

MATHS

BOOKS - MAXIMUM PUBLICATION

THREE DIMENSIONAL GEOMETRY

1. Consider the lines
$$ar{r}=\left(\hat{i}+2\hat{j}+3\hat{k}
ight)+\lambda\Bigl(2\hat{i}-3\hat{j}-4\hat{k}\Bigr)$$
 ,

$$ar{r} = ig(\hat{i}+\hat{j}+\hat{k}ig) + \muig(\hat{i}+3\hat{j}+2\hat{k}ig)$$

Write the Cartesian equation.

Watch Video Solution

Find the angle between the lines.

3. Find the vector equation of the plane passing through the intersection of the planes $\bar{r}.(\hat{i}+\hat{j}+\hat{k})=6$ and $\bar{r}.(2\hat{i}+3\hat{j}+4\hat{k})=-5$ at the point (1,1,1). Watch Video Solution

4. Find the equation of the plane passing through the intersection of the planes x + y + 4z + 5 = 0 and

2x - y + 3z + 6 = 0 and contains the point

(1,0,0).

5. Consider the point (-1,-2,-3). In which octant

,the above point lies.

Watch Video Solution

6. Find the direction cosines of the line joining

(-1,-2,-3) and (3,4,5).

8. Consider a cube of side 'a' unit has one vertex at the origin O.

Write down the co-ordinate O, O', A and A'

9. Consider a cube of side 'a' unit has one vertex at the origin O.

Find the direction ratios of OO' and AA' .

10. Consider a cube of side 'a' unit has one vertex at the origin O.Show that the angle between the main

11. Consider two points A and B and a line L as

shown in figure.

Find \overline{AB}

L(3,-3,3) B (1,3,0) A (4,0,-1)

12. Consider two points A and B and a line L as

shown in figure.

Find the Cartesian equation of the line L.

L (3,-3,3) *B* (1,3,0) A (4,0,-1)

13. Consider two points A and B on L1 and a line L2 as shown in figure. Find the foot of the perpendicular drawn from (2,3,4) on L1 to the

line L2.

L (3,-3,3) *B* (1,3,0) A (4,0,-1)

14. Cartesian equation of two lines are
$$\frac{x+2}{2} = \frac{y+2}{4} = \frac{z+2}{1}$$
, $\frac{x-1}{2} = \frac{y-1}{-3} = \frac{z-1}{-4}$. Write the vector

equation of the lines.

15. Cartesian equation of two lines are $\frac{x+2}{2} = \frac{y+2}{4} = \frac{z+2}{1}$, $\frac{x-1}{2} = \frac{y-1}{-3} = \frac{z-1}{-4}$.find the shortest

distance between the lines.

16. Consider the points P(1,3,4) &Q(-3,5,2) .Find the equation of the line passing through P and Q.

17. Consider the points (1,3,4) &(-3,5,2). At which point that the above line cuts the plane 2x + y + z + 3 = 0.

Watch Video Solution

18. Let the equation of a plane be $ar{r}.\left(2\hat{i}-3\hat{j}+5\hat{k}
ight)=$ 7, then find the

Cartesian equation of the plane.

Watch Video Solution

19. Let the equation of a plane be \bar{r} . $(2\hat{i} - 3\hat{j} + 5\hat{k}) = 7$, then find the equation of a plane passing through the point (3,4,-1) and parallel to the given plane .

equation of a plane passing through the point

(3,4,-1) and parallel to the given plane .

plane $ar{r}.~(-2i+k)=5$.

23. Find the distance between the line $ar{r}=i+j+\lambda(2i+j+4k)$ and the plane $ar{r}.~(-2i+k)=5$.

Watch Video Solution

24. If a line in the space makes angle α, β and

 γ with the coordinates axes, then

 $\cos^2lpha+\cos^2eta+\cos^2\gamma$ is equal to a)1 b)2 c)0 d)3

A. 1

B. 2

C. 0

D. 3

Answer:

25. The direction ratios of the line $\frac{x-6}{1} = \frac{2-y}{2} = \frac{z-2}{2}$ are a)6,-2,-2 b)1,2,2 c)6,1,-2 d)0,0,0

c/ 0,1, 2 d/ 0,0,0

A. 6,-2,-2

B. 1,2,2

C. 6,1,-2

D. 0,0,0

Answer:

26. If the vector equation of a line is

 $ar{r}=i+j+k+\mu(2i-3j-4k)$, then the

Cartesian equation of the line is

A.
$$\frac{x+2}{2} = \frac{y+2}{4} = \frac{z+2}{1}$$

B. $\frac{x-1}{2} = \frac{y-1}{-3} = \frac{z-1}{-4}$
C. $\frac{x+2}{1} = \frac{y+2}{4} = \frac{z+2}{1}$

Answer:

