đず doubtnut

India's Number 1 Education App

MATHS

BOOKS - MAXIMUM PUBLICATION

LINEAR PROGRAMMING

Example

1. Solve the following LPP Graphically,

Maximise, $Z=60 x+15 y$

Subject to constriants,
$x+y \leq 50,3 x+y \leq 90, x \geq 0, y \geq 0$

D Watch Video Solution

2. Solve the following LPP Graphically,

Minimise, $Z=-3 x+4 y$

Subject to constraints,
$x+2 y \leq 8,3 x+2 y \leq 12, x \geq 0, y \geq 0$
3. Solve the following LPP Graphically,

Minimise, $Z=3 x+5 y$
Subject to constraints,
$x+3 y \geq 3, x+y \geq 2, x \geq 0, y \geq 0$

- Watch Video Solution

4. One kind of cake requires 200 g of flour and

25 g of fat ,and another kind of cake requires
100 g of flour and 50 g of fat.Find the maximum number of cakes which can be made from 5 kg
of flour and 1 kg of fat assuming that there is no shortage of the other ingredients, used in making the cake.

D Watch Video Solution

5. A factory makes tennis rackets and bats, A tennis racket takes 1.5 hours of machine and 3
hours of craftsman's time in its making,while a cricket bat takes 3 hours of machine time and

1 hour of craftman's time.In a day,the factory
has availibilityof not more than 42 hours of
machine time and 24 hours of craftman's time.

What no of rackets and bats must be produced if the factory is to work at full capacity?

D Watch Video Solution

6. A factory makes tennis rackets and bats, A tennis racket takes 1.5 hours of machine and 3 hours of craftsman's time in its making,while a cricket bat takes 3 hours of machine time and

1 hour of craftman's time.In a day,the factory
has availibilityof not more than 42 hours of machine time and 24 hours of craftman's time.
if the profit on a racket and a bat isRs20 and

Rs10 find maximum profit

D Watch Video Solution

7. Two godowns A and B have grains capacity of 100 quintals and 50 quintals respectively.They supply to 3 ration shop D,E,F whose requirement are 60,50 and 40 quintals respectively.The cost of transportation per
quintal from the godowns to the shops is given in the following table, transportation cost per quintal(in Rs).

Hence should the supplies be transported in order that the transportation cost is minimum?What is the minimum cost?

From/To	A	B
D	6	4
E	3	2
F	2.5	3

8. Choose the correct answer from the bracket.If an LPP is consistent,then its feasible region is always
A. Bounded
B. Unbounded
C. Convex region
D. Concave region

Answer:

D Watch Video Solution
9. Maximise $Z=2 x+3 y$ subject to the
constraints $x+y<4, x>0, y>0^{\prime}$

D Watch Video Solution

10. The graph of linear programing problem is given below.The shaded region is the feasible region.The objective function is
$Z=p x+q y$
What are the co ordinates of the corners of
the feasible region.

- Watch Video Solution

11. The graph of linear programing problem is

given below.The shaded region is the feasible

region. The objective function is
$Z=p x+q y$

Write the constraints.

- Watch Video Solution

12. The graph of linear programing problem is given below.The shaded region is the feasible region.The objective function is
$Z=p x+q y$
What are the co ordinates of the corners of
the feasible region.

- Watch Video Solution

13. The graph of linear programing problem is
given below.The shaded region is the feasible
region.The objective function is
$Z=p x+q y$

Write the constraints.

- Watch Video Solution

14. The graph of linear programing problem is
given below.The shaded region is the feasible
region. The objective function is
$Z=3 x+2 y$

Find the Max Z.

- Watch Video Solution

15. A diet is to contain atleast 80 units of vitamin A and 100 units of minerals.Two foods

F1 and F2 are available.Food F1 costs Rs 4 per unit food and F2 costs Rs 6 per unit.One unit of food F1 contains 3 units of vitamin A and 4
units of minerals. One unit of food F2 contains

6 unit of of vitamin A and 3 units of minerals.Formulate this as a linear programming problem.Find the minimum costs for diet that consists of misture of these two foods and also meets the minimal nutritional requirements.

