© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - MAXIMUM PUBLICATION

THREE DIMENSIONAL GEOMETRY

Example

1. Consider
the
lines
$\bar{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}-3 \hat{j}-4 \hat{k})$
$\bar{r}=(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}+3 \hat{j}+2 \hat{k})$
Write the Cartesian equation.

D Watch Video Solution

> 2. Consider the $\bar{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}-3 \hat{j}-4 \hat{k})$ $\bar{r}=(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}+3 \hat{j}+2 \hat{k})$
lines

Find the angle between the lines.

D Watch Video Solution

3. Find the vector equation of the plane passing through the intersection of the planes
$\bar{r} \cdot(\hat{i}+\hat{j}+\hat{k})=6$
and
$\bar{r} .(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$ at the point $(1,1,1)$.

D Watch Video Solution

4. Find the equation of the plane passing through the intersection of the planes
$x+y+4 z+5=0$
and
$2 x-y+3 z+6=0$ and contains the point
(1,0,0).

D Watch Video Solution
5. Consider the point $(-1,-2,-3)$. In which octant ,the above point lies.

- Watch Video Solution

6. Find the direction cosines of the line joining
$(-1,-2,-3)$ and ($3,4,5$) .
7. If P is any point such that $O P=\sqrt{50}$ and direction cosines of $O P$ are $\frac{3}{\sqrt{50}}, \frac{4}{\sqrt{50}}$ and
5
$\frac{5}{\sqrt{50}}$, then find the co-ordinate of P .

- Watch Video Solution

8. Consider a cube of side 'a' unit has one vertex at the origin 0 .

Write down the co-ordinate $\mathrm{O}, \mathrm{O}^{\prime}, \mathrm{A}$ and A^{\prime}

D Watch Video Solution

9. Consider a cube of side 'a' unit has one
vertex at the origin 0 .

Find the direction ratios of OO^{\prime} and AA^{\prime}.

D Watch Video Solution

10. Consider a cube of side 'a' unit has one
vertex at the origin 0 .

Show that the angle between the main
diagonals of the above cube is $\cos ^{-1}\left(\frac{1}{3}\right)$

- Watch Video Solution

11. Consider two points A and B and a line L as
shown in figure.

Find $\overline{A B}$

D Watch Video Solution

12. Consider two points A and B and a line L as
shown in figure.

Find the Cartesian equation of the line L .

D Watch Video Solution

13. Consider two points A and B on $L 1$ and a
line L2 as shown in figure. 'Find the foot of the perpendicular drawn from $(2,3,4)$ on L 1 to the
line L2.

D Watch Video Solution

14. Cartesian equation of two lines are $\frac{x+2}{2}=\frac{y+2}{4}=\frac{z+2}{1}$
$\frac{x-1}{2}=\frac{y-1}{-3}=\frac{z-1}{-4}$. Write the vector equation of the lines.
15. Cartesian equation of two lines are $\frac{x+2}{2}=\frac{y+2}{4}=\frac{z+2}{1}$
$\frac{x-1}{2}=\frac{y-1}{-3}=\frac{z-1}{-4}$.find the shortest distance between the lines.

D Watch Video Solution

16. Consider the points $P(1,3,4) \& Q(-3,5,2)$.Find
the equation of the line passing through P and Q .

- Watch Video Solution

17. Consider the points $(1,3,4) \&(-3,5,2)$. At which point that the above line cuts the plane $2 x+y+z+3=0$.

- Watch Video Solution

18. Let the equation of a plane be
$\bar{r} .(2 \hat{i}-3 \hat{j}+5 \hat{k})=7$, then find the
Cartesian equation of the plane.
19. Let the equation of a plane be
$\bar{r} .(2 \hat{i}-3 \hat{j}+5 \hat{k})=7, \quad$ then find the equation of a plane passing through the point (3,4,-1) and parallel to the given plane .

- Watch Video Solution

20. Let the equation of a plane be $\bar{r} .(2 \hat{i}-3 \hat{j}+5 \hat{k})=7$, then find the
equation of a plane passing through the point
(3,4,-1) and parallel to the given plane .

D Watch Video Solution

21. State the condition of the line $\bar{r}=\bar{a}+\lambda \bar{b}$ is parallel to the plane $\bar{r} \cdot \bar{n}=d$.

D Watch Video Solution

> 22. Show that the line
> $\bar{r}=i+j+\lambda(2 i+j+4 k)$ is parallel to the
plane $\bar{r} .(-2 i+k)=5$.

