

MATHS

BOOKS - MAXIMUM PUBLICATION

DIFFERENTIAL EQUATION

1. Find the differential equation satisfying $y = e^{2x}(a + bx)$, a and b are arbitrary constants.

 $y = e^x (a \cos x + b \sin x)$,a and b are arbitrary constants..

4. Form the differential equation representing

the family of curve given by $\left(x-a
ight)^2+2y^2=a^2$,a is a arbitrary

constants.

Watch Video Solution

5. Find the equation of a curve passing through

the point (0,-2) given that at any point (x,y)

on the curve, the product of the slope of its

tangent and y coordinate of the point is equal

to the x coordinate of the point.

Watch Video Solution

6. Form the DE representing the family of

parabolas having vertex at origin and axis

along positive direction of x-axis.

7. For the DE $xyrac{dy}{dx}=(x+2)(y+2)$,find the

solution curve passing through the point (1,-1).

8. Solve the initial value problem:

$$rac{dy}{dx} = y an 2x, \! y(0) = 2$$

9. Consider the differential equation given

below.

$$rac{d^4y}{dx^4} - \sin\!\left(rac{d^3y}{dx^3}
ight) = 0$$

write the order and degree of the DE(if

defined)

10. Find the Differential equation satisfying

the family of curves $y^2=aig(b^2-x^2ig)$,a and b

are arbitrary constants.

11. Find the Differential equation satisfying

the family of curves $y=ae^{3x}+be^{\,-2x}$,a

and b are arbitrary constants.

Watch Video Solution

12. Write the order and degree of the DE

$$\left[rac{dy}{dx}
ight]^2+rac{dy}{dx}-\sin^2 y=0$$

13. Consider the equation of all circles which pass through the origin and whose centres are on the x-axis.

Define the general equation of the circle.

Watch Video Solution

14. Consider the equation of all circles which pass through the origin and whose centres are on the x-axis.

Find the DE corresponding to the above

equation.

15. Find a particular solution satisfying the

given

condition.

$$ig(x^3+x^2+x+1ig)rac{dy}{dx}=2x^2+x$$

when y = 1, x = 0

16. Write the degree of the DE y' = 2xy.

[0,1,2,3]

Watch Video Solution

17. Express y' = 2xy in the form Mdx = Ndy

where M is a function of x and N is the

function of y.

20. Solve the linear differential equation

$$xrac{dy}{dx}-y=(x-1)e^x$$

21. Choose the correct answer from the

bracket.

The solution of the differential equation

xdy + ydx = 0 represents

Watch Video Solution

22. Choose the correct answer from the

bracket.

The solution of the differential equation

xdy + ydx = 0 represents

A. A straight line passing through origin

- B. A rectangular hyperbola
- C. A parabola
- D. A circle whose centre is origin

Answer:

23. Choose the correct answer from the

bracket.

The solution of the differential equation

xdy + ydx = 0 represents

24. Choose the correct answer from the

bracket.

The solution of the differential equation

xdy + ydx = 0 represents

25. Form the DE of the family of circles

touching the x-axix at origin.

Watch Video Solution

26. Solve the DE
$$x^2 rac{dy}{dx} = x^2 - 2y^2 + xy$$

27. Choose the correct answer from the

bracket

The DE
$$rac{dy}{dx}+rac{y}{x}=e^{x}$$
,x>0 is of order [0,1,2,3]

Watch Video Solution

28. Choose the correct answer from the bracket

The integrating factor of
$$\displaystyle rac{dy}{dx} + \displaystyle rac{y}{x} = e^x$$
 ,is..

B. e^x

С. -х

D. -е^х

Answer:

Watch Video Solution

29. Solve
$$\displaystyle rac{dy}{dx} + \displaystyle rac{y}{x} = e^x$$

30. Solve the DE
$$rac{dy}{dx}=rac{x+y}{x-y}$$

32. Consider the DE
$$rac{dy}{dx}=rac{y^3+3x^2y}{x^3+3xy^2}$$

Explain the method of solving the DE.

33. Consider the
$$\mathsf{DE} \frac{dy}{dx} = \frac{y^3 + 3x^2y}{x^3 + 3xy^2}$$
 Solve the DE.

Watch Video Solution

34. Consider the D.E
$$rac{dy}{dx}+rac{y}{x}=x^2$$

Find degree and order of DE.

35. Consider the D.E
$$rac{dy}{dx}+rac{y}{x}=x^2$$

Solve the D.E.

Watch Video Solution

36. Consider the D.E
$$rac{dy}{dx}+rac{y}{x}=x^2$$

Find the particular solution when

$$x = 1, y = 1$$

37. Consider the equation. $rac{dy}{dx} + y = \sin x$

What is the order and degree of this

equation?

38. Consider the equation.
$$rac{dy}{dx} + y = \sin x$$

Find the integrating factor.

39. Consider the equation. $rac{dy}{dx} + y = \sin x$

Solve this equation.