D Watch Video Solution

16. Consider the linear programming problem,

$$
Z=x+y, 2 x+y-3 \leq 0
$$

$x-2 y+1 \leq 0, y \leq 3, x \geq 0, y \geq 0$
Draw its feasible region.

D Watch Video Solution

17. Consider the linear programming problem,

Maximize, $Z=x+y$, subject to constraints
$2 x+y-3 \leq 0, x-2 y+1 \leq 0, y \leq 3, x \geq 0$,
$y \geq 0$

Find the corner points of the feasible region.
18. Consider the linear programming problem,

Maximise, $Z=x+y$, subject to the
constraints $2 x+y-3 \leq 0, x-2 y+1 \leq 0$,
$y \leq 3, x \geq 0, y \geq 0$
Find the corner at which Z attains its maximum.

- Watch Video Solution

19. Consider the LPP

Minimise,Z=200x+500y
$x+2 y \geq 10,3 x+4 y \leq 24, x \geq 0, y \geq 0$
Draw the feasible region.

D Watch Video Solution
20. Consider the LPP

Minimise,Z=200x+500y
$x+2 y \geq 10,3 x+4 y \leq 24, x \geq 0, y \geq 0$

Find the co-ordinates of the corner points of the feasible region.

D Watch Video Solution

21. Consider the LPP

Minimize,Z=200x+500y
$x+2 y \geq 10,3 x+4 y \leq 24, x \geq 0, y \geq 0$

Solve the LPP.

D Watch Video Solution

22. Consider the LPP

Maximise, $Z=5 x+3 y$

Subject to, $3 x+5 y \leq 15,5 x+2 y \leq 10$,
$x, y \geq 0$

Draw the feasible region.

- Watch Video Solution

23. Consider the LPP

Maximise, $Z=5 x+3 y$

Subject
to, $3 x+5 y \leq 15,5 x+2 y \leq 10$,
$x, y \geq 0$

Find the corner points of the feasible region.

D Watch Video Solution

24. Consider the LPP

Maximise, $Z=5 x+3 y$

Subject to, $3 x+5 y \leq 15,5 x+2 y \leq 10$,
$x, y \geq 0$

Find the corner at which Z attains its maximum.

D Watch Video Solution

25. Consider the linear programming problem:

Minimise $Z=3 x+9 y$
subject to the constraints:
$x+3 y \leq 60 x+y \geq 10, x \leq y, x \geq 0, y \geq 0$.

Draw its feasible region.

- Watch Video Solution

26. Consider the linear programming problem:

Minimise $Z=3 x+9 y$
subject to the constraints:
$x+3 y \leq 60 x+y \geq 10, x \leq y, x \geq 0, y \geq 0$.

Find the vertics of the feasible region.

- Watch Video Solution

27. Consider the linear programming problem:

Minimise $Z=3 x+9 y$
subject to the constraints:
$x+3 y \leq 60, x+y \geq 10, x \leq y, x \geq 0, y \geq 0$.
Find the minimum value of Z subject to the given constraints.

D Watch Video Solution

28. Consider the linear inequalities
$2 x+3 y \leq 6,2 x+y \leq 4, x, y \geq 0$

Mark the feasible region.

D Watch Video Solution

29. Consider the linear inequalities
$2 x+3 y \leq 6,2 x+y \leq 4, x, y \geq 0$
Maximise the function $z=4 x+5 y$ subject to
the given constraints.

D Watch Video Solution
30. Consider the linear programming problem:

Minimise $Z=-3 x+4 y$

Subject to $x+2 y \leq 8,3 x+2 y \leq 12, \mathrm{x}, \mathrm{y}>.0$ Mark its feasible region.

D Watch Video Solution

31. Consider the linear programming problem:

Minimise $Z=-3 x+4 y$
Subject to $x+2 y \leq 8,3 x+2 y \leq 12, \mathrm{x}, \mathrm{y} \geq 0^{\prime}$

Find the corner points of the feasible region.
32. Consider the linear programming problem:

Minimise $Z=-3 x+4 y$

Subject to $x+2 y \leq 8,3 x+2 y \leq 12, \mathrm{x}, \mathrm{y} \geq 0$ '

Find the corner at which Z attain its minimum.

