



# MATHS

# **BOOKS - MAXIMUM PUBLICATION**

# **RELATIONS AND FUNCTIONS**



1. Show that the relation R in the set is given

by  $A=\{x\in Z, 0\leq x\leq 12\}$ 

 $R = \{(a,b) : a-b ext{ is a multiple of 4}\}$  is an

equivalence relation.



3. Let R be a Relation in the set

 $A = \{1, 2, 3, 4, 5, 6\}$  define as

$$R = \{(x,y) : y = 2x - 1\}$$

Is R an equivalance relation? Justify.

> Watch Video Solution

4. Let 
$$f:R-\left\{rac{-4}{3}
ight\} o R$$
 be a function defined b  $f(x)=rac{4x}{3x+4}, x
eq-rac{4}{3}.$  Show that  $f^{-1}(y)=rac{4y}{4-3y}$ 

**5.** Let ' \* ' is a binary operation on the set Q of rational numbers as follows,

a \* b = a - b

Check whether the binary operation are commutative and associative. Also find the identify element if exists.

Watch Video Solution

**6.** Let ' \* ' is a binary operation on the set Q of rational numbers as follows,

a \* b = a + ab

Check whether the binary operation are commutative and associative. Also find the identify element if exists.



#### 7. Let ' \* ' is a binary operation on the set Q of

rational numbers as follows,

$$a \ast b = a^2 + b^2$$

Check whether the binary operation are

commutative and associative. Also find the

identify element if exists.

**8.** Let ' \* ' is a binary operation on the set Q of rational numbers as follows,

$$a st b = (a-b)^2$$

Check whether the binary operation are commutative and associative. Also find the identify element if exists. **9.** Show that the relation R on the set of natural numbers defined as  $R: \{(x, y): y - x$  is a multiple of 2} is an equivalance relation

Watch Video Solution

10. Consider  $f\!:\![3,\infty) o [1,\infty)$  given by

$$f(x)=x^2-6x+10$$
. Find  $f^{\,-1}$ 

**11.** \* ' be a binary operation on  $N \times N$ defined as (a, b) \* (c, d) = (ac, bd)Show that \* is commutative. Watch Video Solution

12. \*' be a binary operation on N imes Ndefined as (a, b) \* (c, d) = (ac, bd)

Find the identity element of \* if any

13. \*' be a binary operation on  $N \times N$ defined as (a, b) \* (c, d) = (ac, bd)Write an element of  $N \times N$ which has an inverse.

Watch Video Solution

**14.** Show that the relation R in the set R of Real numbers defined as  $R = \{(a, b) : a \le b^2\}$  is neither reflexive, nor symmetric, nor transitive.



15. Consider 
$$f: R^+ \to [-5, \infty)$$
 given by  
 $f(x) = 9x^2 + 6x - 5$ . Show that f is invertible  
with  $f^{-1}(y) = \frac{\sqrt{y+6}-1}{3}$   
Watch Video Solution

16. Let  $A = R - \{3\}$  and  $B = R - \{1\}$ consider the function  $f: A \to B$  defined by  $f(x) = \frac{x-2}{x-3}$ . Is f one-one and onto? Justify your answer. Watch Video Solution

17. Let 
$$f:R-\left\{\frac{-4}{3}\right\} o R$$
 be a function defined b  $f(x)=\frac{4x}{3x+4}, x
eq-\frac{4}{3}$ . Show that  $f^{-1}(y)=\frac{4y}{4-3y}$ 

## Watch Video Solution

18. The relation R defined in the set

$$A=\{\,-1,0,1\}$$
 as

$$R=ig\{(a,b)\!:\!a=b^2ig\}$$

Chech whether R is reflexive, symmetric and

transitive.



19. The relation R defined in the set

$$A=\{\,-1,0,1\}$$
 as

$$R=\left\{(a,b)\!:\!a=b^2
ight\}$$

Is R an equivalance relation

## **20.** Let $A = \{1, 2, 3\}$ . Give an example of a

relation on A which is

Symmetric but neither reflexive nor transitive.



## **21.** Let $A = \{1, 2, 3\}$ . Give an example of a

relation on A which is

Transitive but neither reflexive nor symmetric.

22. Find fog and gof if f(x) = |x| and g(x) = |3x + 4|Watch Video Solution

23. Find 
$$fog$$
 and  $gof$  if  $f(x) = 16x^4$  and  $g(x) = x^{rac{1}{4}}$ 

24. Consider the binary operation  $*: Q \rightarrow Q$ where Q is the set of rational numbers as defined as a \* b = a + b - abFind 2 \* 3

Watch Video Solution

25. Consider the binary operation \*:Q 
ightarrow Q where Q is the set of rational numbers as defined as a \* b = a + b - ab

Is identity for \* exist? If yes, find the identity

element.