D Watch Video Solution

23. Find the distance between the line
$\bar{r}=i+j+\lambda(2 i+j+4 k)$ and the plane
$\bar{r} .(-2 i+k)=5$.

- Watch Video Solution

24. If a line in the space makes angle α, β and
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma$ is equal to a) 1 b) 2 c) 0 d) 3
A. 1
B. 2
C. 0
D. 3

Answer:
(Watch Video Solution
25. The direction ratios of the line

$$
\begin{aligned}
& \frac{x-6}{1}=\frac{2-y}{2}=\frac{z-2}{2} \text { are a) } 6,-2,-2 \text { b) } 1,2,2 \\
& \text { c) } 6,1,-2 \text { d) } 0,0,0
\end{aligned}
$$

A. $6,-2,-2$
B. 1,2,2
C. $6,1,-2$
D. $0,0,0$

Answer:
26. If the vector equation of a line is
$\bar{r}=i+j+k+\mu(2 i-3 j-4 k)$, then the

Cartesian equation of the line is

$$
\begin{aligned}
& \text { А. } \frac{x+2}{2}=\frac{y+2}{4}=\frac{z+2}{1} \\
& \text { В. } \frac{x-1}{2}=\frac{y-1}{-3}=\frac{z-1}{-4} \\
& \text { C. } \frac{x+2}{1}=\frac{y+2}{4}=\frac{z+2}{1} \\
& \text { D. }(x-1) / 2=(y-1) / 1=(z-1) /-4
\end{aligned}
$$

Answer:

27. If the Cartesian equation of a plane is
$x+y+z=12$, then the vector equation of
the plane is.... a) $\bar{r} .(2 i+j+k)=12 \quad$ b)
$\bar{r} .(i+j+k)=12$
c) $\bar{r} .(i+j+2 k)=12 \mathrm{~d}) \bar{r} .(i+3 j+k)=12$
A. $\bar{r} \cdot(2 i+j+k)=12$
B. $\bar{r} \cdot(i+j+k)=12$
C. $\bar{r} \cdot(i+j+2 k)=12$
D. $\bar{r} \cdot(i+3 j+k)=12$

Answer:

- Watch Video Solution

28.

Consider
the
lines
$\bar{r}=(i+2 j-2 k)+\lambda(i+2 j)$
and $\bar{r}=(i+2 j-2 k)+\mu(2 j-k)$

Find the angles between the lines.

D Watch Video Solution

29.

Consider
the
lines
$\bar{r}=(i+2 j-2 k)+\lambda(i+2 j)$
and $\bar{r}=(i+2 j-2 k)+\mu(2 j-k)$

Find a vector perpendicular to both the lines.

D Watch Video Solution

$$
\begin{aligned}
& \text { 30. Consider the lines } \\
& \bar{r}=(i+2 j-2 k)+\lambda(i+2 j)
\end{aligned}
$$

$$
\text { and } \bar{r}=(i+2 j-2 k)+\mu(2 j-k)
$$

Find the equation of the line passing through
the point of intersection of lines and perpendicular to both the lines.
$\begin{array}{ccc}\text { 31. } & \text { Consider line } \\ \bar{r}=(2 i-j+k)+\lambda(i+2 j+3 k) . ~ F i n d ~ t h e ~\end{array}$
Cartesian equation of the line.

- Watch Video Solution

32.

Consider
the
line
$\bar{r}=(2 i-j+k)+\lambda(i+2 j+3 k)$
Find the vector equation of the line passing through $A(1,0,2)$ and parallel to the line.
33.

Consider
the
line
$\bar{r}=(2 i-j+k)+\lambda(i+2 j+3 k)$
Write two points on the line obtained from
vector equation of the line passing through A
$(1,0,2)$ and parallel to the line which are equidistant from A.

- Watch Video Solution

34. Find the equation of the plane through the point ($1,2,3$) and perpendicular to the plane $x-y+z=2$ and $2 x+y-3 z=5$

- Watch Video Solution

35. Find the distance between the planes
$x-2 y+2 z-8=0$ and $6 y-3 x-6 z=57$

- Watch Video Solution

36. Consider the Cartesian equation of line $\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-5}{-2}$ Find the vector equation of the line.