27. If the Cartesian equation of a plane is x + y + z = 12 , then the vector equation of the plane is.... a) $ar{r}$. (2i+j+k)=12 b) $ar{r}.~(i+j+k)=12$ c) $ar{r}.~(i+j+2k)=12$ d) $ar{r}.~(i+3j+k)=12$ A. \bar{r} . (2i + j + k) = 12B. \bar{r} . (i + j + k) = 12C. \bar{r} . (i + j + 2k) = 12D. \bar{r} . (i + 3j + k) = 12

Answer:

and $ar{r}=(i+2j-2k)+\mu(2j-k)$

Find a vector perpendicular to both the lines.

Find the vector equation of the line passing

through A (1,0,2) and parallel to the line.

33. Consider the line $\bar{r} = (2i - j + k) + \lambda(i + 2j + 3k)$ Write two points on the line obtained from vector equation of the line passing through A (1,0,2) and parallel to the line which are equidistant from A.

34. Find the equation of the plane through the point (1,2,3) and perpendicular to the plane x - y + z = 2 and 2x + y - 3z = 5

35. Find the distance between the planes

x-2y+2z-8=0 and 6y-3x-6z=57

Watch Video Solution

36. Consider the Cartesian equation of line $\frac{x-3}{2} = \frac{y+1}{3} = \frac{z-5}{-2}$ Find the vector

equation of the line.

37. Consider the Cartesian equation of line
$$\frac{x-3}{2} = \frac{y+1}{3} = \frac{z-5}{-2}$$

Find its intersecting point with the plane

5x + 2y - 6z - 7 = 0

38. Consider the Cartesian equation of line

$$rac{x-3}{2} = rac{y+1}{3} = rac{z-5}{-2}$$

Find the angle made by the line with the plane

5x + 2y - 6z - 7 = 0

> Watch Video Solution

39. From the following figure

Find \overrightarrow{AB}

40. From the following figure

Find the vector equation of line L.

42. Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin with perpendicular vector 2i - 3j + 4k. Convert into Cartesian form. Also find the foot of the perpendicular drawn from the origin to the plane.

direction cosines perpendicular to the plane

and perpendicular distance from the origin.

44. Consider three points (6,-1,1), (5,1,2) and

(1,-5,-4) on space. Find the Cartesian equation

of the plane passing through these points .

45. Consider three points (6,-1,1), (5,1,2) and (1,-5,-4) on space. Find directions ratios normal to the Planes

46. Consider three points (6,-1,1), (5,1,2) and (1,-5,-4) on space. Find a unit vector normal to

the plane.

47. Consider a straight line through a fixed point with position vectors 2i-2j+3k and parallel to i-j+4k.

Write down the vector equation of the straight line.

Watch Video Solution

48. Consider a straight line through a fixed point with position vectors 2i-2j+3k and parallel to i-j+4k.

Show that the straight line is parallel to the plane $ar{r}.~(i+5j+k)=5$

Watch Video Solution

49. Consider a straight line through a fixed point with position vectors 2i-2j+3k and parallel to i-j+4k.

Find the distance between the line and plane

$$ar{r}.~(i+5j+k)=5$$

50. Consider the vector equation of two planes

$$ar{r}.~(2i+j+k)=3, ar{r}(i-j-k)=4$$

Find vector equation of any plane through the

intersection of the above two planes.

51. Consider the vector equation of two planes \bar{r} . (2i + j + k) = 3, \bar{r} . (i - j - k) = 4 Find vector equation of the plane through the intersection of the above planes and the point (1,2,-1).

52. Distance of the point(0,0,1) from the plane

$$x+y+z=3$$
 a) $rac{1}{\sqrt{3}}$ units b) $rac{2}{\sqrt{3}}$ units c) $\sqrt{3}$ units d) $rac{\sqrt{3}}{2}$ units

A.
$$\frac{1}{\sqrt{3}}$$
 units
B. $\frac{2}{\sqrt{3}}$ units

C.
$$\sqrt{3}$$
units

D.
$$\frac{\sqrt{3}}{2}$$
units

Answer:

53. Find the equation of the plane through the line of intersection of the planes x+y+z=1 and 2x+3y+4z=5 which is perpendicular to x-y+z=0

Find dc's perpendicular to the plane.