26. Consider the binary operation \*:Q o Qwhere Q is the set of rational numbers as defined as a \* b = a + b - ab

Are elements of Q invertible? Is yes, find the

inverse of an element in Q

**27.** \* ' is a binary operation on R defined as

a \* b = 2ab

Determine whether \* is commutative and

#### associative

**Watch Video Solution** 

## 28. \* ' is a binary operation on R defined as

a \* b = 2ab

Find the identity element if exists.

29. \* ' is a binary operation on R defined as

a \* b = 2ab

Find the inverse element, if exists



## 30. Check if the following function satisfies the

condition  $f^{-1} \neq f$ .

$$f{:}R-\{0\} o R-\{0\}, f(x)=rac{1}{x}$$

31. Which of the following satisfies the condition  $f^{-1} \neq f$ .  $f \colon R \to R, f(x) = -x$ Watch Video Solution

32. Which of the following satisfies the condition  $f^{-1} 
eq f$ . $f: R - \{-1\} o R - \{1\}, f(x) = rac{x}{x+1}$ 

**33.** Which of the following satisfies the condition  $f^{-1} 
eq f$ . $f: R - \{2\} 
ightarrow R - \{2\}, f(x) = rac{2x-3}{x-2}$ 

Watch Video Solution

**34.** If  $f \colon R o R$  is a function defined by

$$f(x) = 3x - 2$$

Show that f is one-one.

**35.** Let  $A = N \times N$  and '\*' be the binary operation. On A defined by (a, b) \* (c, d) = (a + c, b + d). Show that '\*' is commutative and associative. Find the identity for '\*' on A if any.

Watch Video Solution

36. If 
$$f(x)=rac{4x+3}{6x-4}, x
eqrac{2}{3}.$$
  
Show that  $fof(x)=x$ , for all  $x
eqrac{2}{3}.$ 

37. If 
$$f(x)=rac{4x+3}{6x-4}, x
eqrac{2}{3}.$$

What is the inverse of 'f'?

Watch Video Solution

## **38.** Let be a function defined by $f(x) = \sqrt{x}$ is

a function if it defined from  $f: N \rightarrow N`$ 

**39.** Let be a function defined by  $f(x) = \sqrt{x}$  is

a function if it defined from

 $f{:}R o R$ 



**40.** Let be a function defined by  $f(x) = \sqrt{x}$  is

a function if it defined from

 $f{:}R
ightarrow R^+$ 

**41.** Let be a function defined by  $f(x) = \sqrt{x}$  is

a function if it defined from

$$f{:}R^+ 
ightarrow R^+$$

Watch Video Solution

## 42. Check the injectivity and surjectivity of the

following functions

$$f\!:\!N o N$$
 defined by  $f(x)=x^3$ 

43. Check the injectivity and surjectivity of the

following functions

 $f\!:\!R o R$  given by f(x)=[x]





C. 3

D. 4

#### Answer:







47. Show that the function  $f\colon R o R$  defined by f(x)=2x-3 is one-one and onto. Find  $f^{-1}$ 

**48.** Which of the following figure represents the graph of a function on R which is onto but not one-one.



49. Write a function on R which is onto but

not one-one.



50.  $A = \{1, 2, 3, 4, 6\}, *$  is a binary operation on A is defined as a \* b = HCF of a and b.

Represent \* with the help of an operation table.



**51.**  $A = \{1, 2, 3, 4, 6\}, *$  is a binary operation

on A is defined as a \* b = HCF of a and b.

Find the identity element.

Watch Video Solution

52.  $A = \{1, 2, 3, 4, 6\}, *$  is a binary operation on A is defined as a \* b = HCF of a and b. Draw its operation table.

Write a commutative binary operation on A

with 3 as the identity element. ( Hint:

Operation table may be used.



**53.** Let \* be a binary operation on the set of all real numbers R defined by  $a * b = a + b + a^2 b$  for a, b R. Find 2 \* 6 and 6 \* 2.

54. Let \* be a binary operation on the set of all real numbers R defined by  $a * b = a + b + a^2 b$  for a, b belongs to R. Prove that \* is neither commutative nor associative.



**55.** Let \* be a binary operation on the set of

all real numbers R defined by

 $a * b = a + b + a^2 b$  for a, b R.

Find the identity elements in R if exists.



