

MATHS

BOOKS - MAXIMUM PUBLICATION

MATRICES

1. Find the value of a,b and c from the

following equations,

$$\left[egin{array}{ccc} a-b & 2a+c \ 2a-b & 3c+d \end{array}
ight] = \left[egin{array}{ccc} -1 & 5 \ 0 & 13 \end{array}
ight]$$

3. Solve the equation for x,y,z and t, if
$$2\begin{bmatrix} x & z \\ & z \end{bmatrix} + 3\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} = 3\begin{bmatrix} 3 & 5 \\ 4 & c \end{bmatrix}$$

 $\begin{bmatrix} y & t \end{bmatrix} \stackrel{f}{=} \begin{bmatrix} 0 & 2 \end{bmatrix} \stackrel{f}{=} \begin{bmatrix} 4 & 6 \end{bmatrix}$

4. Find
$$A^2 - 5A + 6I$$
 if $A = egin{bmatrix} 2 & 0 & 1 \ 2 & 1 & 3 \ 1 & -1 & 0 \end{bmatrix}$

5. If
$$A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$$
 find k so that

$$A^2 = kA - 2I$$

6. Express
$$A = \begin{bmatrix} -1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{bmatrix}$$
 as the sum of a

symmetric and skew symmetric matrix.

8. Find the inverse of the following using elementary transformations. $A = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}$

Watch Video Solution

9. Find the inverse of the following using elementary transformations. $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$

10. Find the inverse of the following using elementary transformations. $A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$ **Watch Video Solution**

12.
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix} B = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$$

Find AB

Watch Video Solution

13.
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix} B = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$$

If C is the matrix obtained from A by the

transformation $R_1
ightarrow 2R_1$, find CB

14. Construct a 3 imes 4 matrix whose elements

$$a_{ij}=rac{ert-3i+jert}{2}$$

are given by

15. construct a 3 imes 4 matrix whose elements are given by

$$a_{ij} = 2i + j$$

16. Express the following matrices as the sum

of a Symmetric and a Skew Symmetric matrix.

$$egin{bmatrix} 6 & -2 & 2 \ -2 & 3 & -1 \ 2 & -1 & 3 \end{bmatrix}$$

Watch Video Solution

17. Express the following matrices as the sum

of a Symmetric and a Skew Symmetric matrix.

$$egin{bmatrix} 3 & 3 & -1 \ -2 & -2 & 1 \ -4 & -5 & 2 \end{bmatrix}$$

18. IF
$$A = egin{bmatrix} 2 & 4 & 3 \ 1 & 0 & 6 \ 0 & -2 & -3 \end{bmatrix}$$
 ,

Find 3A .

Watch Video Solution

19. IF
$$A = egin{bmatrix} 2 & 4 & 3 \ 1 & 0 & 6 \ 0 & -2 & -3 \end{bmatrix}$$
 ,

Find A^T

20. IF
$$A = egin{bmatrix} 2 & 4 & 3 \ 1 & 0 & 6 \ 0 & -2 & -3 \end{bmatrix}$$
 ,

Evalute $A + A^T$, is it symmetric ? Justify your

answer.

Watch Video Solution

21. Consider the following statement :

 $P(n)\!:\!A^n=\left[egin{array}{cc} 1+2n&-4n\ n&1-2n\end{array}
ight]$ for all $n\in N$ Write P(1) .

22. Consider the following statement :

 $P(n):A^n=egin{bmatrix}1+2n&-4n\n&1-2n\end{bmatrix}$ for all $n\in N$ If P(k) is true, then show that P(k+1) is also true.

Watch Video Solution

23. Find the matrices A and B if

$$2A+3B=egin{bmatrix} 1&2&-1\0&2&1\1&2&4 \end{bmatrix} \qquad ext{ and } \A+2B=egin{bmatrix} 2&0&1\1&1&2\3&1&2 \end{bmatrix}$$

25. Construct a 3 imes 3 matrix $A=ig[a_{ij}ig]$ where $a_{ij}=2(i-j)$

Show that the matrix A is a skew symmetrics.