56. Consider a plane \bar{r} . (6i - 3j - 2k) + 1 = 0.Find the equation of a line parallel to the above vector and passing through the point (1,2,1).

Watch Video Solution

57. Consider the pair of lines whose equations

are .	=	$=rac{y-1}{5}$	$=rac{z+3}{-3}$	and
$\frac{x+1}{-1} =$	$= \frac{y-4}{8} =$	$rac{z-5}{4}$		

Write the direction ratios of the lines.

58. Consider the pair of lines whose equations

are
$$. \quad \frac{x-2}{2} = \frac{y-1}{5} = \frac{z+3}{-3}$$
 and $\frac{x+1}{-1} = \frac{y-4}{8} = \frac{z-5}{4}$

Find the shortest distance between the above

skew lines.

Watch Video Solution

59. Consider the pair of lines whose equations

$$rac{x-2}{2} = rac{y-1}{5} = rac{z+3}{-3}$$
 and

Find the angle between these two lines.

60. Consider the pair of lines

- $ar{r}=3i+4j-2k+\lambda(\,-i+2j+k)$ L_1 ,
- $ar{r}=i-7j-2k+\mu(i+3j+2k)$ L_2

Find one point each on lines L_1 and L_2 .

61. Consider the pair of lines

 $ar{r}=3i+4j-2k+\lambda(-i+2j+k)$ L_1 , $ar{r}=i-7j-2k+\mu(i+3j+2k)$ L_2 Find one point each on lines L_1 and L_2 .

Find the distance between those points.

62. Consider the pair of lines

 $ar{r}=3i+4j-2k+\lambda(\,-i+2j+k)$ L_1 ,

64. Consider the points A(2,2,-1), B(3,4,2) and C(7,0,6). Find the vector and Cartesian equation

of the plane passing these three points.

65. Consider the points A(2,2,-1), B(3,4,2) and C(7,0,6).

Find the vector and Cartesian equation of the plane passing these three points.

Find the angle between the above plane and

the line
$$ar{r} = (i+2j-k) + \lambda(i-j+k)$$

66. Consider three points on space (2,1,0), (3,-2,-2) and (3,1,7). Find the Cartesian equation of the plane passing through the above points.

Watch Video Solution

67. Consider three points on space (2,1,0), (3,-2,-2) and (3,1,7).Find the Cartesian equation of the plane passing through the above points.Convert the equation into vector form.

68. Consider three points on space (2,1,0), (3,-2,-2) and (3,1,7)

Find the Cartesian equation of the plane passing through the above points.

find a unit vector perpendicular to the plane and also find the perpendicular distance of the

plane from the origin..

69. $\overline{OA} = i + 2j + 3k$ $\overline{OB} = i - 2j + 4k$ $\overline{OC} = 2i + 3j + k$

are adjacent sides of the parallelopiped.

Find the base area of the parallelopiped.

(Base determined by \overline{OA} and \overline{OB})

70. $\overline{OA} = i + 2j + 3k$ $\overline{OB} = i - 2j + 4k$ $\overline{OC} = 2i + 3j + k$

are adjacent sides of the parallelopiped.

Find the volume of the parallelopiped.

71. $\overline{OA} = i + 2j + 3k$ $\overline{OB} = i - 2j + 4k$ $\overline{OC} = 2i + 3j + k$

are adjacent sides of the parallelopiped.

Find the height of the parallelopiped.

72. Find the equation of the line passing through the point (2,1,0) and (3,2,-1)

Watch Video Solution

73. Find the equation of the line passing through the point (2,1,0) and (3,2,-1) Find the shortest distance of the line from the line

$$ar{r}=(i-j+2k)+\lambda(2i+j-3k)$$

74. The equation of two lines are $\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{3}$ and $\frac{x}{-3} = \frac{y}{2} = \frac{z}{5}$, then Find the dr's of the

given lines.

Watch Video Solution

75. The equation of two lines are

$$\frac{x-1}{2} = \frac{y-2}{2} = \frac{z-3}{3}$$
 and

$$\frac{x}{-3} = \frac{y}{2} = \frac{z}{5}$$
, then Find the angle between

the given lines.

Watch Video Solution

76. The equation of two lines are

$$\displaystyle rac{x-1}{2} = rac{y-2}{2} = rac{z-3}{3}$$
 and $\displaystyle rac{x}{-3} = rac{y}{2} = rac{z}{5}$, then

Find the equation of the line passing through

(2,1,3) and perpendicular to the given lines.

