©゙’doubtnut

India's Number 1 Education App

MATHS

BOOKS - MAXIMUM PUBLICATION

RELATIONS AND FUNCTIONS

Example

1. Show that the relation R in the set is given
by $A=\{x \in Z, 0 \leq x \leq 12\}$
$R=\{(a, b): a-b$ is a multiple of 4$\}$ is an equivalence relation.

D Watch Video Solution

2. Let R be a Relation in the set
$A=\{1,2,3,4,5,6\}$ define as
$R=\{(x, y): y=2 x-1\}$

Write R in roster form and find it's domain and range

D Watch Video Solution

3. Let R be a Relation in the set
$A=\{1,2,3,4,5,6\}$ define as
$R=\{(x, y): y=2 x-1\}$
Is R an equivalance relation? Justify.

- Watch Video Solution

4. Let $f: R-\left\{\frac{-4}{3}\right\} \rightarrow R$ be a function defined b $f(x)=\frac{4 x}{3 x+4}, x \neq-\frac{4}{3}$. Show
that $f^{-1}(y)=\frac{4 y}{4-3 y}$
5. Let ' $*$ ' is a binary operation on the set Q of rational numbers as follows,
$a * b=a-b$

Check whether the binary operation are commutative and associative. Also find the identify element if exists.

D Watch Video Solution

6. Let ' $*$ ' is a binary operation on the set Q of rational numbers as follows,
$a * b=a+a b$

Check whether the binary operation are commutative and associative. Also find the identify element if exists.

D Watch Video Solution

7. Let ' $*$ ' is a binary operation on the set Q of rational numbers as follows,
$a * b=a^{2}+b^{2}$

Check whether the binary operation are
commutative and associative. Also find the identify element if exists.

D Watch Video Solution

8. Let ' $*$ ' is a binary operation on the set Q of rational numbers as follows,
$a * b=(a-b)^{2}$

Check whether the binary operation are commutative and associative. Also find the identify element if exists.
9. Show that the relation R on the set of natural numbers defined as $R:\{(x, y): y-x$ is a multiple of 2$\}$ is an equivalance relation

- Watch Video Solution

10. Consider $f:[3, \infty) \rightarrow[1, \infty)$ given by
$f(x)=x^{2}-6 x+10$. Find f^{-1}

D Watch Video Solution

11. *' be a binary operation on $N \times N$ defined as $(a, b) *(c, d)=(a c, b d)$

Show that $*$ is commutative.

D Watch Video Solution

12. *' be a binary operation on $N \times N$ defined as $(a, b) *(c, d)=(a c, b d)$

Find the identity element of $*$ if any

- Watch Video Solution

13. *' be a binary operation on $N \times N$ defined as $(a, b) *(c, d)=(a c, b d)$

Write an element of $N \times N$ which has an inverse.

- Watch Video Solution

14. Show that the relation R in the set R of

Real numbers defined as
$R=\left\{(a, b): a \leq b^{2}\right\}$ is neither reflexive, nor symmetric, nor transitive.
15. Consider $f: R^{+} \rightarrow[-5, \infty)$ given by
$f(x)=9 x^{2}+6 x-5$. Show that f is invertible
with $f^{-1}(y)=\frac{\sqrt{y+6}-1}{3}$

D Watch Video Solution

16. Let $A=R-\{3\}$ and $B=R-\{1\}$
consider the function $f: A \rightarrow B$ defined by $f(x)=\frac{x-2}{x-3}$. Is f one-one and onto? Justify your answer.

- Watch Video Solution

17. Let $f: R-\left\{\frac{-4}{3}\right\} \rightarrow R$ be a function defined b $f(x)=\frac{4 x}{3 x+4}, x \neq-\frac{4}{3}$. Show
that $f^{-1}(y)=\frac{4 y}{4-3 y}$

- Watch Video Solution

18. The relation R defined in the set
$A=\{-1,0,1\}$ as
$R=\left\{(a, b): a=b^{2}\right\}$

Chech whether R is reflexive, symmetric and transitive.

