© ${ }^{\prime}$ doubtnut

MATHS

BOOKS - MAXIMUM PUBLICATION

MODEL QUESTION

Example

1. Let R be a relation on the set $\{1,2,3\}$
given by $R=\{(1,1),(2,2),(1,2),(2,1),(2,3)\}$
Which among the following
element to be included to R so that R
becomes Symmetric?
A. $(3,3)$
B. $(3,2)$
C. $(1,3)$
D. $(3,1)$

Answer:

- Watch Video Solution

2. If * is defined by $a^{*} b=a-b^{2}$ and \oplus is defined by $a \oplus b=a^{2}+b$, where a and b are integers.Then find the value of $(3 \oplus 4)^{*} 5$

D Watch Video Solution
3. If $X+Y=\left[\begin{array}{cc}5 & 2 \\ 0 & 9\end{array}\right]$ and $X-Y=\left[\begin{array}{cc}3 & 6 \\ 0 & -1\end{array}\right]$, fi nd $2 X-3 Y$.

- Watch Video Solution

4. Find rate of Change of area of a circle

 with respect to the radius, when $r=10 \mathrm{~cm}$
- Watch Video Solution

5. Find rate of change of area of a circle with respect to the time when the radius is increasing at the rate $0.7 \mathrm{~cm} / \mathrm{s}$.Given that $r=5 \mathrm{~cm}$

- Watch Video Solution

6. Integrate $\int \frac{(1+\log x)^{2}}{x} d x$

- Watch Video Solution

7. int $\frac{f^{\prime}(x)}{f(x)} d x=\ldots$. a) $\frac{[f(x)]^{2}}{2}+c$ b) $\log |f(x)|+c$
c) $\log \left|\frac{f^{\prime}(x)}{f(x)}\right|+c$
d) $\log \left|f^{\prime}(x)\right|+c$
A. $\frac{[f(x)]^{2}}{2}+c$
B. $\log |f(x)|+c$
C. $\log \left|\begin{array}{c}f^{\prime}(x) \\ f(x)\end{array}\right|+c$
D. $l o f\left|f^{\prime}(x)\right|+c$

Answer:

8. Find the area of a circle with centre $(0,0)$
and radius 'a' using integration.

- Watch Video Solution

9. Consider the differential equation
$\frac{d y}{d x}=\frac{x+y}{x}$
Write the order of the differential
equation.

- Watch Video Solution

10. Consider the differential equation $\frac{d y}{d x}=\frac{x+y}{x}$ Solve the above given differential equation.

- Watch Video Solution

11. Following table shows a brief description
about manufacturing process of a
company.Time required in hours per unit
of the product and maximum availability
of machine is also given in the table:

Write the constraints.

Product	Time required in hours/Unit on machine.		Profit per Unit in						
	Machine G	Machine H	Rupees	$	$	A	3	5	20
:---	:---	:---	:---						
B	4	6	30						
	Maximum available time	Maximum available time							
10 hrs/day	15 hrs/day								

- Watch Video Solution

12. A function $f: A \rightarrow B$,where $A=\{1,2,3\}$ and
$B=\{4,5,6\} \quad$ defined by $\quad f(1)=5, f(2)=6$, $f(3)=4$,Check whether f is a bijection.lf it is a bijection,Write f^{-1} as set of ordered pair.
13. The operation table for an operation $*$ is
given below.Given that 1 is the identity
element.Then which among the
following is true regarding the element in
the first column?

Check whether $*$ is commutative.

A. 3,2,2
B. 1,2,3
C. 1,1,2
D. 2,2,2

Answer:

- Watch Video Solution

14. If $\sin ^{-1} x=y$,then
A. $0 \leq y \leq \pi$
B. $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
C. $0<y<\pi$
D. $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

Answer:

D Watch Video Solution

15. Write the principal value of $\sin ^{-1}\left(\frac{1}{2}\right)$

- Watch Video Solution

16. If $\sin ^{-1} x=\frac{\pi}{4}$, find the value of $\cos ^{-1} x$
17. Find the relation between 'a' and ' b ' if the function f defined by
$f(x)=\left\{\begin{array}{ll}a x+1 & x \leq 3 \\ b x+3 & x>3\end{array}\right.$ is continuous.

- Watch Video Solution

18. "All continuous function are not

differentiable." Justify your answer
with an example
19. Find the equation to the tangent to the
curve $y=x^{2}-2 x+7$ at $(2,7)$

- Watch Video Solution

20. Integrate $\int \frac{x+2}{2 x^{2}+6 x+5} d x$

- Watch Video Solution

21. Consider the differential equation
$x \frac{d y}{d x}+y=\frac{1}{x^{2}}$
Find the integrating factor.
22. Solve the differential equation $x \frac{d y}{d x}+y=\frac{1}{x^{2}}$.

- Watch Video Solution

23. If the vectors $\overrightarrow{P Q}=-3 i+4 j+4 k$ and $\overrightarrow{P R}=-5 i+2 j+4 k$ are the sides of a $\triangle P Q R$

Find the angle between $\overrightarrow{P Q}$ and $\overrightarrow{P R}$

D
 Watch Video Solution

24. If the vectors $\overrightarrow{P Q}=-3 i+4 j+4 k$ and $\overrightarrow{P R}=-5 i+2 j+4 k$ are the sides of a $\triangle P Q R$
.Find the length of the median through the vertex P.

D Watch Video Solution

25. If $\vec{a}=5 i-j-3 k$ and $\vec{b}=i+3 j+5 k$, then show that the vectors $\vec{a}+\vec{b}, \vec{a}-\vec{b}$ are perpendicular.

- Watch Video Solution

26. If $\vec{a}=i-2 j+3 k, \vec{b}=2 i+3 j-4 k$ and $\vec{c}=i-3 j+5 k$, then check whether $\vec{a}, \vec{b}, \vec{c}$ are coplanar.

- Watch Video Solution

27. Find the Cartesian equation of the line passing through origin and ($5,-2,3$)

- Watch Video Solution

28. The point $P(x, y, z)$ lies in the first octant and its distance from the origin is 12 units.If the position vector of P makes angles $45^{\circ}, 60^{\circ}$ with x and y axes respectively,find coordinates of P.

- Watch Video Solution

29. Solve graphically.

Maximise $Z=5 x+3 y$
Subject to the constraints
$3 x+5 y \leq 15,5 x+2 y \leq 10, x \geq 0, y \geq 0$
30. $A=\left[\begin{array}{ccc}3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2\end{array}\right]$ Find A^{T}

- Watch Video Solution

31. Express the following matrices as the sum of a

Symmetric and a Skew Symmetric matrix.

$$
\left[\begin{array}{ccc}
3 & 3 & -1 \\
-2 & -2 & 1 \\
-4 & -5 & 2
\end{array}\right]
$$

- Watch Video Solution

32. If $A^{T}=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$, Verify that $A^{T} A=I$
33. Without expanding prove that
$\left|\begin{array}{ccc}x+y & y+z & z+x \\ z & x & y \\ 1 & 1 & 1\end{array}\right|=0$

- Watch Video Solution

34. Consider the following system of equations
$2 x-3 y+5 z=11, \quad 3 x+2 y-4 z=-5$,
$x+y-2 z=-3$ Express the system in $A x=B$
form.
35. Consider the following system of
equations
$2 x-3 y+5 z=11,3 x+2 y-4 z=-5$,
$x+y-2 z=-3$
Solve the system by matrix method.