26. Consider the following statement

$$P(n): A^n = egin{bmatrix} \cos n heta & \sin n heta\ -\sin n heta & \cos n heta \end{bmatrix}$$
 for all

 $n \in N$

Write P(1) .

27. Consider the following statement

$$P(n): A^n = egin{bmatrix} \cos n heta & \sin n heta\ -\sin n heta & \cos n heta \end{bmatrix}$$
 for all

 $n \in N$

If P(k) is true then show that P(k+1) is

true

28.
$$A = egin{bmatrix} 1 & 2 & 2 \ 2 & 1 & 2 \ 2 & 2 & 1 \end{bmatrix}$$
 , then

Find 4A and A^2

29.
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 , then show that $A^2 - 4A = 5I_3$

Watch Video Solution

30. Let
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 5 & 0 \end{bmatrix}$
Find A^T and B^T

31. Let
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 5 & 0 \end{bmatrix}$

Find AB

Watch Video Solution

32. Let
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 \\ 0 & 2 \\ 5 & 0 \end{bmatrix}$
Show that $(AB)^T = B^T A^T$

33.
$$A = \begin{bmatrix} 1 & -3 & 1 \\ 2 & 0 & 4 \\ 1 & 2 & -2 \end{bmatrix}$$
 Express A as the sum

of a symmetric and skew symmetric matrix.

Watch Video Solution

34. Consider a
$$2 imes 2$$
 matrix $A=\left[a_{ij}
ight]$,

where
$$a_{ij}=rac{\left(i+j
ight) ^{2}}{2}$$
 .

Write the transpose of \boldsymbol{A} .

35. Consider a 2 imes 2 matrix $A=\left[a_{ij}
ight]$,

where
$$a_{ij}=rac{\left(i+j
ight) ^{2}}{2}$$
 .

Show that A is a symmetric.

Watch Video Solution

36.
$$A = \begin{bmatrix} 6 & 5 \\ 7 & 6 \end{bmatrix}$$
 is a matrix

What is the order of A .

37. $A = \begin{bmatrix} 6 & 5 \\ 7 & 6 \end{bmatrix}$ is a matrix Find A^2 and 12A .

Watch Video Solution

38.
$$A = egin{bmatrix} 6 & 5 \ 7 & 6 \end{bmatrix}$$
 is a matrix $f(x) = x^2 - 12x + 1$, find $f(A)$

39. Let
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$
 $C = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$

,

Find each of the folowing

$$A+B$$
 , $A-B$

Watch Video Solution

40. Let
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$

Find each of the folowing

3A - C

41. Let
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$
 $C = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$

,

Find each of the folowing

AB

42. Let
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} -2 & 5 \\ 3 & 4 \end{bmatrix}$

Find each of the folowing

BA

Watch Video Solution

43. Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$
Find $A + B$ and $A - B$

,

44. Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$,
 $C = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$
Show that $(A + B) + C = A + (B + C)$
Watch Video Solution

45. Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$, $C = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$
Find AB and BA

46.
$$A = egin{bmatrix} -1 & 0 & 2 \ 4 & 0 & -3 \end{bmatrix}$$
 , $B = egin{bmatrix} 0 & 2 \ -1 & 3 \ 0 & 4 \end{bmatrix}$

What is the order of matrix AB?

Watch Video Solution

$$egin{aligned} {f 47.}\,A &= egin{bmatrix} -1 & 0 & 2 \ 4 & 0 & -3 \end{bmatrix}, B &= egin{bmatrix} 0 & 2 \ -1 & 3 \ 0 & 4 \end{bmatrix} \ {f Find} \ A^T \ , B^T \end{aligned}$$

48.
$$A = \begin{bmatrix} -1 & 0 & 2 \\ 4 & 0 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 2 \\ -1 & 3 \\ 0 & 4 \end{bmatrix}$

Verify $(AB)^T = B^T A^T$

Watch Video Solution

49. Let
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -1 \end{bmatrix} B = \begin{bmatrix} 2 & 3 \\ 5 & 4 \\ 1 & 6 \end{bmatrix}$$

Find AB.