**57.** Consider  $f \colon R o R$  given by

f(x) = 3x + 2 show that f is invertible. Find

the inverse of f

Watch Video Solution

58. Consider the set  $A = \{1, 2, 3, 4, 5\}$ , and  $B = \{1, 4, 9, 16, 25\}$  and a function  $f: A \to B$  defined by f(1) = 1, f(2) = 4, f(3) = 9, f(4) = 16 and f(5) = 25.

Show that f is one-to-one.



59. Consider the set  $A = \{1, 2, 3, 4, 5\}$ , and  $B = \{1, 4, 9, 16, 25\}$  and a function  $f: A \rightarrow B$  defined by f(1) = 1, f(2) = 4, f(3) = 9, f(4) = 16 and f(5) = 25.

Show that f is onto.

Watch Video Solution

**60.** Consider the set  $A = \{1, 2, 3, 4, 5\}$ , and

 $B=\{1,4,9,16,25\}$  and a function

 $f\!:\!A o B$  defined by f(1)=1, f(2)=4,

$$f(3) = 9, f(4) = 16 \text{ and } f(5) = 25.$$

Does  $f^{-1}$  exists? Explain.

Watch Video Solution

61. When a relation R on a set A is said to be

reflexive

**62.** Show that  $f \colon [\,-1,1] o R$  given by

$$f(x) = rac{x}{x+2}$$
 is one-one.

Watch Video Solution

**63.** The function 
$$f \colon N o N$$
 given by  $f(x) = 2x$ 

A. one-one and onto

B. one-one and not onto

C. not one-one and not onto



a \* b = LCM of a and b defined on the set

 $A = \{1, 2, 3, 4, 5\}$ . Is \* a binary operation?

Justify your answer.



66. 
$$f \colon \{1, 2, 3, 4\} o \{5\}$$
 defined by

 $f = \{(1, 5), (2, 5), (3, 5), (4, 5)\}.$ 

Does the function is invertible?

67. 
$$A = R - \left\{\frac{7}{5}\right\}, B = R - \left\{\frac{3}{5}\right\}$$
  
 $f: A \rightarrow B$  defined by  $f(x) = \frac{3x+4}{5x-7}$   
 $g: B \rightarrow A$  defined by  $g(y) = \frac{7y+4}{5y-3}$ 

Find gof

Watch Video Solution

**68.** Let A = N imes N, N-set of natural numbers

and ' \* ' be a binary operation on A defined by

$$(a,b)*(c,d)=(ac-bd,ad+bc).$$

Show that ' \* ' is commutative on A.



**69.** Let N be the set of Natural numbers. Consider the function  $f\colon N o N$  defined by  $f(x)=x+1, x\in N$ 

Prove that f is not onto.



70. Let N be the set of Natural numbers. Consider the function  $f\colon N o N$  defined by

$$f(x)=x+1, x\in N$$
  
If  $g(x)=egin{cases} x-1&x>1\ 1&x=1 \end{bmatrix}$  then find  $gof$ 

#### Watch Video Solution

71. Let N be the set of Natural numbers. Consider the function  $f\!:\!N o N$  defined by  $f(x)=x+1, x\in N$ 

Check whether f is an onto function.

72. Give a relation on a set  $A = \{1, 2, 3, 4\}$ which is reflexive, symmetric and not transitive.



73. Show that 
$$f: [-1, 1] \rightarrow R$$
 given by  $f(x) = \frac{x}{x+2}$  is one-one.

74. Let '\*' be a binary operation on  $Q^+$  defined by ' $a * b = rac{ab}{6}$ '. Find the inverse of 9

with respect to ' \* '.

Watch Video Solution

75. \*: R 
ightarrow R given by  $a * b = 3a^2 - b$ 

Find the value of 2 \* 3 . Is ' \* ' commutative?

Justify your answer.



78. Consider  $f \colon R o R$  given by

f(x) = 5x + 2

Is f invertible? Justify your answer.



## **79.** Let \* be a binary operation on N defined

by  $a \ast b = HCF$  of a and b

Is \* commutative?

80. Let \* be a binary operation on N defined

by  $a \ast b = HCF$  of a and b

Is \* associative?

Watch Video Solution

**81.** Let  $f\!:\!R o R$  be given by  $f(x)=rac{2x+1}{3}$ 

find

fof and show that f is invertible.



83. What is the minimum number of pairs to

form a non - zero reflexive relation on a set of

n elements?



**84.** On the set R of real numbers, S is a relation defined as

 $S=\{(x,y)\,/\,x\in R,y\in R,x+y=xy\}.$ 

Find  $a \in R$  such that 'a' is never the first element of an ordered pair in S. Also find  $b \in R$  such that 'b' is never the second element of an ordered pair in S.