- Watch Video Solution

36. Find $\frac{d y}{d x}$ of the following $x^{2}+x y+y=100$
37. Find dy/dx of the following $y^{x}=2^{x}$

- Watch Video Solution

38. Find $\mathrm{dy} / \mathrm{dx}$ of the following
$x=\cos \theta, y=\sin \theta$ at $\theta=\frac{\pi}{4}$

D Watch Video Solution

39. Evaluate the integrals
$\int \frac{x}{(x+1)(x+2)} d x$
40. Evaluate the following $\int_{0}^{1} x e^{x^{2}} d x$

- Watch Video Solution

41. Evaluate the following $\int_{-5}^{5}|x+2| d x$

- Watch Video Solution

42. Consider the parabolas $y^{2}=4 x, x^{2}=4 y$ Draw a rough figure for the above parabolas.
43. Consider the parabolas $y^{2}=4 x, x^{2}=4 y$

Find the point of intersection of the two parabolas.

- Watch Video Solution

44. Consider the parabolas $y^{2}=4 x, x^{2}=4 y$

Find the area bounded by these two parabolas.

45. Find the shortest distance between the

lines whose vector equations are

$$
\begin{aligned}
& \vec{r}=(i+2 j+3 k)+\lambda(i-3 j+2 k) \text { and } \\
& \vec{r}=(4 i+5 j+6 k)+\mu(i-3 j+2 k)
\end{aligned}
$$

- Watch Video Solution

46. (i) If a plane meets positive x axis at a
distance of 2units from the origin,
positive y axis at a distance of 3 units
from the origin and positive z axis at a
distance of 4 units from the origin.
Find the equation of the plane.
(ii) Find the perpendicular distance of $(0,0,0)$
from the plane obtained in part (i)

- Watch Video Solution

47. A die is thrown twice let the event A be 'odd number on first throw' and B be 'odd number on the second throw' check whether A and B are independent.

- Watch Video Solution

48. If $f(x)=\frac{x}{x-1}, x \neq 1$

Find $\operatorname{fof}(x)$

- Watch Video Solution

49. if $f(x)=\frac{x}{x-1}, x \neq 1$ find the inverse of f

- Watch Video Solution

50. Using elementary row operations, find the inverse of the matrix
$\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$
51. $f(x)$ is a strictly increasing function, if $f^{\prime}(x)$ is........a)Positive b)Negative c) 0 d)None of these
A. Positive
B. Negative
C. 0
D. None of these

Answer: A

- Watch Video Solution

52. Show that the function F given by
$f(x)=x^{3}-3 x^{2}+4 x, x \in R$
is strictly increasing

D Watch Video Solution

53. $\int_{0}^{a} f(a-x) d x \quad=. . . . \quad$ a) $\int_{0}^{2 a} f(x) d x$
$\int_{-a}^{a} f(x) d x$ c) $\int_{0}^{a} f(x) d x$
d) $\int_{a}^{0} f(x) d x$
A. $\int_{0}^{2 a} f(x) d x$
B. $\int_{-a}^{a} f(x) d x$
C. $\int_{0}^{a} f(x) d x$
D. $\int_{a}^{0} f(x) d x$

Answer: C

D Watch Video Solution

54. Find the value of
$\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{4} x}{\sin ^{4} x+\cos ^{4} x} d x$

- Watch Video Solution

55. Find the area of the region bounded by the
curve
$y^{2}=x$
x-axis and the lines $x=1$ and $x=4$

- Watch Video Solution

56. Find the general solution of the differential
equation
$x \frac{d y}{d x}+2 y=x^{2} \log x$

- Watch Video Solution

57. A manufacturer produces nuts and bolts. It takes

1 hour of work on machine A and 3 hours on machine B to produce a package of nuts. It takes 3
hours on machine A and 1 hour on machine B to produce a package of bolts. He earns profit of Rs.
17.50 per package on nuts and Rs. 7.00 per package on bolts. Formulate the above LPP if the machine operates for at most 12 hours a day

- Watch Video Solution

58. Let
$A=N \times N$ and $*$
be a binary operation on A defined by $(a, b)^{*}(c, d)=(a$
$+c, b+d)$

Find $(1,2)^{*}(2,3)$

D Watch Video Solution

59. Let
$A=N \times N$ and $*$
be a binary operation on A defined by $(a, b)^{*}(c, d)=(a$
$+c, b+d)$

Prove that
*
is commutative
60. Let
$A=N \times N$ and $*$
be a binary operation on A defined by $(a, b)^{*}(c, d)=(a$
$+c, b+d)$

Prove that
*
is associative

61. Identify the function from the above graph

A. $\tan ^{-1} x$
B. $\sin ^{-1} x$
C. $\cos ^{-1} x$
D. $\cos e c^{-1} x$

Answer: B

- Watch Video Solution

62. Find the domain and range of the function represented in above graph

- Watch Video Solution

63. Prove that
$\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{2}{11}\right)=\tan ^{-1}\left(\frac{3}{4}\right)$

- Watch Video Solution

64. $\frac{d\left(a^{x}\right)}{d x}=$... a) a^{x} b) $\log \left(a^{x}\right)$ c) $a^{x} \log a$ d) $x a^{x-1}$
A. a^{x}
B. $\log \left(a^{x}\right)$
C. $a^{x} \log a$
D. $x a^{x-1}$

Answer: C

- Watch Video Solution

65. Find $\frac{d y}{d x}$ if $x^{y}=y^{x}$

D Watch Video Solution

66. Find the slope of the tangent to the curve

$$
y=(x-2)^{2} \text { at } \mathrm{x}=1
$$

- Watch Video Solution

67. Find a point at which the tangent to the curve
$y=(x-2)^{2}$ is parallel to the chord joining the point $A(2,0)$ and $B(4,4)$
68. Evaluate $\int_{0}^{2}\left(x^{2}+1\right) d x$
as the limit of a sum

- Watch Video Solution

69. Consider the following figure

Find the point of intersection ' P ' of the circle
$x^{2}+y^{2}=50$

D Watch Video Solution

70. The degree of the differential equation
$x y\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+x^{4}\left(\frac{d y}{d x}\right)^{3}-y \frac{d y}{d x}=0$ is
A. 4
B. 3
C. 2
D. 1

Answer: C

- Watch Video Solution

71. Find the general solution of the differential equation
$\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$

- Watch Video Solution

72. Prove that for any vector $\bar{a}, \bar{b}, \bar{c}[\bar{a}+\bar{b}, \bar{b}+\bar{c}, \bar{c}+\bar{a}]=2[\bar{a} \bar{b} \bar{c}]$

- Watch Video Solution

73. Show that if
$\bar{a}+\bar{b}, \bar{b}+\bar{c}, \bar{c}+\bar{a}$
are coplanar then
$\bar{a}, \bar{b}, \bar{c}$ are also coplanar
74. Find the equation of a plane which makes x, y, z intercepts respectively as 1,2,3

- Watch Video Solution

75. Solve the following LPP Graphically,

Minimise, $Z=-3 x+4 y$
Subject to constraints,
$x+2 y \leq 8,3 x+2 y \leq 12, x \geq 0, y \geq 0$

- Watch Video Solution

76. Find x and y if
$x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}10 \\ 5\end{array}\right]$

- Watch Video Solution

77. Express the matrix

$$
\left[\begin{array}{ccc}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right]
$$

as the sum of a symmetric and a skew symmetric matrices.

