1 & a & a^2 \ 1 & b & b^2 \ 1 & c & c^2 \ \end{bmatrix} = (a-b)(b-c)(c-a)$$

89. Consider the following system of linear

equations,
$$x+y+z=6$$
, $x-y+z=2$,

$$2x + y + z = 1$$

Express this system of equations in the standard $\operatorname{form} AX = B$

Watch Video Solution

90. Consider the following system of linear

equations,
$$x+y+z=6$$
, $x-y+z=2$,

$$2x + y + z = 1$$

Prove that A is non-singular.

91. Consider the following system of linear equations, x+y+z=6, x-y+z=2,

$$2x + y + z = 1$$

Find the value of x,y and z satisfying the above equation.

92. If
$$\begin{vmatrix} x & 3 \\ 5 & 2 \end{vmatrix} = 5$$
, then x=....

93. Prove that

$$egin{bmatrix} y+k & y & y \ y & y+k & y \ y & y+k \ \end{pmatrix} = k^2(3y+k)$$

Watch Video Solution

94. Solve the following system of linear

Equations, using matrix method,

$$5x + 2y = 3.3x + 2y = 5$$

95. Let B is a square matrix of order 5, then

|kB| is equal to....

- A. |B|
- B. k|B|
- $\mathsf{C}.\,k^5|B|$
- D. 5|B|

Answer:

$$egin{bmatrix} 1 & x & x^2 \ 1 & y & y^2 \ 1 & z & z^2 \end{bmatrix} = (x-y)(y-z)(z-x)$$

Watch Video Solution

97. Check the consistency of the following equations,

$$2x + 3y + z = 6$$
, $x + 2y - z = 2$,

$$7x + y + 2z = 10$$

98. Find the values of x in which

$$\left|egin{array}{cc} 3 & x \ x & 1 \end{array}
ight| = \left|egin{array}{cc} 3 & 2 \ 4 & 1 \end{array}
ight|$$

Watch Video Solution

99. Using the property of determinants, show

that the points

A(a, b + c), B(b, c + a), C(c, a + b)are

collinear.

100. Examine the consistency of system of

following equations:

$$5x - 6y + 4z = 15$$

$$7x + y - 3z = 19$$

$$2x + y + 6z = 46$$

Watch Video Solution

101. Consider a system of linear equations which

is given below,

$$rac{2}{x}+rac{3}{y}+rac{10}{z}=4$$
, $rac{4}{x}-rac{6}{y}+rac{5}{z}=1$, $rac{6}{x}+rac{9}{y}-rac{20}{z}=2$.

Express the above equation in the matrix form

$$AX = B$$
.

Watch Video Solution

102. Consider a system of linear equations

which is given below,

$$rac{2}{x}+rac{3}{y}+rac{10}{z}=4$$
, $rac{4}{x}-rac{6}{y}+rac{5}{z}=1$, $rac{6}{x}+rac{9}{y}-rac{20}{z}=2$

$$\frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2$$

Find A^{-1} .

103. Consider a system of linear equations

which is given below,

$$rac{2}{x}+rac{3}{y}+rac{10}{z}=4, rac{4}{x}-rac{6}{y}+rac{5}{z}=1, \ rac{6}{x}+rac{9}{y}-rac{20}{z}=2$$

Find x,y and z.

Watch Video Solution

104. Consider the matrices
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$

Prove that $A^2 - 7A - 2I = 0$

105. Consider the matrices $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$

Hence find $A^{\,-1}$

Watch Video Solution

106. Consider the matrices $A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$

Solve the following system of equations

using matrix method 2x+3y=4,4x+5y=6

107. Let A be a square matrix of order 2x2

 $\mathsf{then}|KA|$ is equal to

- A. K|A|
- B. $K^2|A|$
- $\mathsf{C}.\,K^3|A|$
- D. 2K|A|

Answer:

108. Prove that

$$\left|egin{array}{cccc} a-b-c & 2a & 2a \ 2b & b-c-a & 2b \ 2c & 2c & c-a-b \end{array}
ight|=\left(a+b+c
ight)^3$$

109. Examine the consistency of the system of Equations.

$$5x + 3y = 5,2x + 6y = 8$$

110. Choose the correct statement related to

the matrices
$$A=egin{bmatrix}1&0\0&1\end{bmatrix}$$
 , $B=egin{bmatrix}0&1\1&0\end{bmatrix}$

A.
$$A^3=A,B^3
eq B$$

$$\mathtt{B.}\,A^3 \neq A,B^3 = B$$

C.
$$A^3 = A, B^3 = B$$

D.
$$A^3 \neq A, B^3 \neq B$$

Answer:

111. If
$$M=\begin{bmatrix} 7 & 5 \\ 2 & 3 \end{bmatrix}$$
 , then verify the equation

$$M^2 - 10M + 11I_2 = 0$$

112. Inverse of the matrix
$$\begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$

113. Solve the system of Linear equations

$$x + 2y + z = 8,2x + y - z = 1,x - y + z = 2$$

114. If
$$\begin{vmatrix} x & 1 \\ 1 & x \end{vmatrix} = 15$$
,then find the value of x.

115. Solve the following system of equations

$$3x - 2y + 3z = 8,2x + y - z = 1,$$

$$4x - 3y + 2z = 4$$

116. The value of the determinant
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 1 & 1 & -1 \end{vmatrix}$$
 is

A. -4

B. 0

C. 1

D. 4

Answer:

117. Using matrix method, solve the system

of linear equations

$$x + y + 2z = 4,2x - y + 3z = 9,$$

$$3x - y - z = 2$$

Watch Video Solution

118. If $A=egin{bmatrix} a & 1 \ 1 & 0 \end{bmatrix}$ is such that $A^2=I$ then a

equals

A. 1

B. -1

C. 0

D. 2

Answer:

Watch Video Solution

119. Solve the system of equations

$$x-y+z=4$$
, $2x+y-3z=0$, $x+y+z=2$

Using matrix method

120. If A is a 2 imes 2 matrix with |A| = 5, then

adj[adjA] is

A. 5

B. 25

 $\mathsf{C.}\ \frac{1}{5}$

D. $\frac{1}{25}$

Answer:

121. Solve the system of equations using matrix method.

$$x + y + z = 1,2x + 3y - z = 6,$$

$$x - y + z = -1$$