77. Find the direction cosine of the vector2i+2j-k.

78. Find the distance of the point (2,3,4) from the plane $ar{r}$. (3i-6j+2k)=-11 .

79. Find the shortest distance between the lines $ar{r}=(2i-j-k)+\lambda(3i-5j+2k)$ and $ar{r}=(i+2j+k)+\mu(i-j+k)$

80. Find the equation of the Plane with intercepts 2,3,4 on X,Y,Z axes respectively.

81. Find the distance of the point (-1,-2,3) from

the Plane $ar{r}.~(2i-3j+4k)=4$

Watch Video Solution

82. Consider the points A(2,2,-1), B(3,4,2),

C(7,0,6).Find AB.

83. Consider the points A(2,2,-1), B(3,4,2), C(7,0,6).Find the Cartesian and vector equation of the plane passing through these points.

84. Consider the points A(3,-4,-5) and B(2,-3,1)

Find the vector and Cartesian equation of the

line passing through the points A and B.

85. Consider the points A(3,-4,-5) and B(2,-3,1) Find the point where the line crosses the XY Plane.

86. Find the Cartesian equation of the plane passing through the point (1,2,-3)

perpendicular to the vector2i-j+2k.

87. Find the Cartesian equation of the plane passing through the point (1,2,-3) perpendicular to the vector2i-j+2k.

Find the angle between the Plane and the line

$$rac{x-1}{2} = rac{y-3}{3} = rac{z}{6}$$

Watch Video Solution

88. Find the angle between the lines having direction ratios 1,1,2 and $\sqrt{3} - 1, -\sqrt{3} - 1, 4$

find the value of λ

91. Find the equation of the plane passing through the points (3,-1,2), (5,2,4), (-1,-1,6). Find the perpendicular distance from the point (6,5,9) to this plane.

Watch Video Solution

92. Consider the vector equation of two planes

 $ar{r}.~(2i+j+k)=3, ar{r}(i-j-k)=4$

Find vector equation of any plane through the intersection of the above two planes.

93. Consider the vector equation of two planes \bar{r} . (2i + j + k) = 3, \bar{r} . (i - j - k) = 4 Find vector equation of the plane through the intersection of the above planes and the point (1,2,-1).

Watch Video Solution

94. Consider the planes 2x + y - 2z = 5 and

3x - 6y - 2z = 7. Find their normal vectors.

95. Consider the planes

$$2x+y-2z=5$$
 and

3x - 6y - 2z = 7

Find the angle between these two planes.

Watch Video Solution

96. If a_1, b_1, c_1 and a_2, b_2, c_2 are the direction ratios of two lines , then write the condition of

its perpendicularity.

97. Find the angle between the lines

x+3	$_ y-1$ $_$	$\frac{z+3}{z}$ and
3	$-{5}$	<u>4</u>
x+1	$_ y-4$ $_$	z-5
1	$-\frac{1}{1}$	$\overline{2}$.

Watch Video Solution

98. Find the shortest distance between the

lines $ar{r}=i+j+\lambda(2i-j+k)$ and

 $ar{r}=2i+j-k+\mu(3i-5j+2k)$

Watch Video Solution

99. The equation of the line which passes through the point (1,2,3) and parallel to the vector 3i+2j-2k is

A. $ar{r}=3i+2j-2k+\lambda(i+2j+3k)$

B. $ar{r}=2i-5k+\lambda(3i+2j-2k)$

C. $ar{r}=i+2j+3k+\lambda(-2i+4j-2k)$

D. $ar{r}=i+2j+3k+\lambda(3i+2j-2k)$

Answer:

100. Find the angle between the pair lines

$$ar{r}=2i-5j+k+\lambda(3i+2j+6k)$$
 and

$$ar{r}=7i-6k+\mu(i+2j+2k)$$

Find the shortest distance between them

form and hence find its perpendicular distance

from the origin.

105. Given the plane 5x-2y+4z-9=0

Find the foot of the perpendicular drawn from

the origin to the Plane.

106. Given the plane 5x-2y+4z-9=0

Find the foot of the perpendicular drawn from

the origin to the Plane.

write the vector and Cartesian equation of this

perpendicular.

Watch Video Solution

107. The foot of the perpendicular from the

origin to a plane is P(4,-2,5). Write \overline{OP}

108. The foot of the perpendicular from the origin to a plane is P(4,-2,5). Write \overline{OP} Find the equation of the plane in vector and

Cartesian form.

109. Consider the lines

$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1} \text{ and }$$

$$\frac{x+3}{3} = \frac{y+7}{2} = \frac{z-6}{4}$$

Express the equation to the lines into vector

form.

