©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - MAXIMUM PUBLICATION

DIFFERENTIAL EQUATION

Example

1. Find the differential equation satisfying
$y=e^{2 x}(a+b x), \mathrm{a} \quad$ and $\quad \mathrm{b}$ are arbitrary
constants.
2. Find the differential equation satisfying $y=e^{x}(a \cos x+b \sin x), \mathrm{a}$ and b are arbitrary constants..

D Watch Video Solution

3. Find the differential equation satisfying $y=c_{1} e^{x}+c_{2} e^{-x}, c_{-} 1$ and c_2 are arbitrary constants.

Watch Video Solution

4. Form the differential equation representing
the family of curve given by
$(x-a)^{2}+2 y^{2}=a^{2}, \mathrm{a} \quad$ is \quad a \quad arbitrary
constants.

D Watch Video Solution

5. Find the equation of a curve passing through
the point $(0,-2)$ given that at any point (x, y)
on the curve, the product of the slope of its
tangent and y coordinate of the point is equal to the x coordinate of the point.

D Watch Video Solution

6. Form the DE representing the family of
parabolas having vertex at origin and axis
along positive direction of x-axis.

D Watch Video Solution
7. For the DE $x y \frac{d y}{d x}=(x+2)(y+2)$,find the solution curve passing through the point (1,-1).

- Watch Video Solution

8. Solve the initial value problem:
$\frac{d y}{d x}=y \tan 2 x, y(0)=2$

- Watch Video Solution

9. Consider the differential equation given
below.
$\frac{d^{4} y}{d x^{4}}-\sin \left(\frac{d^{3} y}{d x^{3}}\right)=0$
write the order and degree of the DE (if defined)

D Watch Video Solution

10. Find the Differential equation satisfying
the family of curves $y^{2}=a\left(b^{2}-x^{2}\right)$, a and b
are arbitrary constants.

Watch Video Solution

11. Find the Differential equation satisfying
the family of curves $y=a e^{3 x}+b e^{-2 x}$, a
and b are arbitrary constants.

- Watch Video Solution

12. Write the order and degree of the DE

$$
\left[\frac{d y}{d x}\right]^{2}+\frac{d y}{d x}-\sin ^{2} y=0
$$

13. Consider the equation of all circles which

 pass through the origin and whose centres are on the x-axis.Define the general equation of the circle.

D Watch Video Solution

14. Consider the equation of all circles which
pass through the origin and whose centres
are on the x-axis.

Find the DE corresponding to the above equation.

- Watch Video Solution

15. Find a particular solution satisfying the
given condition.
$\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x}=2 x^{2}+x$
when $y=1, x=0$

D Watch Video Solution
16. Write the degree of the DE $y^{\prime}=2 x y$.
[0,1,2,3]

D Watch Video Solution

17. Express $y^{\prime}=2 x y$ in the form $M d x=N d y$
where M is a function of x and N is the
function of y.

D Watch Video Solution
18. Solve $y^{\prime}=2 x y, y(0)=1$

D Watch Video Solution

19. Solve the following DE.
$\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}$

D Watch Video Solution

20. Solve the linear differential equation
$x \frac{d y}{d x}-y=(x-1) e^{x}$

- Watch Video Solution

21. Choose the correct answer from the bracket.

The solution of the differential equation
$x d y+y d x=0$ represents

- Watch Video Solution

22. Choose the correct answer from the
bracket.

The solution of the differential equation $x d y+y d x=0$ represents
A. A straight line passing through origin
B. A rectangular hyperbola
C. A parabola
D. A circle whose centre is origin

Answer:

(Watch Video Solution
23. Choose the correct answer from the bracket.

The solution of the differential equation
$x d y+y d x=0$ represents

- Watch Video Solution

24. Choose the correct answer from the bracket.

The solution of the differential equation
$x d y+y d x=0$ represents
25. Form the DE of the family of circles
touching the x-axix at origin.