50. Let
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -1 \end{bmatrix} B = \begin{bmatrix} 2 & 3 \\ 5 & 4 \\ 1 & 6 \end{bmatrix}$$

Find A^T , B^T & $\left(AB
ight)^T$

Watch Video Solution

51. Let
$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 1 & -1 \end{bmatrix} B = \begin{bmatrix} 2 & 3 \\ 5 & 4 \\ 1 & 6 \end{bmatrix}$$

Verify that $(AB)^T = B^T A^T$

52. If
$$A = \begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix} B = \begin{bmatrix} 1 & 3 & 6 \end{bmatrix}$$

Find A^T , B^T

Watch Video Solution

53. If
$$A = \begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix} B = \begin{bmatrix} 1 & 3 & 6 \end{bmatrix}$$

Find $(AB)^T$

54. If
$$A = \begin{bmatrix} -2 \\ 4 \\ 5 \end{bmatrix} B = \begin{bmatrix} 1 & 3 & 6 \end{bmatrix}$$
 $(AB)^T = B^T A^T$

Watch Video Solution

55. Let
$$A = egin{bmatrix} 3 & 1 \ -1 & 2 \end{bmatrix}$$

Find A^2

56. Let $A = egin{bmatrix} 3 & 1 \ -1 & 2 \end{bmatrix}$

Show that $A^2-5A+7I=0$

Watch Video Solution

57. Let
$$A = egin{bmatrix} 3 & 1 \ -1 & 2 \end{bmatrix}$$

find A^{-1}

58. Let $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$

Solve the following equation using matrix :

3x+y=1 , -x+2y=2 .

Watch Video Solution

59.
$$A = egin{bmatrix} 1 & 2 & 3 \ 3 & -2 & 1 \ 4 & 2 & 1 \end{bmatrix}$$

Show that $A^3 - 23A - 40I = 0$

$$\mathbf{60.}\,A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$

Watch Video Solution

61. A is a third order square matrix and $a_{ij} = \left\{ egin{array}{cccc} -i &+& 2j & ext{if} & i &=& j \ i & imes & j & ext{if} & i &\neq& j \end{array} ight.$

Construct the matrix A .

62. A is a third order square matrix and

$$a_{ij} = egin{cases} -i &+& 2j & ext{if} & i &=& j \ i & imes & j & ext{if} & i
eq j & ext{and} \ B = egin{bmatrix} 2 & 1 & 1 \ 1 & 1 & 5 \ 1 & 5 & 2 \end{bmatrix}$$
 and

Interpret the matrix A .

Watch Video Solution

63. A is a third order square matrix and

$$a_{ij} = egin{cases} -i &+ & 2j & ext{if} & i &= & j \ i & imes & j & ext{if} & i &
eq & j \end{bmatrix}$$
 and

$$B = egin{bmatrix} 2 & 1 & 1 \ 1 & 1 & 5 \ 1 & 5 & 2 \end{bmatrix}$$

Interpret the matrix AB - BA .

64. Find X and Y if
$$X + Y = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}$$
 and $X - Y = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$

65. Find X and Y if

$$2X+3Y=egin{bmatrix}2&3\4&0\end{bmatrix}\3X+2Y=egin{bmatrix}-2&2\-1&5\end{bmatrix}$$

Watch Video Solution

66. Find X if

$$Y=egin{bmatrix} 3&2\1&4 \end{bmatrix} 2X+Y=egin{bmatrix} 1&0\-3&2 \end{bmatrix}$$

Watch Video Solution

and

Find 2A.

Watch Video Solution

69. Given that $A + B = \begin{bmatrix} 2 & 5 \\ 7 & 8 \end{bmatrix}$ and $A - B = \begin{bmatrix} 6 & 8 \\ 4 & 3 \end{bmatrix}$ find (A + B)(A - B)

Watch Video Solution

70. Consider

$$\mathsf{A=}[\begin{array}{rrrrr} 1 & x & 1 \end{array}], B = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix}$$

Find x if ABC=0.