D Watch Video Solution

37. Consider the Cartesian equation of line

$$
\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-5}{-2}
$$

Find its intersecting point with the plane

$$
5 x+2 y-6 z-7=0
$$

38. Consider the Cartesian equation of line

$$
\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-5}{-2}
$$

Find the angle made by the line with the plane

$$
5 x+2 y-6 z-7=0
$$

D Watch Video Solution

39. From the following figure

Find $\overrightarrow{A B}$

- Watch Video Solution

40. From the following figure

Find the vector equation of line L.

- Watch Video Solution

41. From the following figure

Find a point on line L other than C.

- Watch Video Solution

42. Find the vector equation of the plane which is at a distance of $\frac{6}{\sqrt{29}}$ from the origin with perpendicular vector $2 i-3 j+4 k$.

Convert into Cartesian form. Also find the foot of the perpendicular drawn from the origin to the plane.

D Watch Video Solution

43.

Consider
the
Plane
$\bar{r} .(-6 i-3 j-2 k)+1=0 . \quad$ find \quad the
direction cosines perpendicular to the plane and perpendicular distance from the origin.

D Watch Video Solution

44. Consider three points $(6,-1,1)$, $(5,1,2)$ and
$(1,-5,-4)$ on space. Find the Cartesian equation of the plane passing through these points .

D Watch Video Solution

45. Consider three points $(6,-1,1)$, $(5,1,2)$ and
$(1,-5,-4)$ on space. Find directions ratios normal to the Planes

D Watch Video Solution

46. Consider three points $(6,-1,1),(5,1,2)$ and
$(1,-5,-4)$ on space. Find a unit vector normal to the plane.
47. Consider a straight line through a fixed point with position vectors $2 \mathrm{i}-2 \mathrm{j}+3 \mathrm{k}$ and parallel to $i-j+4 k$.

Write down the vector equation of the straight line.

D Watch Video Solution

48. Consider a straight line through a fixed point with position vectors $2 \mathrm{i}-2 \mathrm{j}+3 \mathrm{k}$ and parallel to $i-j+4 k$.

Show that the straight line is parallel to the plane $\bar{r} .(i+5 j+k)=5$

D Watch Video Solution

49. Consider a straight line through a fixed point with position vectors $2 \mathrm{i}-2 \mathrm{j}+3 \mathrm{k}$ and parallel to $i-j+4 k$.

Find the distance between the line and plane $\bar{r} .(i+5 j+k)=5$

D Watch Video Solution

50. Consider the vector equation of two planes
$\bar{r} .(2 i+j+k)=3, \bar{r}(i-j-k)=4$
Find vector equation of any plane through the intersection of the above two planes.

- Watch Video Solution

51. Consider the vector equation of two planes
$\bar{r} .(2 i+j+k)=3, \bar{r} .(i-j-k)=4 \quad$ Find vector equation of the plane through the intersection of the above planes and the point (1,2,-1).
52. Distance of the point $(0,0,1)$ from the plane
$x+y+z=3$ a) $\frac{1}{\sqrt{3}}$ units b) $\frac{2}{\sqrt{3}}$ units c) $\sqrt{3}$
units d) $\frac{\sqrt{3}}{2}$ units
A. $\frac{1}{\sqrt{3}}$ units
B. $\frac{2}{\sqrt{3}}$ units
C. $\sqrt{3}$ units
D. $\frac{\sqrt{3}}{2}$ units

Answer:

- Watch Video Solution

53. Find the equation of the plane through the
line of intersection of the planes $x+y+z=1$ and
$2 x+3 y+4 z=5$ which is perpendicular to $x-y+z=0$

- Watch Video Solution

54.

Consider a
plane
$\bar{r} .(6 i-3 j-2 k)+1=0$

Find dc's perpendicular to the plane.

D Watch Video Solution

55.

Consider a
plane
$\bar{r} .(6 i-3 j-2 k)+1=0$

Find a vector of magnitude 14 units perpendicular to given plane.

D Watch Video Solution
$\bar{r} .(6 i-3 j-2 k)+1=0$.Find the equation of a line parallel to the above vector and passing through the point (1,2,1).

- Watch Video Solution

57. Consider the pair of lines whose equations
are $\quad \frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3} \quad$ and
$\frac{x+1}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
Write the direction ratios of the lines.
58. Consider the pair of lines whose equations are $\quad \frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3} \quad$ and
$\frac{x+1}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
Find the shortest distance between the above skew lines.

- Watch Video Solution

59. Consider the pair of lines whose equations
are $\quad \frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3} \quad$ and
$\frac{x+1}{-1}=\frac{y-4}{8}=\frac{z-5}{4}$
Find the angle between these two lines.