- Watch Video Solution

78. prove that $\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|=0$

- Watch Video Solution

79. if $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right] \quad B=\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$

Prove that $B=A^{-1}$

- Watch Video Solution

80. if
$A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right] B=\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$
Using
A^{-1} solve the system of linear equation given
below: $x-y+2 z=1,2 y-3 z=1,3 x-2 y+4 z=2$

- Watch Video Solution

81. Prove that the function defined by
$f(x)=\cos x^{2}$
is a continuous function
82. if
$y=e^{a \cos ^{-1} x},-1 \leq x \leq 1$, show that
$\frac{d y}{d x}=\frac{-a e^{a \cos ^{-1} x}}{\sqrt{1-x^{2}}}$

- Watch Video Solution

83. Evaluate $\int \sin m x d x$

- Watch Video Solution

84. Evaluate $\int \frac{1}{\sqrt{x^{2}+2 x+2}} d x$

(-) Watch Video Solution

85. Evaluate $\int \frac{x}{(x+1)(x+2)} d x$

- Watch Video Solution

86. if $\quad \bar{a}=3 i+2 j+2 k, \bar{b}=i+2 j-2 k \quad$ find
$\bar{a}+\bar{b}, \bar{a}-\bar{b}$

- Watch Video Solution

87. if $\bar{a}=3 i+2 j+2 k, \bar{b}=i+2 j-2 k$ find a unit vector perpendicular to both $\bar{a}+\bar{b}, \bar{a}-\bar{b}$

- Watch Video Solution

88. Consider the points $\mathrm{A}(1.2 .7), \mathrm{B}(2,6,3), \mathrm{C}(3,10,-1)$
find $\overline{A B}, \overline{B C}$

- Watch Video Solution

89. Consider the points $A(1,2,7), B(2,6,3), C(3,10,-1)$
prove that A, B, C are collinear points
90. Find the angles between the lines

$$
\begin{aligned}
& \frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3} \\
& \frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}
\end{aligned}
$$

- Watch Video Solution

91. find the shortest distance between the pair of lines

$$
\begin{aligned}
& \bar{r}=(i+2 j+3 k)+\lambda(i-3 j-2 k) \\
& \bar{r}=(4 i+5 j+6 k)+\mu(2 i+3 j+k)
\end{aligned}
$$

92. The probability distribution of a random variable is given by $\mathrm{p}(\mathrm{x})$. What is $\sum P(x)$?

- Watch Video Solution

93. The following is a probability distribution
function of a random variable

Find K

x	-5	4	-3	-2	-1	0
$\mathbf{P}(x)$	\mathbf{k}	$2 \mathbf{k}$	$\mathbf{3 k}$	$\mathbf{4 k}$	$5 \mathbf{k}$	$7 \mathbf{k}$
x	1	2	3	4	5	
$\mathbf{P}(\mathrm{x})$	$\mathbf{8 k}$	$9 \mathbf{k}$	$\mathbf{1 0 k}$	$\mathbf{1 1 k}$	12 k	

94. Construct a 2×2 matrix whose elements are given $a_{i j}=2 i+j$

- Watch Video Solution

95. Construct a 2×2 matrix whose elements are
given $a_{i j}=2 i+j$.find A^{2}

- Watch Video Solution

96. If $\int \frac{f(x)}{x^{2}+1} d x=\log \left|x^{2}+1\right|+C$, then
$f(x)=$..

- Watch Video Solution

97. Find $\int x e^{x} d x$

D Watch Video Solution

98. Form the differential equation of the family of
all circles touching the y-axis at origin.
99. Consider the relation in the set N of natural numbers defined as $R=\{(a, b): a b$ is a factor of 6$\}$.

Determine whether the relation is reflexive, symmetric or transitive.

- Watch Video Solution

100. Find the area bounded by the curve $y=\cos x$ and x axis between $x=0$ and $x=\pi$.
101. A manufacture produces nuts and bolts. The time required to produce one packet of nuts and one packet of bolts on machines. A and B is given the following table.

He earns a profit of Rs. 25 per packet of nuts and Rs.
12 per packet of bolts. He operates his machine for atmost 15 hours a day. Formulate a linear programming problem to maximise his profit.

	Machine A	Machine B
Nuts (1 packet)	2 hours	3 hours
Botts (1 packet	3 hours	1 hours

102. Consider the curve $y=x^{3}+8 x+3$.Find the point on the curve at which the slope of the tangent is 20.

- Watch Video Solution

103. Consider the curve $y=x^{3}+8 x+3$

Does there exist a tangent to the curve with negative slope? Justify your answer.

- Watch Video Solution

104. Which of the following functions is not continues at zero?
$f(x)=\sin x$.

- Watch Video Solution

105. Which of the following functions is not continues at zero?
$f(x)= \begin{cases}\frac{\sin x}{x} & x \neq 0 \\ 1 & x=0\end{cases}$

D Watch Video Solution

106. Test continuity for the following function at zero?
$f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{cases}$

- Watch Video Solution

107. Test continuity for the folowing functions.

$$
f(x)=\left\{\begin{array}{ll}
x \sin \left(\frac{1}{x}\right) & x \neq 0 \\
0 & x=0
\end{array} \text { at } x=0\right.
$$

108. Find the values of a and b such that function defined by
$‘ f(x)=\{(10, x l e 3),(a x+b, 3$

- Watch Video Solution

109. Consider the plane $2 x-3 y+z=5$. Find the

Equation of the plane passing through the point
($1,1,3$) and parallel to above plane.

- Watch Video Solution

110.
 Consider
 vectors
 $\vec{a}=2 i+j+3 k, \vec{b}=i+4 j-k$.Find the
 projection of \vec{a} on \vec{b}.

- Watch Video Solution

111. Consider the vectors if \vec{a} is perpendicular to a vector \vec{c} then projection of \vec{a} on \vec{c}

- Watch Video Solution

112. Consider the vectors
$\vec{a}=2 i+j+3 k, \vec{b}=i+4 j-k$
Write a vector \vec{d} such that the projection of \vec{a} on \vec{b}

- Watch Video Solution

113. Find $\int(4 x+7) \sqrt{x^{2}+4 x+13 d x}$

- Watch Video Solution

114. Write integrating factor of the linear differential equation $\left(\frac{d y}{d x}\right)+\left(\frac{y}{x}\right)=\sin x$

D Watch Video Solution

115. Slope of the tangent to a curve at any point is
twice the x coordinate of the point. If the curve passes through the point (1,4), find its equation.

- Watch Video Solution

116. Solve the linear programming problem graphically

Maximise $Z=3 x+5 y$
subject to the constraints
$x+3 y \leq 3$
$x+y \leq 2$
$x, y \geq 0$

- Watch Video Solution

117. If $\cos ^{-1}\left(\frac{12}{13}\right)=\tan ^{-1} x$ then find x.

118.