71. Consider

$$\mathsf{A=}[\begin{array}{rrrrrrr} 1 & x & 1 \end{array}], B = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix}$$

Find x if ABC=0.

72. Write A as the sum of a symmetric and a

skew symmetric matrix. $A = \begin{bmatrix} 1 & 4 & -1 \\ 2 & 5 & 4 \\ -1 & -6 & 3 \end{bmatrix}$

73. Consider the matrix

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix} B = \begin{bmatrix} -1 & 2 & 3 \\ -2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$
Find $A + B$

Watch Video Solution

74. Consider the matrix

$$A = egin{bmatrix} 2 & 1 & 3 \ 2 & 3 & 1 \ 1 & 1 & 1 \end{bmatrix} B = egin{bmatrix} -1 & 2 & 3 \ -2 & 3 & 1 \ -1 & 1 & 1 \end{bmatrix}$$

Find (A + B)(A - B)

76. Let
$$A = \begin{bmatrix} 3 & 6 & 5 \\ 6 & 7 & 8 \end{bmatrix}$$
 and $C = \begin{bmatrix} 1 & 2 & -3 \\ 4 & 5 & 6 \end{bmatrix}$
Find 2A

77. Let $A = \begin{bmatrix} 3 & 6 & 5 \\ 6 & 7 & 8 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 & -3 \\ 4 & 5 & 6 \end{bmatrix}$

Find the matrix B such that 2A + B = 3C

Watch Video Solution

78. Let
$$A = egin{bmatrix} 2 & 4 \ -1 & 1 \end{bmatrix}$$

Apply elementary transformation $R_1
ightarrow rac{R_1}{2}$

in the matrix A.

80. Consider the matrix
$$A = egin{bmatrix} 3 & 1 \ -1 & 2 \end{bmatrix}$$

Find A^2

81. Consider the matrix $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$

Find k so that $A^2=kA-7I$

Watch Video Solution

82. Consider a 2 imes 2 matrix

$$A = ig[a_{ij}ig]$$
 where $a_{ij} = |2i-3j|$

Write A

83. Consider a 2 imes 2 matrix

$$A = ig[a_{ij}ig]$$
 where $a_{ij} = |2i-3j|$

Find $A + A^T$

Watch Video Solution

84. If
$$A = egin{bmatrix} 3 & 1 \ -1 & 2 \end{bmatrix}$$
 then Find A^2

85. If $A = egin{bmatrix} 3 & 1 \ -1 & 2 \end{bmatrix}$ then Hence show that $A^2 - 5A + 7I = 0$

Watch Video Solution

86. If a matrix
$$A=egin{bmatrix} 3x & x \ -x & 2x \end{bmatrix}$$
 is a solution of the equation $x^2-5x+7=0$, find any one value of x.

87. Consider the matrices

$$A = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

If $AB = \begin{bmatrix} 2 & 9 \\ 5 & 6 \end{bmatrix}$, find the values of a,b,c,d

Watch Video Solution

88. Consider a 2 imes 2 matrix $A=\left[a_{ij}
ight]$, where

$$A_{ij}=rac{\left(i+2j
ight)^2}{2}$$

Write A

89. Consider a 2 imes 2 matrix $A=\left[a_{ij}
ight]$, where

$$a_{ij}=rac{\left(i+2j
ight) ^{2}}{2}$$

Find $A + A^T$

Watch Video Solution

90. If
$$X+Y = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}$$
 and $X-Y = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ then

Find X and Y.

91. If $X+Y = \begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}$ and $X-Y = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ then

Find 2X + Y.