- Watch Video Solution

26. Solve the DE $x^{2} \frac{d y}{d x}=x^{2}-2 y^{2}+x y$

D Watch Video Solution
27. Choose the correct answer from the bracket

The DE $\frac{d y}{d x}+\frac{y}{x}=e^{x}, \mathrm{x}>0$ is of order
[0,1,2,3]

D Watch Video Solution

28. Choose the correct answer from the bracket

The integrating factor of $\frac{d y}{d x}+\frac{y}{x}=e^{x}$,is.. A. x
B. $e^{\wedge} x$
C. $-x$
D. $-e^{\wedge} x$

Answer:

D Watch Video Solution
29. Solve $\frac{d y}{d x}+\frac{y}{x}=e^{x}$
30. Solve the $\mathrm{DE} \frac{d y}{d x}=\frac{x+y}{x-y}$

- Watch Video Solution

31. Consider the DE $\frac{d y}{d x}=\frac{y^{3}+3 x^{2} y}{x^{3}+3 x y^{2}}$

Identify the DE? Give reason.

- Watch Video Solution

32. Consider the $\mathrm{DE} \frac{d y}{d x}=\frac{y^{3}+3 x^{2} y}{x^{3}+3 x y^{2}}$

Explain the method of solving the DE.
33. Consider the DE $\frac{d y}{d x}=\frac{y^{3}+3 x^{2} y}{x^{3}+3 x y^{2}}$ Solve the DE.

D Watch Video Solution
34. Consider the D.E $\frac{d y}{d x}+\frac{y}{x}=x^{2}$

Find degree and order of DE.

- Watch Video Solution

35. Consider the D.E $\frac{d y}{d x}+\frac{y}{x}=x^{2}$ Solve the D.E.

- Watch Video Solution

36. Consider the D.E $\frac{d y}{d x}+\frac{y}{x}=x^{2}$

Find the particular solution when

$$
x=1, y=1
$$

D Watch Video Solution

37. Consider the equation. $\frac{d y}{d x}+y=\sin x$ What is the order and degree of this equation?

- Watch Video Solution

38. Consider the equation. $\frac{d y}{d x}+y=\sin x$

Find the integrating factor.

D Watch Video Solution
39. Consider the equation. $\frac{d y}{d x}+y=\sin x$ Solve this equation.

- Watch Video Solution

Find $d y / d x$,degree and order of the above differential equation.

D Watch Video Solution

41.

Consider
the
$\left(x^{2}-1\right) \frac{d y}{d x}+2(x+2) y=2(x+1)$
D.E

Find the integrating factor of the above diffrential equation.

- Watch Video Solution

42.

Consider
the
D.E
$\left(x^{2}-1\right) \frac{d y}{d x}+2(x+2) y=2(x+1)$ Solve
the differential equation.
43. The degree of the differential Equation $\frac{d^{2} y}{d x^{2}}+\cos \left(\frac{d y}{d x}\right)=0$ is
A. 2
B. 1
C. 0
D. Not defined

Answer:

D Watch Video Solution

44. Solve $\frac{d y}{d x}+2 y \tan x=\sin x, y=0$,
$x=\frac{\pi}{3}$

- Watch Video Solution

45. The order of the differential equation
$x^{4} \frac{d^{2} y}{d x^{2}}=1+\left(\frac{d y}{d x}\right)^{3}$ is

- Watch Video Solution

46. Find the particular solution of the
differential equation
$\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}}$, when $y=0$,
$x=1$.

D Watch Video Solution

47. Form a differential equation of the family
of circles having centre on y-axis and
radius 3 units.
48. Consider the Differential equation
$\frac{d^{2} y}{d x^{2}}+y=0$
Write the order and degree.

D Watch Video Solution

49. Consider the Differential equation
$\frac{d^{2} y}{d x^{2}}+y=0$
Verify that $y=a \cos x+b \sin x$ where
a, b in R is a solution of the given $D E$.
50. If $\cos x \frac{d y}{d x}+y \sin x=\tan ^{2} x$ is a DE,then

Find its order and degree.

D Watch Video Solution

51. If $\cos x \frac{d y}{d x}+y \sin x=\tan ^{2} x$ is a DE,then

Find its general solution.