$\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\tan ^{-1}\left(\frac{56}{33}\right)$

- Watch Video Solution

119. Consider the binary operation $*$ on the set R of real numbers, defined by $a * b=a b / 4$

Show that $*$ is commutative and associative.

D Watch Video Solution

120. Let Q be the set of Rational numbers and ' *' be the binary operation on Q defined by ' $a * b=\frac{a b}{4}$ ' for all a, b in Q.

What is the identity element of ' $*$ ' on Q ?

- Watch Video Solution

121. Consider the binary operation * on the set R of real numbers, defined by $a * b=a b / 4$

Find the inverse of 5 .
122. Consider the matrix $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 4 & 9\end{array}\right]$ Find A^{-1} using elementary row operations.

- Watch Video Solution

123. Consider the matrix $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 4 & 9\end{array}\right]$ Find the
solution of the system of equations given below

$$
x+2 z=2, y+2 z=1,4 y+9 z=3
$$

124. Show that $\left|\begin{array}{lll}1 & a & b c \\ 1 & b & a c \\ 1 & c & a b\end{array}\right|=(a-b)(b-c)(c-a)$

- Watch Video Solution

125. If $A=\left[\begin{array}{cc}2 & 3 \\ 4 & -1\end{array}\right]$ verify that $A \times \operatorname{adj} A=|A| I$

- Watch Video Solution

126. If f is a function such that $f(-x)=f(x)$,
then $\int_{-a}^{a} f(x) d x=$
127. Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x d x$

- Watch Video Solution

128. Evaluate $\int_{0}^{1}\left(x^{2}+1\right) d x$ as the limit of a sum.

- Watch Video Solution

129. Verify mean value theorem for the function $f(x)=x^{2}-4 x-3$ in the interval $[1,4]$.

$$
\begin{aligned}
& \text { 130. } \begin{array}{l}
\text { Consider } \\
f(x)=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right), \\
\frac{-1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}
\end{array} .
\end{aligned}
$$

Show that $f(x)=2 \sin ^{-1} x$

- Watch Video Solution

> 131. $\begin{gathered}\text { Consider }\end{gathered}$ the \quad function
> $f(x)=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right), \frac{-1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$

Find $f^{\prime}(x)^{\prime}$.

D Watch Video Solution

> 132.
> Show
> that
> the
> lines
> $\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-3}{1}, \frac{x-3}{2}=\frac{y-1}{1}=\frac{z-4}{2}$
are coplanar.

- Watch Video Solution

133.

$$
\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-3}{1}, \frac{x-3}{2}=\frac{y-1}{1}=\frac{z-4}{2}
$$

Find the equation of the plane that contains the above lines.

- Watch Video Solution

134.

$$
\frac{x-2}{1}=\frac{y+1}{2}=\frac{z-3}{1}, \frac{x-3}{2}=\frac{y-1}{1}=\frac{z-4}{2}
$$

Show that the above lines intersect at the point
(3,1,4).

D Watch Video Solution

135. A coin is tossed 3 times. Find the probability distribution of the number of heads.

- Watch Video Solution

136. In a circle of radius 2 a square is inscribed as shown in the figure. Using intergration, find the area of the shaded region (Area of a square may be calculated using any convinent method).

- Watch Video Solution

137. If $f(x)=\sin x, g(x)=x^{2}, x \in R$, then find $(f \circ g)(x)$

- Watch Video Solution

138. Let u and v be two functions defined on R as
$u(x)=2 x-3$ and $v(x)=\frac{3+x}{2}$.Prove that u and v are inverse to each other.

- Watch Video Solution

139. For the symmetric matrix $A=\left[\begin{array}{lll}2 & x & 4 \\ 5 & 3 & 8 \\ 4 & y & 9\end{array}\right]$
.Find the value of x and y.

- Watch Video Solution

140. From the symmetric matrix $A=\left[\begin{array}{ccc}2 & x & 4 \\ 5 & 3 & 8 \\ 4 & y & 9\end{array}\right]$, verify $A A^{\prime}$ and $A+A^{\prime}$ are symmetric matrices.
141. Find the slope of tangent line to the curve $y=x^{2}-2 x+1$

- Watch Video Solution

142. Find the equation of the tangent to the curve $y=x^{2}-2 x+1$ which is parallel to the line $2 x-y+9=0$.

- Watch Video Solution

143. If $\int f(x) d x=\log |\tan x|+C$. Find $f(x)$
144. Evaluate $\int \frac{1}{\sqrt{1-4 x^{2}}} d x$

- Watch Video Solution

145. The area bounded by the curve $y=f(x), x$-axis and the line $x=a$ and $x=b$ is ?
A. $\int_{a}^{b} x d y$
B. $\int_{a}^{b} x^{2} d y$
C. $\int_{a}^{b} y d x$
D. $\int_{a}^{b} y^{2} d x$

Answer:

- Watch Video Solution

146. Find area of the shaded region using integration.

147. The order of the differential equation formed by $y=A \sin x+B \cos x$, where A and B are arbitary constants is ... a)1 b)2 c)0 d)3
A. 1
B. 2
C. 0
D. 3

Answer:

148. Solve the differential equation $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$

- Watch Video Solution

149. A factory produces three items P, Q and R at two
plants A and B. The number of items produced and operating costs per hour is as follows:

It is desired to produce at least 500 items of type P, at least 400 items of type Q and 300 items of type R per day.

Is it a maximisation case or a minimisation case?

Why?

produced and operating costs per hour is as follows:

Plant	Item produced per hour			Operating P
	R			
B	20	15	25	Rs. 1000
	30	12	23	Rs. 800

- Watch Video Solution

150. A factory produces three items P, Q and R at two plants A and B. The number of items produced and operating costs per hour is as follows:

It is desired to produce at least 500 items of type P , at least 400 items of type Q and 300 items of type R per day.

Write the objective function and constraints.
produced and operating costs per hour is as follows:

Plant	Item produced per hour			Operating P
	Q	R		
B	$\mathbf{3 0}$	15	25	Rs. 1000

- Watch Video Solution

151. The function P is defined as "to each person on the earth is assigned a date of birth." is this a function one-one? Give reason.
152. Consider the function $f:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $f(x)=\sin x \quad$ and $\quad g:\left[0, \frac{\pi}{2}\right] \rightarrow R \quad$ given \quad by $g(x)=\cos x$.

Show that f and g are one-one functions.

- Watch Video Solution

153. Consider the function $f:\left[0, \frac{\pi}{2}\right] \rightarrow R$ given by $f(x)=\sin x \quad$ and $\quad g:\left[0, \frac{\pi}{2}\right] \rightarrow R \quad$ given \quad by $g(x)=\cos x$.

Is $f+g$ one-one?Why?
154. The number of one-one function from a set containing 2 elements to a set containing 3 element is.........a)2 b) 3 c) 6 d) 8
A. 2
B. 3
C. 6
D. 8

Answer:

155. If $A=\sin ^{-1} \frac{2 x}{1+x^{2}}, B=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}$, $C=\tan ^{-1} \frac{2 x}{1-x^{2}} \quad$ satisfies the condition
$3 A-4 B+2 C=\frac{\pi}{3}$. Find the value of x .