- Watch Video Solution

19. The relation R defined in the set
$A=\{-1,0,1\}$ as
$R=\left\{(a, b): a=b^{2}\right\}$
Is R an equivalance relation
20. Let $A=\{1,2,3\}$. Give an example of a relation on A which is

Symmetric but neither reflexive nor transitive.

D Watch Video Solution

21. Let $A=\{1,2,3\}$. Give an example of a relation on A which is

Transitive but neither reflexive nor symmetric.
22. Find $f o g$ and $g o f$ if
$f(x)=|x|$ and $g(x)=|3 x+4|$

- Watch Video Solution

23. Find $f o g$ and $g o f$ if
$f(x)=16 x^{4}$ and $g(x)=x^{\frac{1}{4}}$

- Watch Video Solution

24. Consider the binary operation $*: Q \rightarrow Q$
where Q is the set of rational numbers as defined as $a * b=a+b-a b$

Find $2 * 3$

- Watch Video Solution

25. Consider the binary operation $*: Q \rightarrow Q$
where Q is the set of rational numbers as
defined as $a * b=a+b-a b$

Is identity for $*$ exist? If yes, find the identity element.

D Watch Video Solution

26. Consider the binary operation $*: Q \rightarrow Q$ where Q is the set of rational numbers as
defined as $a * b=a+b-a b$

Are elements of Q invertible? Is yes, find the inverse of an element in Q

- Watch Video Solution

27. * ' is a binary operation on R defined as
$a * b=2 a b$

Determine whether $*$ is commutative and associative

- Watch Video Solution

28. $*$ ' is a binary operation on R defined as
$a * b=2 a b$

Find the identity element if exists.
29. * ' is a binary operation on R defined as
$a * b=2 a b$

Find the inverse element, if exists

D Watch Video Solution

30. Check if the following function satisfies the condition $f^{-1} \neq f$.
$f: R-\{0\} \rightarrow R-\{0\}, f(x)=\frac{1}{x}$
31. Which of the following satisfies the condition $f^{-1} \neq f$.
$f: R \rightarrow R, f(x)=-x$

- Watch Video Solution

32. Which of the following satisfies the condition $f^{-1} \neq f$.
$f: R-\{-1\} \rightarrow R-\{1\}, f(x)=\frac{x}{x+1}$
33. Which of the following satisfies the condition $f^{-1} \neq f$.
$f: R-\{2\} \rightarrow R-\{2\}, f(x)=\frac{2 x-3}{x-2}$

D Watch Video Solution
34. If $f: R \rightarrow R$ is a function defined by
$f(x)=3 x-2$

Show that f is one-one.

D Watch Video Solution
35. Let $A=N \times N$ and ' $*$ ' be the binary
operation.
On
A defined
$(a, b) *(c, d)=(a+c, b+d)$. Show that ' ${ }^{\prime}$ '
is commutative and associative. Find the identity for ' $*$ ' on A if any.

- Watch Video Solution

36. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$.

Show that $f o f(x)=x$, for all $x \neq \frac{2}{3}$.
37. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$.

What is the inverse of ' f '?

- Watch Video Solution

38. Let be a function defined by $f(x)=\sqrt{x}$ is
a function if it defined from $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}^{`}$

- Watch Video Solution

39. Let be a function defined by $f(x)=\sqrt{x}$ is

a function if it defined from
$f: R \rightarrow R$

- Watch Video Solution

40. Let be a function defined by $f(x)=\sqrt{x}$ is
a function if it defined from
$f: R \rightarrow R^{+}$
41. Let be a function defined by $f(x)=\sqrt{x}$ is a function if it defined from
$f: R^{+} \rightarrow R^{+}$

- Watch Video Solution

42. Check the injectivity and surjectivity of the following functions
$f: N \rightarrow N$ defined by $f(x)=x^{3}$
43. Check the injectivity and surjectivity of the following functions
$f: R \rightarrow R$ given by $f(x)=[x]$

D Watch Video Solution

$f(x)=\frac{x+1}{x-1}, x \neq 1$
$f o f(2)=$
A. 1
B. 2
C. 3
D. 4

Answer:

D Watch Video Solution
45.
Consider
the
function
$f(x)=\frac{x+1}{x-1}, x \neq 1$
what is the inverse of f ?