D Watch Video Solution

33. Consider the linear programming problem:

Maximize $z=4 x+y$

Subject to constraints:
$x+y \leq 50,3 x+y \leq 90, x, y \geq 0$
Draw the feasible region.

D Watch Video Solution

34. Consider the linear programming problem:

Maximize $z=4 x+y$

Subject to constrains:
$x+y \leq 50,3 x+y \leq 90, x, y \geq 0$

Find the corner at which 'z' attains its maximum value.

D Watch Video Solution
35. Consider the linear programming problem:

Maximize $z=4 x+y$
Subject to constrains:
$x+y \leq 50,3 x+y \leq 90, x, y \geq 0$
Find the corner at which 'z' attains its maximum value.

- Watch Video Solution

36. Consider the LPP

Maximise $z=3 x+2 y$

Subject to the constraints
$x+2 y \leq 10,3 \mathrm{x}+\mathrm{y} \leq 15, \mathrm{x}, \mathrm{y} \geq 0{ }^{\prime}$

Find the corner points of the feasible region.

D Watch Video Solution

37. Consider the LPP

Maximise $z=3 x+2 y$

Subject to the constraints
$x+2 y \leq 10,3 \mathrm{x}+\mathrm{y} \leq 15, \mathrm{x}, \mathrm{y} \geq 0$ '

Find the corner points of the feasible region.
38. Consider the LPP

Maximise $z=3 x+2 y$

Subject to the constraints
$x+2 y \leq 10,3 \mathrm{x}+\mathrm{y} \leq 15, \mathrm{x}, \mathrm{y} \geq 0$ `

Find the maximum value of Z.

- Watch Video Solution

39. Consider the linear programming problem:

Maximum $z=50 x+40 y$
subject to constraints:
$x+2 y \leq 10,3 x+4 y \geq 24, x, y \geq 0$
Draw the feasible region.

D Watch Video Solution
40. Consider the linear programming problem:

Maximum $z=50 x+40 y$
subject to constraints:
$x+2 y \leq 10,3 x+4 y \geq 24, x, y \geq 0$
Find the corner points of the feasible region.
41. Consider the linear programming problem:

Maximum $z=50 x+40 y$
subject to constraints:
$x+2 y \leq 10,3 x+4 y \geq 24, x, y \geq 0$
Find the maximum value of z.

- Watch Video Solution

42. A furniture dealer sells only tables and chairs.He has Rs. 12,000 to invest and a space to store 90 pieces.A table costs him Rs. 400 and a chair Rs.100. He can sell a table at a
profit of Rs. 75 and a chair at a profit of Rs. 25 .

Assume that he can sell all the items.The dealer wants to get maximum profit.By defining suitable variables ,write the objective function.

D Watch Video Solution

43. A furniture dealer sells only tables and
chairs.He has Rs.12,000 to invest and a space
to store 90 pieces.A table costs him Rs. 400 and a chair Rs.100. He can sell a table at a
profit of Rs. 75 and a chair at a profit of Rs. 25 .

Assume that he can sell all the items.The dealer wants to get maximum profit.Write the constraints.

D Watch Video Solution

44. A furniture dealer sells only tables and chairs.He has Rs.12,000 to invest and a space to store 90 pieces.A table costs him Rs. 400 and a chair Rs.100. He can sell a table at a profit of Rs. 75 and a chair at a profit of Rs. 25 .

Assume that he can sell all the items.The dealer wants to get maximum profit.

Maximise the objective function graphically.

- Watch Video Solution

45. A company produces two types of cricket
balls A and B.The production time of one ball
of type B is double the type A (time in units
).The company has the time to produce a maximum of 2000 balls per day. The supply of
raw materials is sufficient for the production
of 1500 balls (both A and B) per day. The company wants to make maximum profit by making profit of Rs. 3 from a ball type of A and Rs. 5 from type B. Then,

By defining suitable variables write the objective function.

D Watch Video Solution

46. A company produces two types of cricket balls A and B.The production time of one ball of type B is double the type A (time in units
).The company has the time to produce a maximum of 2000 balls per day.The supply of raw materials is sufficient for the production of 1500 balls (both A and B) per day.The company wants to make maximum profit by making profit of Rs. 3 from a ball type of A and Rs. 5 from type B.Then, Write the constraints.