- Watch Video Solution

156. Write the function whose graph is shown below.

D Watch Video Solution

157. Write the function whose graph is shown below.

Discuss the continuity of the function .

(Watch Video Solution

158. Write the function whose graph is shown below.

Discuss the differentiability of the function.

- Watch Video Solution

159. A cuboid with a square base and given volume v is shown in figure:

Express surface area ' S ' as a function of x .

- Watch Video Solution

160. A cuboid with a square base and given volume
V is shown in figure:
Show that the surface area is minimum when it is a

cube.

- Watch Video Solution

161. If $2 x+4=A(2 x+3)+B$, find A and B

- Watch Video Solution

162. If $2 x+4=A(2 x+3)+B$, find A and B and evalute $\int \frac{2 x+4}{x^{2}+3 x+1} d x$

- Watch Video Solution

163. Consider the Differential equation
$\cos ^{2} x \frac{d y}{d x}+y=\tan x$. Find
its degree
164. Consider the Differential equation $\cos ^{2} x \frac{d y}{d x}+y=\tan x$. Find the integrating factor

D Watch Video Solution

165. Consider the Differential equation
$\cos ^{2} x \frac{d y}{d x}+y=\tan x$. Find the general solution.

- Watch Video Solution

166. The position vectors of three points A, B, C are given to be $i+3 j+3 k, 4 i+4 k,-2 i+4 j+2 k$
respectively.Find $\overrightarrow{A B}$ and $\overrightarrow{A C}$

- Watch Video Solution

167. The position vectors of three points A, B, C are given to be $i+3 j+3 k, 4 i+4 k,-2 i+4 j+2 k$ respectively.Find the angle between $\overrightarrow{A B}$ and $\overrightarrow{A C}$

- Watch Video Solution

168. The position vectors of three points A, B, C are given to be $i+3 j+3 k, 4 i+4 k,(-2 i+4 j+2 k$ respectively

Find a vector which is perpendicular to both $\overrightarrow{A B}$ and $\overrightarrow{A C}$ having magnitude 9 units.

- Watch Video Solution

169. If $\bar{a}, \bar{b}, \bar{c}$ are coplaner vectors, write the vector perpendicular to \bar{a}

- Watch Video Solution

170. If $\bar{a}, \bar{b}, \bar{c}$ are coplaner, prove that
$[\bar{a}+\bar{b}, \bar{b}+\bar{c}, \bar{c}+\bar{a}]$ are coplanar.
171. Write all the direction cosines of x-axis.

- Watch Video Solution

172. If a line makes α, β, γ with $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis respectively, then prove that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$

- Watch Video Solution

173. A line makes equal angles with the coordinate axis . Find the direction cosines.
174. If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$. Show that
$A^{2}-5 A+7 I=0$
Hence find A^{4} and A^{-1}.

- Watch Video Solution

175. If $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$

Find A^{-1}

- Watch Video Solution

176. If $A=\left[\begin{array}{ccc}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$

Using it solve the system of equations
$2 x-3 y+5 z=16$
$3 x+2 y-4 z=-4$
$x+y-2 z=-3$

- Watch Video Solution

177. Find $\frac{d y}{d x}$ of the following
$\sin ^{2} x+\cos ^{2} y=1$

- Watch Video Solution

178. Find $\frac{d y}{d x}$ of
$y=x^{x}$

- Watch Video Solution

179. Find $\frac{d y}{d x}$, If $x=a(t-\sin t), y=a(1+\cos t)$

- Watch Video Solution

180. $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\cos x} d x$

- Watch Video Solution

181. Evaluate the following:
$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x$

- Watch Video Solution

182. Evaluate the following:
$\int x \sin 3 x d x$

D Watch Video Solution

183. Find the area bounded by the curve $y=\sin x$ with x -axis, between $\mathrm{x}=0$ and $x=2 \pi$
184. Two fences are made in a grass field as shown in the figure. A cow is tied at the point O with a rope of length 3 m .

If there is no fences find the maximum area of grass
that cow can graze.

185. Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)^{\prime}$

D Watch Video Solution

186. The Cartesian equation of two lines are given
by

$$
\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}, \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}
$$

Write the vector equation of these lines.
187. Find the shortest distance between the lines

$$
\begin{aligned}
& \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \\
& \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}
\end{aligned}
$$

- Watch Video Solution

188. A bag contains 4 red and 4 black balls. Another
bag contains 2 red and 5 black balls. One of the two
bags is selected at random and a ball is drawn from
the bag and which is found to be red. Find the probability that the ball is drawn from first bag.

Watch Video Solution

189. A random variable X has the following distribution function:

Find k .

X	0	1	2	3	4
$P(X)$	K	$3 k$	$5 k$	$7 k$	$4 k$

D Watch Video Solution

190. A random variable X has the following distribution function: Find the mean and the variance of the random
variable.

X	0	1	2	3	4
$P(X)$	K	$3 k$	$5 k$	$7 k$	$4 k$

191. Find the equation of a plane which makes equal intercepts of 6 units with the coordinate axis.

- Watch Video Solution

192. Verify Rolle's Theorem for the function

$$
f(x)=x^{2}+2 x-8, x \in[-4,2]
$$

- Watch Video Solution

193. Form the differential equation of the family of all circles touching the y-axis at origin.

- Watch Video Solution

194. Show that
$1 \quad a \quad a^{2}$
$\begin{array}{lll}1 & b & b^{2}\end{array}=(a-b)(b-c)(c-a)$
$1 \quad c \quad c^{2}$

- Watch Video Solution

195. Evaluate $\int_{0}^{2} e^{x} d x$ as limit of a sum.
196. if $x=\sin ^{-1} \frac{3}{5}$, then which of the following is true.

$$
\begin{aligned}
& \text { A. } x=\cos ^{-1} \frac{5}{3} \\
& \text { B. } x=\tan ^{-1} \frac{3}{4} \\
& \text { C. } x=\operatorname{cosec}-\frac{5}{4} \\
& \text { D. } x=\cot ^{-1} \frac{3}{4}
\end{aligned}
$$

Answer:

197. Evaluate $\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)$

- Watch Video Solution

198. $\sin ^{-1}(\sin x)=x$ is defined on
A. $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
B. $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
C. $x \in[0, \pi]$
D. $x \in(0, \pi)$

Answer:
199. find the value of $\sin ^{-1}\left(\sin \frac{13 \pi}{4}\right)$.

- Watch Video Solution

200. Consider the functions $f(x)=\sin x$ and
$g(x)=x^{3}$
Find $\operatorname{fog}(x)$

D Watch Video Solution
201. Find the shortest distance between the skew
lines $\vec{r}=(\vec{i}+2 \vec{j}+\vec{k})+\lambda(\vec{i}-\vec{j}+\vec{k})$
and
$\vec{r}=(2 \vec{i}-\vec{j}-\vec{k})+\eta(2 \vec{i}+\vec{j}+2 \vec{k})$

- Watch Video Solution

202. The figure shows the graph of a function $f(x)$ and it's derivative $f^{\prime}(x)$. using these graphs answer the following questions

Identify the points at which the function $f(x)$ have
a local maximum and minimum.