111. Consider the Cartesian equation of a line

$$rac{x-3}{2} = rac{y+1}{3} = rac{z-5}{-2}$$

Find its vector equation .

112. Consider the Cartesian equation of a line

$$rac{x-3}{2} = rac{y+1}{3} = rac{z-5}{-2}$$

Find the intersecting point with the plane

$$5x + 2y - 6z - 7 = 0$$

113. The foot of the perpendicular drawn from

origin to a Plane is (4,-2,5).

How far is the plane from origin?

114. The foot of the perpendicular drawn from

origin to a Plane is (4,-2,5).

Find a unit vector perpendicular to that Plane.

115. The foot of the perpendicular drawn from

origin to a Plane is (4,-2,5).

Obtain the equation of the Plane in general

form

Watch Video Solution

116. Equation of the plane with intercepts 2,3,4

on the x,y,z axis respectively is

A. 2x+3y+4z=1

B. 2x+3y+4z=12

D. 6x+4y+3z=12

Answer:

117. Find the Cartesian equation of the plane passing through the point A(2,5,-3) , B(-2,-3,5) and C(5,3,-3).

118. The distance of the plane x+y+z = 1 from the point (1,1,1) is

a)4 units b)
$$\frac{1}{\sqrt{3}}$$
 units c) $\frac{4}{\sqrt{3}}$ units d) $\frac{1}{4\sqrt{3}}$

units

A. 4 units

B.
$$\frac{1}{\sqrt{3}}$$
 units
C. $\frac{4}{\sqrt{3}}$ units
D. $\frac{1}{4\sqrt{3}}$ units

Answer:

119. Find the equation of the plane passing through (1,0,-2) and perpendicular to each of the planes 2x+y-z=2 and x-y-z=3

120. The lines x-1=y=z is perpendicular to the line.....a)
$$\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{-3}$$
 b)

$$x-2=y-2=z$$
 c) $rac{x-2}{1}=rac{y-1}{2}=rac{z}{3}$

d)x=y=z/2

A.
$$\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{-3}$$

B. $x-2 = y-2 = z$
C. $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{3}$

D.
$$x=y=z/2$$

Answer:

122. Find the shortest distance between the

lines	$rac{x+1}{7} = rac{y+1}{-6} = rac{z+1}{1}$	and
x-3	$_ y-5 _ z-7$	
1	= -2 = -1	

123. Find the equation of the Plane passing through one point (-1,3,2) and \perp r to the planes x + 2y + 3z = 5 and 3x + 3y + z = 0

Watch Video Solution

124. A line makes equal angles with the coordinate axis . Find the direction cosines.

125. Find the equation of the plane passing

through (1,1,-1),(2,3,5) and (-1,4,-5).

126. Find p and q , if the plane x+py+qz=0 is perpendicular to the plane 3x+2y+z=0 and the line $\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-1}{1}$ Watch Video Solution 127. Given the straight linrs

 $ar{r}=3i+2j-4k+\lambda(i+2j+2k)$ and

 $ar{r}=5i-2k+\mu(3i+2j+6k)$

Find the angle between the lines.

Obtain the unit vector perpendicular to both

the lines.

129. Given the straight lines

$$ar{r}=3i+2j-4k+\lambda(i+2j+2k)$$
 and

 $ar{r}=5i-2k+\mu(3i+2j+6k)$

Form the equation of the line perpendicular to the given lines and passing through the point(1,1,1) **130.** Write the Cartesian equation of the straight line through the point (1,2,3) and along the vector 3i+j+2k

Watch Video Solution

131. Write the Cartesian equation of the straight line through the point(1, 2, 3) and along the vector3i + j + 2k. Write a general point on this straight line.

132. Write the Cartesian equation of the straight line through the point (1,2,3) and along the vector3i + j + 2k.Find the point of intersection of this straight line with the plane

2x + 3y - z + 2 = 0

Watch Video Solution

133. Find the distance from (1,2,3) to the plane

2x+3y-z+2=0

134. Consider a plane passing through the point (5,2,-4) and perpendicular to the line $ar{r} = (i+j) + \lambda(2i+3j-k)$ Write the equation in Cartesian form.

Watch Video Solution

135. Consider a plane passing through the point (5,2,-4) and perpendicular to the line

$$ar{r}=(i+j)+\lambda(2i+3j-k)$$

Find its distance from the point (1,2,-1).

136. Consider a plane passing through the point (5,2,-4) and perpendicular to the line $\bar{r} = (i + j) + \lambda(2i + 3j - k)$ Find the angle made by it with line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{-2}$.