- Watch Video Solution

46.

Consider the
function
$f(x)=\frac{x+1}{x-1}, x \neq 1$
$f(3)+f^{-1}(3)$

D Watch Video Solution

47. Show that the function $f: R \rightarrow R$ defined
by $f(x)=2 x-3$ is one-one and onto. Find
f^{-1}
48. Which of the following figure represents the graph of a function on R which is onto but not one-one.

- Watch Video Solution

49. Write a function on R which is onto but not one-one.

- Watch Video Solution

50. $A=\{1,2,3,4,6\}, *$ is a binary operation on A is defined as $a * b=H C F$ of a and b.

Represent * with the help of an operation table.
51. $A=\{1,2,3,4,6\}, *$ is a binary operation on A is defined as $a * b=H C F$ of a and b .

Find the identity element.

- Watch Video Solution

52. $A=\{1,2,3,4,6\}, *$ is a binary operation on A is defined as $a * b=H C F$ of
a and b. Draw its operation table.
Write a commutative binary operation on A
with 3 as the identity element. (Hint: Operation table may be used.

D Watch Video Solution

53. Let * be a binary operation on the set of all real numbers R defined by
$a * b=a+b+a^{2} b$ for $\mathrm{a}, \mathrm{b} \mathrm{R}$.

Find $2 * 6$ and $6 * 2$.
54. Let $*$ be a binary operation on the set of all real numbers R defined by
$a * b=a+b+a^{2} b$ for a, b belongs to R.

Prove that $*$ is neither commutative nor associative.

D Watch Video Solution

55. Let $*$ be a binary operation on the set of all real numbers R defined by
$a * b=a+b+a^{2} b$ for $\mathrm{a}, \mathrm{b} \mathrm{R}$.

Find the identity elements in R if exists.

D Watch Video Solution

56.

Consider
$f:\{3,4,5,6\} \rightarrow\{8,10,12,13,14\} \quad$ and
$f=\{(3,8),(4,10),(5,12),(6,14)\} . \quad$ State
whether f has inverse? Give reason.

D Watch Video Solution
57. Consider $f: R \rightarrow R$ given by
$f(x)=3 x+2$ show that f is invertible. Find the inverse of f

D Watch Video Solution

58. Consider the set $A=\{1,2,3,4,5\}$, and
$B=\{1,4,9,16,25\} \quad$ and \quad a function
$f: A \rightarrow B$ defined by $f(1)=1, f(2)=4$,
$f(3)=9, f(4)=16$ and $f(5)=25$.
Show that f is one-to-one.
59. Consider the set $A=\{1,2,3,4,5\}$, and
$B=\{1,4,9,16,25\} \quad$ and \quad a function
$f: A \rightarrow B$ defined by $f(1)=1, f(2)=4$,
$f(3)=9, f(4)=16$ and $f(5)=25$.
Show that f is onto.

- Watch Video Solution

60. Consider the set $A=\{1,2,3,4,5\}$, and
$B=\{1,4,9,16,25\} \quad$ and \quad a function
$f: A \rightarrow B$ defined by $f(1)=1, f(2)=4$,
$f(3)=9, f(4)=16$ and $f(5)=25$.
Does f^{-1} exists? Explain.

- Watch Video Solution

61. When a relation R on a set A is said to be

reflexive

- Watch Video Solution

62. Show that $f:[-1,1] \rightarrow R$ given by
$f(x)=\frac{x}{x+2}$ is one-one.

D Watch Video Solution

63. The function $f: N \rightarrow N$ given by
$f(x)=2 x$
A. one-one and onto
B. one-one and not onto
C. not one-one and not onto

D. onto but not one-one

Answer:

D Watch Video Solution

64. Find $g o f(x)$, if $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$

- Watch Video Solution

65. Let $*$ be an operation such that $a * b=L C M$ of a and b defined on the set
$A=\{1,2,3,4,5\}$. Is $*$ a binary operation?
Justify your answer.