D Watch Video Solution

203. The figure shows the graph of a function $f(x)$
and it's derivative $f^{\prime}(x)$. using these graphs answer the following questions

Find the intervals on which the function $f(x)$ is
strictly decreasing.

- Watch Video Solution

204. Find $\frac{d y}{d x}$, if $y=\log \left(\cos \left(e^{x}\right)\right)$

- Watch Video Solution

205. If $y=\sin ^{-1} x$, prove that
$\left(1-x^{2}\right) y_{2}-x y_{1}=0$

D Watch Video Solution

206. Evaluate $\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$

- Watch Video Solution

207. Find the area bonded by the curve
$y=\cos 2 x, x=0, x=\frac{\pi}{2}$ and x-axis.
208. In a factory which manufactures bolts, machines A, B and C manufacture respectively 25%,
35% and 40% of the bolts. Of their outputs $5 \%, 4 \%$ and 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective. What is probability that it is manufactured by the machine B ?

D Watch Video Solution

209. A coin is tossed 3 times. Find the probability
distribution of the number of heads.
210. X is a random variable which denotes the number of heads obtained when a coin is tossed three times.Find mean and variance of the probability distribution.

- Watch Video Solution

211. Equation of a curve is in the form of a third degree polynomial. It has local maxima and local minima at $x=1$ and $x=3$.

Write $\frac{d y}{d x}$
212. Equation of a curve is in the form of a third degree polynomial. It has local maxima and local minima at $x=1$ and $x=3$.

If the curve passes through the point $(3,1)$, find the equation of the curve.

- Watch Video Solution

213. Find the area of the region bounded by the
ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$
214. Find the equation of all lines having slope 2 and being tangent to the curve $y+\frac{2}{x-3}=0$

- Watch Video Solution

215. Consider an operation * defined on the set
$A=\{1,2,4,8\}$ by $a * b=L C M$ of a and b.
Show that $*$ is a binary operation.

- Watch Video Solution

216. Consider the matrix $A=\left[\begin{array}{lll}4 & 3 & 2 \\ 1 & p & 0 \\ 1 & q & 2\end{array}\right]$ and it's
adjoint, $a d j(A)=\left[\begin{array}{ccc}4 & -4 & r \\ -2 & 6 & 2 \\ -1 & s & 2\end{array}\right]$

Find $\operatorname{adj}(A)$ and $|A|$

D Watch Video Solution

217. Construct a 3×3 matrix A whose $(i, j)^{t h}$ elements is $a_{i j}=2 i-j$

218. $3 x-1$
 218. Integrate the following
 $$
\overline{(x-1)(x-2)(x-3)}
$$

D Watch Video Solution

219. Integrate the following $e^{x} \sin x$

D Watch Video Solution

220.

Let $\vec{a}=\vec{i}+\vec{j}+\vec{k}$,
$\vec{b}=2 \vec{i}+m \vec{j}+3 \vec{k}$
if \vec{a} is perpendicular to \vec{b}, find m.
221. Let $\vec{a}=\vec{i}+\vec{j}+\vec{k}$,

$$
\vec{b}=2 \vec{i}+m \vec{j}+3 \vec{k}
$$

Find a vector \vec{c} perpendicular to both \vec{a} and \vec{b}.

- Watch Video Solution

222. Consider the line
$\vec{r}=(-3 \vec{i}+5 \vec{j}-6 \vec{k})+\lambda(2 \vec{i}+\vec{j}+2 \vec{k})$
(i)Write a point on the line.
(ii)Find the equation of a plane passing through the point obtained in part (i) and perpendicular to the given line.
(iii)Find a point on the line which is 3 units way from the point obtained in part (i).

- Watch Video Solution

223. A manufacture company makes two models A
and B of a product. Each piece of model A requires
9 labour hours for fabricating and 1 labour hour for
finishing and B requires 12 labour hours for
fabricating and 3 labour hours for finishing. For
fabricating and finishing the maximum labour hours
available are 180 and 30 respectively per week. The
company makes a profit of Rs. 8000/- on each piece
of Model A and Rs. 12000/- on each piece of Model
B. How many piece of Model A and B should be manufactured per week to realise a maximum profit? What is the maximum profit per week?

- Watch Video Solution

224. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}-3 & 1 & 0 \\ 1 & 3 & -2\end{array}\right]$

Which of the following is the order of the matrix
$A+B ?$
A. 2 xx 2
B. 3 xx 2
C. 2 xx 3
D. $3 x x 3$

Answer:

- Watch Video Solution

225. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right]$ Find $3 A^{\prime}$

- Watch Video Solution

226. Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}-3 & 1 & 0 \\ 1 & 3 & -2\end{array}\right]$

Evaluate $3 A-B$
227. If $y=\sin ^{-1} x$,Find $\frac{d y}{d x}$

- Watch Video Solution

228. If $y=\sin ^{-1} x$,then show that
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0$

- Watch Video Solution

229. Which of the following is the solution of the
differential

$$
\text { equation } \quad \frac{d y}{d x}+\sin x=0
$$

$y=C \cos x$ b) $y=\cos x+C$ c) $y=\sin x+C$
d) $y=C \sin x$
A. $y=C \cos x$
B. $y=\cos x+C$
C. $y=\sin x+C$
D. $y=C \sin x$

Answer:

- Watch Video Solution

230. From the differential equation representing the family of curves $y=a \sin (x+b)$, where a and b are arbitrary constants.

- Watch Video Solution

231. Using properties of determinants prove the
following.
$\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|=4 a b c$

- Watch Video Solution

232. Write a function which is not continuous at $x=0$ and justify your answer

- Watch Video Solution

233. Check the continuity of the function
$f(x)=\left\{\begin{array}{llllll}x & + & 2 & \text { if } & x< & 0 \\ -x & + & 2 & \text { if } & x> & 0\end{array}\right.$

- Watch Video Solution

234. Consider the arrow diagram of the functions f
and g.

Write the function gof.

- Watch Video Solution

235. If α, β, γ are the direction angles of a vector, then which the following can be $\alpha+\beta$? 80°
60°
120°
can't be determined
A. 80°
B. 60°
C. 120°
D. can't be determined

Answer:

- Watch Video Solution

236. Find the direction cosines of the line passing through the points (2,8,3) and (4,5,9).

D Watch Video Solution

237. If $\tan ^{-1} x=\frac{\pi}{10}$, then the value of $\cot ^{-1} x$ is
A. $\frac{\pi}{5}$
B. $2 \pi / 5^{`}$
C. $3 \pi / 5^{`}$
D. $4 \pi / 5$

238.
 Find
 the
 value
 of
 $\sin \left(2 \tan ^{-1} \frac{2}{3}\right)+\cos \left(\tan ^{-1} \sqrt{3}\right)$

D Watch Video Solution

239. Let $A=\{-1,0,1\}$

Give reason why the operation defined by
$a * b=\frac{a}{b}$ is not a binary operation on A.

- Watch Video Solution

240. Let $A=\{-1,0,1\}$

Write a binary operation * on A.

- Watch Video Solution

241. Let $A=\{-1,0,1\}$

How many binary operations are possible on A?