85. Consider the function 
$$f(x) = \frac{3x+4}{x-2}, x \neq 2$$
. Find a function on a suitable domain such that  $gof(x) = x = fog(X)$ .

86. If  $f\!:\!R o R$  and  $g\!:\!R o R$  defined by  $f(x)=x^2$  and g(x)=x+1, then gof(x) is A.  $(x+1)^2$ B.  $x^3+1$ 

## $\mathsf{C.}\,x^2+1$

D. x + 1

#### Answer:



**87.** Consider the function  $f\colon N o N$ , given by

 $f(x)=x^3.$  Show that the function 'f' is

injective but not surjective.



88. The given table shows an operation \* on

## $A=\{p,q\}$ (Figure)



**89.** The given table shows an operation \* on  $A = \{p, q\}$  (Figure)



90. Let R be relation defined on  $A=\{1,2,3\}$  by  $R=\{(1,3),(3,1),(2,2)\}$  is

A. Reflexive

B. Symmetric

C. Transitive

#### D. Reflexive but not Transitive

#### Answer:

Watch Video Solution

91. Find fog and gof if f(x) = |x+1| and g(x) = 2x-1

92. Let \* be a binary operation defined on  $N \times N$  by (a, b) \* (c, d) = (a + c, b + d)Find the identity element for \* if it exists.



# 93. If $R=\{(x,y)\!:\!x,y\in Z,x-y\in Z\}$ , then

the relation R is

A. Reflexive but not transitive

B. Reflexive but not symmetric

C. symmetric but not transitive

D. An equivalance relation

#### Answer:

Watch Video Solution

94. Let \* be a binary operation on the set Q

of rational numbers by a \* b = 2a + b. Find

$$2 * (3 * 4)$$
 and  $(2 * 3) * 4$ .

**95.** Let  $f \colon R \to R, g \colon R \to R$  be two one-one functions. Check whether gof is one-one or not.



## **96.** A function $f \colon X o Y$ is onto if range of f

=.....

**97.** Let  $f: \{1, 3, 4\} \rightarrow \{3, 4, 5\}$  and  $g\!:\!\{3,4,5\}
ightarrow\{6,8,10\}$  be functions defined by

f(1) = 3, f(3) = 4, f(4) = 5,g(3) = 6, g(4) = 8, g(5) = 8,then (gof)(3)

## Watch Video Solution

=....

98. Let Q be the set of Rational numbers and '

\* ' be the binary operation on Q defined by '

$$a * b = rac{ab}{4}$$
' for all a,b in Q.

What is the identity element of ' \* ' on Q?

## Watch Video Solution

99. Let Q be the set of Rational numbers and '

 $\ast$  ' be the binary operation on Q defined by '

$$a * b = rac{ab}{4}$$
' for all a,b in Q.

Find the inverse element of ' \* ' on Q.

Show

that

$$a*(b*c)=(a*b)*c, \, orall a,b,c\in Q.$$

Watch Video Solution

**101.** Let R be the relation on the set N of natural numbers given by

$$R = \{(a,b) : a-b > 2b > 3\}$$

Choose the correct answer

A. 
$$(4,1)\in R$$

 $\mathsf{B.}\,(5,8)\in R$ 

$$\mathsf{C}.\,(8,7)\in R$$

D.  $(10, 6) \in R$ 

#### **Answer:**

Watch Video Solution

102. If 
$$f(x) = 8x^3$$
 and  $g(x) = x^{rac{1}{3}}$ , find  $g(f(x))$  and  $f(g(x))$ 

**103.** Let \* be a binary operation on the set Q of rational numbers defined by  $a * b = \frac{ab}{3}$ . Check whether \* is commutative and associative?

Watch Video Solution

104. Let 
$$f(x) = rac{x-1}{x-3}, x 
eq 3$$
 and  $g(x) = rac{x-3}{x-1}, x 
eq 1$  be two functios defined

on R

Find fog(x), x 
eq 0



105. Let 
$$f(x)=rac{x-1}{x-3}, x
eq 3$$
 and  $g(x)=rac{x-3}{x-1}, x
eq 1$  be two functios defined

on R

Find  $f^{\,-1}(x)$  and  $g^{\,-1}(x), x
eq 1$ 

106. Let 
$$f(x)=rac{x-1}{x-3}, x
eq 3$$
 and  $g(x)=rac{x-3}{x-1}, x
eq 1$  be two functios defined

on R

# Find $(gof)^{-1}(x)$