D Watch Video Solution

66. $f:\{1,2,3,4\} \rightarrow\{5\}$ defined by
$f=\{(1,5),(2,5),(3,5),(4,5)\}$.
Does the function is invertible?

D Watch Video Solution
67. $A=R-\left\{\frac{7}{5}\right\}, B=R-\left\{\frac{3}{5}\right\}$
$f: A \rightarrow B$ defined by $f(x)=\frac{3 x+4}{5 x-7}$
$g: B \rightarrow A$ defined by $g(y)=\frac{7 y+4}{5 y-3}$
Find $g o f$

D Watch Video Solution

68. Let $A=N \times N, \mathrm{~N}$-set of natural numbers
and ' $*$ ' be a binary operation on A defined by
$(a, b) *(c, d)=(a c-b d, a d+b c)$.
Show that ' $*$ ' is commutative on A .

Watch Video Solution

69. Let N be the set of Natural numbers.

Consider the function $f: N \rightarrow N$ defined by
$f(x)=x+1, x \in N$
Prove that f is not onto.

D Watch Video Solution

70. Let N be the set of Natural numbers.

Consider the function $f: N \rightarrow N$ defined by
$f(x)=x+1, x \in N$
If $g(x)=\left\{\begin{array}{ll}x-1 & x>1 \\ 1 & x=1\end{array}\right.$ then find gof

- Watch Video Solution

71. Let N be the set of Natural numbers.

Consider the function $f: N \rightarrow N$ defined by
$f(x)=x+1, x \in N$
Check whether f is an onto function.
72. Give a relation on a set $A=\{1,2,3,4\}$ which is reflexive, symmetric and not transitive.

- Watch Video Solution

73. Show that $f:[-1,1] \rightarrow R$ given by $f(x)=\frac{x}{x+2}$ is one-one.

- Watch Video Solution

74. Let ' $*$ ' be a binary operation on Q^{+} defined by ' $a * b=\frac{a b}{6}$ '. Find the inverse of 9 with respect to ' $*$ '.

D Watch Video Solution

75. $*: R \rightarrow R$ given by $a * b=3 a^{2}-b$

Find the value of $2 * 3$. Is ' $*$ ' commutative?

Justify your answer.

D Watch Video Solution

76. $f: R \rightarrow R$ is defined by $f(x)=x^{2}-3 x+2$ Find $f o f(x)$ and $f o f(1)$.

- Watch Video Solution

> 77. Consider $f: R \rightarrow R \quad$ given by $f(x)=5 x+2$

Show that f is one-one.

- Watch Video Solution

78. Consider $f: R \rightarrow R$ given by
$f(x)=5 x+2$
Is f invertible? Justify your answer.

D Watch Video Solution

79. Let $*$ be a binary operation on N defined
by $a * b=H C F$ of a and b

Is * commutative?
80. Let $*$ be a binary operation on N defined
by $a * b=H C F$ of a and b

Is * associative?

- Watch Video Solution

81. Let $f: R \rightarrow R$ be given by $f(x)=\frac{2 x+1}{3}$ find
fof and show that f is invertible.
82. Find the identity element of the binary operation $*$ on N defined by $a * b=a b^{2}$.

- Watch Video Solution

83. What is the minimum number of pairs to
form a non-zero reflexive relation on a set of n elements?

D Watch Video Solution
84. On the set R of real numbers, S is a relation defined as
$S=\{(x, y) / x \in R, y \in R, x+y=x y\}$.
Find $a \in R$ such that 'a' is never the first element of an ordered pair in S. Also find
$b \in R$ such that ' b ' is never the second element of an ordered pair in S.

- Watch Video Solution

85.

$f(x)=\frac{3 x+4}{x-2}, x \neq 2$. Find a function on a
suitable
domain
such
that
$g \circ f(x)=x=f \circ g(X)$.