D Watch Video Solution

242. Find the equation of a line L passing through
the points $(-1,0,2)$ and ($2,1,3$).
243. Find $\frac{d y}{d x}$ of the following: $y=\sec (\tan x)$

D Watch Video Solution

244. Find $\frac{d y}{d x}$ of
$y^{x}=x^{y}$

- Watch Video Solution

245. Find $\int \tan ^{-1} x d x$

- Watch Video Solution

246. Find the area bounded by the curve
$y=\tan ^{-1} x$ with X-axis from $x=0$ and $x=1$

- Watch Video Solution

247. Consider the $\operatorname{DE}\left(x^{2}+y^{2}\right) d x=2 x y d y$

Solve the DE completely

- Watch Video Solution

248. Consider a plane which is rquidistant from the points (1,2,1) and (3,4,7).

Which of the following is a point on the plane?
A. $(1,3,1)$
B. $(4,2,3)$
C. $(2,3,4)$
D. $(1,3,6)$

Answer:

249. Consider a plane which is equidistant from the points (1,2,1) and (3,4,7).

Find the equation of the above plane.

- Watch Video Solution

250. Let $\vec{a}=2 \hat{i}+\hat{j}-3 \hat{k}$ and $\vec{b}=4 \hat{i}+\hat{j}+\hat{k}$ be two vectors. Find a vector \vec{c} perpendicular to \vec{a} and \vec{b}.

- Watch Video Solution

251. Find the following integrals.
$\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x$

- Watch Video Solution

252. Hence evaluate the area bounded by the
curve $y=x \sin x$ between $x=-\pi$ and $x=\pi$.

- Watch Video Solution

253. In a ladies hostel, 60% of the students read

Hindi newspaper,40\% read English newspaper and

20\%read both Hindi and English newspapers.A
student is selected at random.
Find the probability that she reads neither Hindi nor English newspapers.

- Watch Video Solution

254. In a ladies hostel, 60% of the students read

Hindi newspaper,40\% read English newspaper and 20\%read both Hindi and English newspapers.A
student is selected at random.
If she reads Hindi newspaper,find the probability
that she reads English newspaper.
255. In a ladies hostel, 60% of the students read

Hindi newspaper,40\% read English newspaper and 20\%read both Hindi and English newspapers.A
student is selected at random.

If she reads English newspaper,find the
probability that she reads Hindi newspaper.

D Watch Video Solution

256. Let A be a matrix of order 3×3 whose
elements are given by $a_{i j}=2 i-j$
obtain the matrix A.

- Watch Video Solution

257. Consider the matrix $A=\left[\begin{array}{ccc}1 & 3 & 6 \\ -1 & -1 & 2 \\ 1 & 1 & 5\end{array}\right]$

Find $|A|$

- Watch Video Solution

258. Consider the matrix $A=\left[\begin{array}{ccc}1 & 3 & 6 \\ -1 & -1 & 2 \\ 1 & 1 & 5\end{array}\right]$

Verify that $A \times a d j A=|A| I$
259. Find the following integrals
$\int \frac{1}{x^{2}-6 x+13} d x$

- Watch Video Solution

260. Integrate the following with respect to X :
$\cos x$
$\overline{(\sin x-1)(\sin x-2)}$
D Watch Video Solution
261. Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice.

Write the probability distribution of X.

- Watch Video Solution

262. Let a pair of dice be thrown and the random
variable X be the sum of the numbers that appear on the two dice.

Find variance of X.
263. Consider the function $f(x)=2 x^{3}-6 x^{2}+1$.Find the equation of tangents parallel to X -axis.

- Watch Video Solution

264. Consider the function $f(x)=2 x^{3}-6 x^{2}+1$

Find the intervals in which the function f is decreasing.
265. The length of a rectangle is decreasing at the rate of $5 \mathrm{~cm} / \mathrm{mi}$ and the width is increasing at the rate of $4 \mathrm{~cm} / \mathrm{min}$. When length is 8 cm and width is 6 cm , find the rate of change of its area.

D Watch Video Solution

266. Let $\vec{a}=2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}-8 \hat{k}$ be
two vectors
Find a vector \vec{c} representing a diagonal of the parallelogram with \vec{a} and \vec{b} as the adjacent sides.
267. Let $\vec{a}=2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}-8 \hat{k}$ be
two vectors
Find the projection of \vec{a} on \vec{b}.

D Watch Video Solution

268. Let $\vec{a}=2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}-8 \hat{k}$
be two vectors Find the angle between the vectors \vec{a} and \vec{b}.
269. Maximise: $Z=600 x+400 y$

Subject to the constraints:
$x+2 y \leq 12,2 x+y \leq 12$
$4 x+5 y \geq 20, x \geq 0, y \geq 0$
Draw the feasible region.

D Watch Video Solution

270. Maximise: $Z=600 x+400 y$

Subject to the constraints:
$x+2 y \leq 12,2 x+y \leq 12$
$4 x+5 y \geq 20, x \geq 0, y \geq 0$
Solve the LPP?

- Watch Video Solution

271. Let R be a relation in the set N of natural numbers given by $R=\{(a, b): a=b-2\}$. Choose the correct answer.a) $(2,3) \in R$ b) $(3,8) \in R$
$(6,8) \in R \mathrm{~d})(8,7) \in R$
A. $(2,3) \in R$
B. $(3,8) \in R$
C. $(6,8) \in R$
D. $(8,7) \in R$

Answer:

D Watch Video Solution

272. Let $*$ be a binary operation on the set Z of integers as $a * b=a+b+1$. Then find the identity element:
273. Write two non-zero matrices A and B for which $A B=0$.

- Watch Video Solution

274. express $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]$ as the sum of a symmetric matrix and a skew symmetric matrix.

- Watch Video Solution

275. using properties of determinants, prove that $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$.
276. Which among the following is not true
A. A polynomial function is always continuous.
B. A continuous function is always differentiable.
C. A differentiable function is always continuous.
D. $\log \mathrm{x}$ is continuous for all x greater than zero.

Answer:

277. Find $\frac{d y}{d x}$, if $x^{2}+y^{2}+x y=100$

- Watch Video Solution

278. Identify the following function:

Is the function differentiable? Why?

- Watch Video Solution

279. Find derivative of $y=\sqrt{\tan x}$

- Watch Video Solution

280. The slope of the tangent to the curve $y=e^{2 x}$ at (0,1) is.....a) 1 b) 2 c) 0 d)-1
A. 1
B. 2
C. 0
D. -1

- Watch Video Solution

281. Find the equation of a line perpendicular to the tangent to the curve $y=e^{2 x}$ at (0,1)) and passing through $(2,3)$.

- Watch Video Solution

282. The general solution of a differential equation contains 3 arbitrary constants. Then what is the order of the differential equation?A)2 B)3 C)0 D)1
A. 2
B. 3
C. 0
D. 1

Answer:

D Watch Video Solution

283. Check whether $y=e^{-3 x}$ is a solution of the differential equation $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=0$
284. Let $A=R-\{3\}$ and $B=R-\{1\}$ Consider the function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$ Is f one-one and onto? Justify your answer.