Find the integrating factor of the above

diffrential equation.

42. Consider the D.E
$$ig(x^2-1ig)rac{dy}{dx}+2(x+2)y=2(x+1)$$
Solve

the differential equation.

43. The degree of the differential Equation

$$rac{d^2y}{dx^2}+\cosiggl(rac{dy}{dx}iggr)=0$$
 is

A. 2

B. 1

C. 0

D. Not defined

Answer:

45. The order of the differential equation

$$x^4rac{d^2y}{dx^2}=1+\left(rac{dy}{dx}
ight)^3$$
 is

46. Find the particular solution of the

differential equation

$$ig(1+x^2ig)rac{dy}{dx}+2xy=rac{1}{1+x^2}$$
 ,when $y=0$,

x = 1.

Watch Video Solution

47. Form a differential equation of the family

of circles having centre on y-axis and

radius 3 units.

48. Consider the Differential equation

$$rac{d^2y}{dx^2}+y=0$$

Write the order and degree.

49. Consider the Differential equation

$$rac{d^2y}{dx^2}+y=0$$

Verify that $y = a \cos x + b \sin x$ where

a,b in R is a solution of the given DE.

50. If
$$\cos x rac{dy}{dx} + y \sin x = an^2 x$$
 is a DE,then

Find its order and degree.

Watch Video Solution

51. If
$$\cos x rac{dy}{dx} + y \sin x = an^2 x$$
 is a DE,then

Find its general solution.

52. Write the order and degree of the DE

$$\left[rac{dy}{dx}
ight]^2+rac{dy}{dx}-\sin^2 y=0$$

Watch Video Solution

53. Solve the
$$\mathsf{DE} rac{dy}{dx} + 2y an x = \sin x$$

Watch Video Solution

54. The general solution of the DE

dy/dx= e^x-y is

A.
$$e^y + e^x = c$$

$$\mathsf{B.}\,e^y-e^x=c$$

$$\mathsf{C}.\,e^{-y}-e^{-x}=c$$

D.
$$e^{-y} + e^{-x} = c$$

Answer:

55. Solve the DE`dy/dx= $2xy/(1+x^2)+x^2+2$

56. Consider the family of all circles having their centre at the point (1,2).Write the equation of the family.Write the

corresponding differential equation.

Watch Video Solution

57. Write the integrating factor of the

differential equation

`cosxdy/dx+y=sinx

58. Write the order and degree of the

differential equations.

$$xyigg(rac{d^2y}{dx^2}igg)^2+xigg(rac{dy}{dx}igg)^3-yrac{dy}{dx}=0$$

Watch Video Solution

59. Find the general solution of the

differential equation $y \log y dx - x dy = 0$

60. Find the integrating factor of the

differential equation $x \frac{dy}{dx} - y = 2x^2$

Watch Video Solution

61. $y = a \cos x + b \sin x$ is the solution of the

differential equation

$$rac{d^2y}{dx^2}+y=0$$

62. $y = a \cos x + b \sin x$ is the solution of the

differential equation

$$rac{d^2y}{dx^2}+y=0$$

63. Verify that the function
$$y = a \cos x + b \sin x$$
 is the solution of the differential equation $rac{d^2 y}{dx^2} + y = 0$

64. $y = a \cos x + b \sin x$ is the solution of the

differential equation

$$rac{d^2y}{dx^2}+y=0$$

65. Find the solution of the differential equation $x \frac{dy}{dx} + 2y = x^2$,(x!=0) given that y = 0 when x = 1

66. Form the DE corresponding to the

Function $y = ae^x + be^{2x}$

Watch Video Solution

67. Solve
$$x rac{dy}{dx} = x + y$$

Watch Video Solution

68. Form the DE corresponding to the

function $xy = c^2$

70. Consider the
$$\mathsf{DE}ig(x^2+y^2ig)dx=2xydy$$

Solve the DE completely

71. Equation of a circle touching the y-axis at origin is $x^2 + y^2 - 2ax = 0$.Find the DE of all such circles.

73. Solution of the DE y' - y = 0 is $y = \dots$.

74. Solve the
$$\mathsf{DE} rac{dy}{dx} + y \sec x = \tan x$$

Watch Video Solution

75. Form the DE of the family of ellipse

having foci on the x-axis and centre at

the origin.

Find the general solution.

Watch Video Solution

78. Prove that the DE is

$$ig(3xy+y^2ig)dx+ig(x^2+xyig)dy=0$$

a homogeneous DE of degree0.

Watch Video Solution

79. Solve the DE

$$ig(3xy+y^2ig)dx+ig(x^2+xyig)dy=0$$

80. Consider the differential equation

$$rac{dy}{dx} - 3\cot xy = \sin 2x.$$

Find its integrating factors.

81. Consider the differential equation

$$rac{dy}{dx} - 3\cot xy = \sin 2x.$$

Find its solution, given that y=2

When $x = \frac{\pi}{2}$.