D Watch Video Solution

86. If $f: R \rightarrow R$ and $g: R \rightarrow R$ defined by
$f(x)=x^{2}$ and $g(x)=x+1$, then $g \circ f(x)$ is
A. $(x+1)^{2}$
B. $x^{3}+1$
C. $x^{2}+1$
D. $x+1$

Answer:

(D) Watch Video Solution
87. Consider the function $f: N \rightarrow N$, given by
$f(x)=x^{3}$. Show that the function ' f ' is injective but not surjective.
88. The given table shows an operation $*$ on
$A=\{p, q\}$ (Figure)
Is $\quad * \quad$ a binary operation?

D Watch Video Solution

89. The given table shows an operation $*$ on
$A=\{p, q\}$ (Figure)

D Watch Video Solution

90. Let R be relation defined on $A=\{1,2,3\}$

$$
\text { by } R=\{(1,3),(3,1),(2,2)\} \text { is }
$$

A. Reflexive
B. Symmetric
C. Transitive
D. Reflexive but not Transitive

Answer:

D Watch Video Solution

91. Find $f o g$ and $g o f$ if $f(x)=|x+1|$ and
$g(x)=2 x-1$

- Watch Video Solution

92. Let $*$ be a binary operation defined on
$N \times N$ by $(a, b) *(c, d)=(a+c, b+d)$
Find the identity element for $*$ if it exists.

- Watch Video Solution

93. If $R=\{(x, y): x, y \in Z, x-y \in Z\}$, then
the relation R is
A. Reflexive but not transitive
B. Reflexive but not symmetric

C. symmetric but not transitive

D. An equivalance relation

Answer:

D Watch Video Solution

94. Let * be a binary operation on the set Q
of rational numbers by $a * b=2 a+b$. Find
$2 *(3 * 4)$ and $(2 * 3) * 4$.
95. Let $f: R \rightarrow R, g: R \rightarrow R$ be two one-one
functions. Check whether gof is one-one or not.

D Watch Video Solution

96. A function $f: X \rightarrow Y$ is onto if range of f

=..........

D Watch Video Solution
97. Let $f:\{1,3,4\} \rightarrow\{3,4,5\} \quad$ and
$g:\{3,4,5\} \rightarrow\{6,8,10\}$ be functions defined by
$f(1)=3, f(3)=4, f(4)=5$,
$g(3)=6, g(4)=8, g(5)=8$, then $\quad(g \circ f)(3)$
=.........

D Watch Video Solution

98. Let Q be the set of Rational numbers and '

* ' be the binary operation on Q defined by '
$a * b=\frac{a b}{4}$ for all a,b in Q.
What is the identity element of ' $*$ ' on Q ?

D Watch Video Solution

99. Let Q be the set of Rational numbers and '

* ' be the binary operation on Q defined by '
$a * b=\frac{a b}{4}$ ' for all a, b in Q.
Find the inverse element of ' * ' on Q .
- Watch Video Solution

Show
$a *(b * c)=(a * b) * c, \forall a, b, c \in Q$.

D Watch Video Solution

101. Let R be the relation on the set N of natural numbers given by
$R=\{(a, b): a-b>2 b>3\}$

Choose the correct answer
A. $(4,1) \in R$
B. $(5,8) \in R$
C. $(8,7) \in R$
D. $(10,6) \in R$

Answer:

D Watch Video Solution

102. If $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$, find $g(f(x))$ and $f(g(x))$

- Watch Video Solution

103. Let $*$ be a binary operation on the set Q
of rational numbers defined by $a * b=\frac{a b}{3}$.
Check whether * is commutative and associative?

D Watch Video Solution

104. Let $f(x)=\frac{x-1}{x-3}, x \neq 3$ and
$g(x)=\frac{x-3}{x-1}, x \neq 1$ be two functios defined on R

Find $f o g(x), x \neq 0$
105. Let $f(x)=\frac{x-1}{x-3}, x \neq 3$ and $g(x)=\frac{x-3}{x-1}, x \neq 1$ be two functios defined on R

Find $f^{-1}(x)$ and $g^{-1}(x), x \neq 1$

- Watch Video Solution

106. Let $f(x)=\frac{x-1}{x-3}, x \neq 3$ and
$g(x)=\frac{x-3}{x-1}, x \neq 1$ be two functios defined
on R

Find $(g \circ f)^{-1}(x)$
(Watch Video Solution