- Watch Video Solution

285. Let $A=R-\{3\}$ and $B=R-\{1\}$ Consider the function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$ Is f one-one and onto? Justify your answer.

- Watch Video Solution

286. Let $A=R-\{3\}$ and $B=R-\{1\}$ Consider
the function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$ Is f one-one and onto? Justify your answer.

D Watch Video Solution

287. If $x y<1, \tan ^{-1} x+\tan ^{-1} y=\ldots \quad$ a)
$\tan ^{-1}\left(\frac{x-y}{1+x y}\right)$
b) $\tan ^{-1}\left(\frac{x+y}{1-x y}\right) \quad$ c) $\frac{\tan x+\tan y}{1-\tan x \tan y}$
$\tan x-\tan y$
$1-\tan x \tan y$

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{x-y}{1+x y}\right) \\
& \text { B. } \tan ^{-1}\left(\frac{x+y}{1-x y}\right)
\end{aligned}
$$

C. $\frac{\tan x+\tan y}{1-\tan x \tan y}$
D. $\frac{\tan x-\tan y}{1=\tan x \tan y}$

Answer:

- Watch Video Solution

288. Solve $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$

- Watch Video Solution

289. find $\frac{d y}{d x}$, if $y=x^{x}+x^{\sin x}$
290. if $y=x \cos x$, find $\frac{d^{2} y}{d x^{2}}$

- Watch Video Solution

291. $\int \frac{f(x)}{\tan x} d x=\log |\tan x|+c$, then $f(x)$ is
A. $\cot x$
B. $\sec ^{2} x$
C. $\operatorname{cosec}{ }^{2} x$
D. $\cot ^{2} x$

Answer:

- Watch Video Solution

292. if $\frac{d f(x)}{d x}=4 x^{2}-\frac{3}{x^{4}}$, given $f(2)=0$. Find $f(x)$

D Watch Video Solution

293. Area bounded by the curve $y=f(x), \mathrm{x}$ axis and the lines $\mathrm{x}=\mathrm{a}$ and $x=b$ is

$$
\text { A. } \int_{a}^{b} x d y
$$

B. $\int_{a}^{b} y d x$
C. $\int_{a}^{b} x^{2} d y$
D. $\int_{a}^{b} y^{2} d x$

Answer:

- Watch Video Solution

294. From the following figure, find the area of the region bounded by the curves $y=\sin x, y=\cos x$
and x axis as x varies from 0 to $\frac{\pi}{2}$

- Watch Video Solution

295. Form the differential equation corresponding
to the curve $y=m x$
296. Consider the D.E $\frac{d y}{d x}+\frac{y}{x}=x^{2}$ Solve the D.E.

- Watch Video Solution

297. Find a unit vector perpendicular to the plane

ABC where A, B, C are point (1,1,2),(2,3,5) and (1,5,5).
298. The Cartesian equation of two lines are

$$
\begin{array}{llr}
\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} & & \text { and } \\
\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} & \text {.Write } & \text { the } \quad \text { vector }
\end{array}
$$

equations.

- Watch Video Solution

299. Find the shortest distance between the lines

$$
\begin{aligned}
& \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \\
& \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}
\end{aligned}
$$

and
300. Let two independent events A and B such that $P(A)=0.3, P(B)=0.6$. Find
$P(A$ and $B)$

- Watch Video Solution

301. Let two independent events A and B such that

$$
P(A)=0.3, P(B)=0.6
$$

Find $P(A$ and not $B)$
302. Let two independent events A and B such that

$$
P(A)=0.3, P(B)=0.6
$$

Find $P(A$ or $B)$

- Watch Video Solution

303. Given two independent events A and B such that $P(A)=0.3, \mathrm{P}(\mathrm{B})=0.6^{\prime}$. find P (neither A nor B)

- Watch Video Solution

304. Let $A=\left[a_{i j}\right]_{2 \times 3}$ where $a_{i j=i+j}$. construct A.
305. Let $A=\left[a_{i j}\right]_{2 \times 3}$ where $a_{i j=i+j}$. construct A.Find $A A^{\prime}$ and hence prove that $A A^{\prime}$ is symmetric.

- Watch Video Solution

306. For any square matrix A,prove that ' $A+A$ ' is
symmetric.

- Watch Video Solution

307. If A is a skew symmetric matrix of order 3 . Then prove that it's determinant is zero. (without using examples).

- Watch Video Solution

308. Given $\left|\begin{array}{ccc}2+x & 3 & 4 \\ 1 & -1 & 2 \\ x & 1 & 5\end{array}\right|$ is a singular matrix.

Find the value of x
309. Given A and B are square matrices of order 2
such that $|A|=-1,|B|=3$. Find $|3 A B|$.

- Watch Video Solution

310. Find the intervals in which the function $f(x)=x^{2}+2 x-5 \quad$ strictly \quad increasing \quad or decreasing.
311. Find the equation of tangents and normals to the given curves $y=x^{3}$ at $(1,1)$

D Watch Video Solution

312. Find the local maxima and minima of the following functions. Also find the local maximum and minimum values.
$f(x)=\sin x+\cos x, 0<x<\frac{\pi}{2}$

- Watch Video Solution

313. Integrate the following
$\int \frac{d x}{1+\frac{x^{2}}{4}}$

- Watch Video Solution

314. Integrate the following
$\int \frac{x}{(x-1)(x-2)} d x$

D Watch Video Solution

315. Integrate the following $\int_{0}^{\frac{\pi}{2}} x \cos x d x$
316. If $\vec{a}, \vec{b}, \vec{c}$ are three coplanar vectors, then $[\vec{a} \vec{b} \vec{c}]$ is
A. 1
B. 0
C. -1
D. not defined

Answer:

317. If $|\vec{a}|=2,|\vec{b}|=3$ and θ is the angle between \vec{a} and \vec{b}. Then the maximum value of $\vec{a} \cdot \vec{b}$ occurs when $\theta=$.....a) $\frac{\pi}{2}$ b) π c) 0 d) $\frac{\pi}{4}$
A. $\frac{\pi}{2}$
B. π
C. 0
D. $\frac{\pi}{4}$

Answer:

318. If $\vec{b}=2 \hat{i}+\hat{j}-\hat{k}, \vec{c}=\hat{i}+3 \hat{k}$ and \vec{a} is a unit vector. Find the maximum value of scalar triple product $[\vec{a} \vec{b} \vec{c} \vec{c}]$

- Watch Video Solution

319. Solve the linear programming problem graphically:

Max: $z=3 x+2 y$
Subject to:

$$
x+2 y \leq 10,3 x+y \leq 15, x \geq 0, y \geq 0
$$

320. The probability distribution of a random variable X is given in the following table:

Find k .

X	0	1	2	3	4
$P(X)$	0.1	k	$2 k$	$2 k$	k

- Watch Video Solution

321. The probability distribution of a random variable X in given in the following table:

Find the probability that X lies between 1 and 4 .

X	0	1	2	3	4
$P(X)$	0.1	k	$2 k$	$2 k$	k

- Watch Video Solution

322. The probability distribution of a random variable X in given in the following table:

Find the mean of X.

X	0	1	2	3	4
$P(X)$	0.1	k	$2 k$	$2 k$	k