Watch Video Solution

92. If A,B are symmetric matrices of same order

then AB - BA is always a $\ldots \ldots \ldots \ldots$

A. Skew-Symmetric matrix

B. Symmetric matrix

C. Identity matrix

D. Zero matrix

Answer:

Watch Video Solution

93. For the matrix $A = \begin{bmatrix} 2 & 4 \\ 5 & 6 \end{bmatrix}$, verify that

 $A + A^T$ is a symmetric matrix.

Find A^2

Watch Video Solution

find k so that $A^2=kA-2I$

96. find the value of x and y from the equations

$$a \begin{bmatrix} x & 5 \\ 7 & y - 3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}$$
Vatch Video Solution

97. Given
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \\ 4 & 2 \end{bmatrix}$$

 $B = \begin{bmatrix} -1 & 4 & -5 \\ 2 & 1 & 0 \end{bmatrix}$

,

Show that AB
eq BA

98. Find a,b matrix $\begin{bmatrix} 0 & 3 & a \\ b & 0 & -2 \\ 5 & 2 & 0 \end{bmatrix}$ is skew

symmetric matrix.

Watch Video Solution

99. Express
$$A = \begin{bmatrix} 7 & 3 & -5 \\ 0 & 1 & 5 \\ -2 & 7 & 3 \end{bmatrix}$$
 as the sum

of a symmetric and a skew symmetric matrix .

100. Consider the matrices

$$A=egin{bmatrix}2&-6\1&2\end{bmatrix}$$
 and $A+3B=egin{bmatrix}5&-3\-2&-1\end{bmatrix}$

Find matrix B

101. Consider the matrices

$$A=egin{bmatrix}2&-6\1&2\end{bmatrix}$$
 and $A+3B=egin{bmatrix}5&-3\-2&-1\end{bmatrix}$

Find matrix AB.

102. Consider the matrices

$$A=egin{bmatrix}2&-6\1&2\end{bmatrix}$$
 and $A+3B=egin{bmatrix}5&-3\-2&-1\end{bmatrix}$

Find the transpose of B.

is symmetric if

A. 0

B. 1

C. -1

D. 2

Answer:

105. If
$$A = egin{bmatrix} 1 & 3 \ 4 & 1 \end{bmatrix}$$
 , then find $ig| 3A^T ig|$

106. Let A be a matrix of order 3 imes3 whose

elements are given by $a_{ij} = 2i - j$

obtain the matrix A.

107. Let A be a matrix of order 3 imes 3 whose elements are given by $a_{ij}=2i-j$

Find A^T Also express A as the sum of

symmetric and skew symmetric matrix.

108. Consider a 2 imes 2 matrix $A=\left\lceil a_{ij}
ight
ceil$ with

$$a_{ij}=2^i+j$$

Construct A.

109. Consider a 2 imes 2 matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ with

$$a_{ij}=2^i+j$$

Find $A + A^T$, $A - A^T$

110. Consider a 2 imes 2 matrix $A=\left[a_{ij}
ight]$ with

$$a_{ij}=2^i+j$$

Express A as sum of a symmetric and skewsymmetric matrix.

111. $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then $BA = \ldots$

Answer:

112. Write $A = egin{bmatrix} 3 & 5 \ 1 & -1 \end{bmatrix}$ as the sum of a

symmetric and a skew symmetric matrix.

114. If the matrix A is both symmetric and skew-symmetric, then A is a

- A. diagonal matrix
- B. zero matrix
- C. square matrix
- D. scalar matrix

Answer:

Watch Video Solution
115. If
$$A = \begin{bmatrix} 1 & 3 \\ -2 & 4 \end{bmatrix}$$
 , then show that ,
 $A^2 - 5A + 10I = 0$

116. If
$$A = egin{bmatrix} 1 & 3 \ -2 & 4 \end{bmatrix}$$

Hence find A^{-1}

Watch Video Solution

117. The number of all possible 2 imes 2 matrices

with entries 0 or 1 is

A. 8

B. 9

C. 16

D. 25

Answer:

118. If the area of a triangle whose vertices are

(k,0), (5,0), (0,1) is 10 square units then find k.

119. Using elementary transformation find the

inverse of the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$