Watch Video Solution

47. A company produces two types of cricket balls A and B.The production time of one ball of type B is double the type A (time in units
).The company has the time to produce a maximum of 2000 balls per day.The supply of
raw materials is sufficient for the production of 1500 balls (both A and B) per day.The company wants to make maximum profit by making profit of Rs. 3 from a ball type of A and Rs. 5 from type B.Then,

How many balls should be produced in each type per day in order to get maximum profit?

- Watch Video Solution

48. The graph of linear programing problem is
given below.The shaded region is the feasible region.The objective function is
$Z=p x+q y$
What are the co ordinates of the corners of the feasible region.

49. The graph of linear programing problem is given below.The shaded region is the feasible region.The objective function is
$Z=p x+q y$
Write the constraints.

- Watch Video Solution

50. The graph of linear programming problem
is given below.The shaded region is the feasible region.The objective function is Maximise, $Z=p x+q y$
` If the Max,Z occurs at A and B, what is the relation between pand q ?

51. The graph of linear programming problem is given below.The shaded region is the feasible region.The objective function is Maximise, $Z=p x+q y$

If $q=1$, write the objective function when maximum of Z occures at A and B.'

- Watch Video Solution

52. The graph of linear programing problem is given below.The shaded region is the feasible region.The objective function is
$Z=3 x+2 y$
Find the Max Z.

53. A manufacturur produces nuts and bolts.lt
takes 1 hour of work on machine A and 3 hours
on machine B to produce a package of nuts. It
takes 3 hours on machine A and 1 hour on
machine B to produce a package of bolts. He
earns a profit of Rs.17.50 per package on nuts
and Rs. 7 per package on bolts.How many
package of each should be produced each day
so as to maximise the profit,if he operates his machine for at the most 12 hours a days?

By suitable defining the variables write the objective function of the problem.

- Watch Video Solution

54. A manufacturur produces nuts and bolts.lt
takes 1 hour of work on machine A and 3 hours
on machine B to produce a package of nuts. It
takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts. He earns a profit of Rs.17.50 per package on nuts and Rs. 7 per package on bolts.How many package of each should be produced each day so as to maximise the profit,if he operates his machine for at the most 12 hours a days?

Formulate the problem as a linear programming problem.

D Watch Video Solution

55. A manufacturur produces nuts and bolts.lt takes 1 hour of work on machine A and 3 hours on machine B to produce a package of nuts. It takes 3 hours on machine A and 1 hour on machine B to produce a package of bolts.He earns a profit of Rs.17.50 per package on nuts and Rs. 7 per package on bolts.How many
package of each should be produced each day so as to maximise the profit,if he operates his machine for at the most 12 hours a days?

Solve the LPP graphically and find the number of packages of nuts and bolts to be manufactured.

D Watch Video Solution

56. A bakery owner makes two types of cakes A and B. Three machines are needed for this purpose.The time (in minutes) requried for
making each type of cake in each of the machines is given below:

Each machine is available for atmost 6 hours per day. Assume that all cakes will be sold out every day.The bakery owner wants to make maximum profit per day by making 7.50 from type A and 5 from type B.
write the object function
57. A bakery owner makes two types of cakes A and B.There machines are needed for this purpose.The time(in minutes) required for making each type of cakes in each machine is given below,

Each machine is available for atmost 6 hours per day.Assume that all cakes will be sold out everyday.The bakery owner wants to make maximum profit per day by making Rs.7.5 from type A and Rs. 5 from type B.

Find the maximum profit graphically.

Machine	Types of cakes	
I	12	6
II	18	0
III	6	9

D Watch Video Solution

58. In factory there are two machines A and B
producing toys.They respectively produce 60
and 80 units in one hour.A can run a maximum
of 10 hours and B a maximum of 7 hours a day
.The cost of their running per hour
respectively amount to 2,000 and 2,500 rupee.The total duration of working these machines cannot exceed 12 hours a day.lf the total cost cannot exceed Rs. 25,000 per day and the total daily production is atleast 800 units,then formulate the problem mathematically.

- Watch Video Solution