- Watch Video Solution

52. Write the order and degree of the DE $\left[\frac{d y}{d x}\right]^{2}+\frac{d y}{d x}-\sin ^{2} y=0$

D Watch Video Solution
53. Solve the $\mathrm{DE} \frac{d y}{d x}+2 y \tan x=\sin x$

- Watch Video Solution

54. The general solution of the DE
$d y / d x=e^{\wedge} x-y$ is
A. $e^{y}+e^{x}=c$
B. $e^{y}-e^{x}=c$
C. $e^{-y}-e^{-x}=c$
D. $e^{-y}+e^{-x}=c$

Answer:

D Watch Video Solution
55. Solve the $D E^{\prime} d y / d x=2 x y /\left(1+x^{\wedge} 2\right)+x^{\wedge} 2+2$
56. Consider the family of all circles having
their centre at the point (1,2).Write the equation of the family.Write the corresponding differential equation.

- Watch Video Solution

57. Write the integrating factor of the
differential equation
$` \cos x d y / d x+y=\sin x$
58. Write the order and degree of the differential equations.
$x y\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+x\left(\frac{d y}{d x}\right)^{3}-y \frac{d y}{d x}=0$

- Watch Video Solution

59. Find the general solution of the
differential equation $y \log y d x-x d y=0$

- Watch Video Solution

60. Find the integrating factor of the
differential equation $x \frac{d y}{d x}-y=2 x^{2}$

D Watch Video Solution

61. $y=a \cos x+b \sin x$ is the solution of the
differential equation
$\frac{d^{2} y}{d x^{2}}+y=0$

- Watch Video Solution

62. $y=a \cos x+b \sin x$ is the solution of the
differential equation
$\frac{d^{2} y}{d x^{2}}+y=0$

- Watch Video Solution

63. Verify that the function
$y=a \cos x+b \sin x$ is the solution of the
differential equation $\frac{d^{2} y}{d x^{2}}+y=0$

- Watch Video Solution

64. $y=a \cos x+b \sin x$ is the solution of the
differential equation
$\frac{d^{2} y}{d x^{2}}+y=0$

D Watch Video Solution
65. Find the solution of the differential
equation $x \frac{d y}{d x}+2 y=x^{2},(\mathrm{x}!=0)$ given
that $y=0$ when $x=1$

D Watch Video Solution

66. Form the DE corresponding to the

Function $y=a e^{x}+b e^{2 x}$

- Watch Video Solution

67. Solve $x \frac{d y}{d x}=x+y$

D Watch Video Solution
68. Form the DE corresponding to the
function $x y=c^{2}$
69. Consider the $\operatorname{DE}\left(x^{2}+y^{2}\right) d x=2 x y d y$

Write the DE in the form $\frac{d y}{d x}=g\left[\frac{y}{x}\right]$

D Watch Video Solution

70. Consider the $\operatorname{DE}\left(x^{2}+y^{2}\right) d x=2 x y d y$ Solve the DE completely

D Watch Video Solution
71. Equation of a circle touching the y-axis at origin is $x^{2}+y^{2}-2 a x=0$.Find the DE of all such circles.

- Watch Video Solution

72. Solve the $\operatorname{DE}\left(1+x^{2}\right) \frac{d y}{d x}+y=\tan ^{-1} x$

D Watch Video Solution

73. Solution of the DE $y^{\prime}-y=0$ is $y=\ldots$.
74. Solve the $\mathrm{DE} \frac{d y}{d x}+y \sec x=\tan x$

- Watch Video Solution

75. Form the DE of the family of ellipse having foci on the x-axis and centre at the origin.

- Watch Video Solution

76.

Consider
the
DE
$x d y-y d x=\sqrt{x^{2}+y^{2}} d x$
Express it in the form $\mathrm{dy} / \mathrm{dx}=\mathrm{F}(\mathrm{x}, \mathrm{y})$

- Watch Video Solution

77. Consider
the
DE
$x d y-y d x=\sqrt{x^{2}+y^{2}} d x$
Find the general solution.

78. Prove that the DE is

$\left(3 x y+y^{2}\right) d x+\left(x^{2}+x y\right) d y=0$
a homogeneous DE of degree0.

- Watch Video Solution

79. Solve the DE
$\left(3 x y+y^{2}\right) d x+\left(x^{2}+x y\right) d y=0$

- Watch Video Solution

80. Consider the differential equation
$\frac{d y}{d x}-3 \cot x y=\sin 2 x$.
Find its integrating factors.

D Watch Video Solution

81. Consider the differential equation
$\frac{d y}{d x}-3 \cot x y=\sin 2 x$.
Find its solution, given that $y=2$
When $x=\frac{\pi}{2}$.

D Watch Video Solution