D Watch Video Solution

60. Consider the pair of lines

$$
\begin{aligned}
& \bar{r}=3 i+4 j-2 k+\lambda(-i+2 j+k) \ldots L_{1}, \\
& \bar{r}=i-7 j-2 k+\mu(i+3 j+2 k) \ldots L_{2}
\end{aligned}
$$

Find one point each on lines L_{1} and L_{2}.

- Watch Video Solution

61. Consider the pair of lines
$\bar{r}=3 i+4 j-2 k+\lambda(-i+2 j+k) \ldots . . L_{1}$,
$\bar{r}=i-7 j-2 k+\mu(i+3 j+2 k) \ldots . . L_{2}$
Find one point each on lines L_{1} and L_{2}.
Find the distance between those points.

D Watch Video Solution

62. Consider the pair of lines
$\bar{r}=3 i+4 j-2 k+\lambda(-i+2 j+k) \ldots . . L_{1}$,
$\bar{r}=i-7 j-2 k+\mu(i+3 j+2 k) \ldots . . L_{2}$
Find the shortest distance between L_{1} and L_{2}

D Watch Video Solution

63. Consider the points $A(2,2,-1), B(3,4,2)$ and
$C(7,0,6)$ Are A, B and C collinear? Explain.

- Watch Video Solution

64. Consider the points $A(2,2,-1), B(3,4,2)$ and
$C(7,0,6)$. Find the vector and Cartesian equation
of the plane passing these three points.

D Watch Video Solution

65. Consider the points $A(2,2,-1), B(3,4,2)$ and
$C(7,0,6)$.

Find the vector and Cartesian equation of the
plane passing these three points.

Find the angle between the above plane and the line $\bar{r}=(i+2 j-k)+\lambda(i-j+k)$

- Watch Video Solution

66. Consider three points on space $(2,1,0)$,
$(3,-2,-2)$ and ($3,1,7$). Find the Cartesian equation
of the plane passing through the above points.

- Watch Video Solution

67. Consider three points on space $(2,1,0)$,
$(3,-2,-2)$ and ($3,1,7$). Find the Cartesian equation of the plane passing through the above points.Convert the equation into vector form.
68. Consider three points on space $(2,1,0)$,
(3,-2,-2) and (3,1,7)

Find the Cartesian equation of the plane passing through the above points.
find a unit vector perpendicular to the plane and also find the perpendicular distance of the plane from the origin..

D Watch Video Solution

69. $\overline{O A}=i+2 j+3 k$
$\overline{O B}=i-2 j+4 k$
$\overline{O C}=2 i+3 j+k$
are adjacent sides of the parallelopiped.

Find the base area of the parallelopiped.
(Base determined by $\overline{O A}$ and $\overline{O B}$)

(Watch Video Solution
70. $\overline{O A}=i+2 j+3 k$
$\overline{O B}=i-2 j+4 k$
$\overline{O C}=2 i+3 j+k$
are adjacent sides of the parallelopiped.
Find the volume of the parallelopiped.

- Watch Video Solution

71. $\overline{O A}=i+2 j+3 k$
$\overline{O B}=i-2 j+4 k$
$\overline{O C}=2 i+3 j+k$
are adjacent sides of the parallelopiped.

Find the height of the parallelopiped.

- Watch Video Solution

72. Find the equation of the line passing through the point (2,1,0) and (3,2,-1)

D Watch Video Solution

73. Find the equation of the line passing through the point (2,1,0) and (3,2,-1)

Find the shortest distance of the line from the

line

$$
\bar{r}=(i-j+2 k)+\lambda(2 i+j-3 k)
$$

74. The equation of two lines are $\frac{x-1}{2}=\frac{y-2}{2}=\frac{z-3}{3}$ and
$\frac{x}{-3}=\frac{y}{2}=\frac{z}{5}$, then Find the dr's of the given lines.

- Watch Video Solution

75. The equation of two lines are

$$
\frac{x-1}{2}=\frac{y-2}{2}=\frac{z-3}{3}
$$

$\frac{x}{-3}=\frac{y}{2}=\frac{z}{5}$, then Find the angle between
the given lines.
76. The equation of two lines are

$$
\begin{aligned}
& \frac{x-1}{2}=\frac{y-2}{2}=\frac{z-3}{3} \\
& \frac{x}{-3}=\frac{y}{2}=\frac{z}{5}, \text { then }
\end{aligned}
$$

Find the equation of the line passing through $(2,1,3)$ and perpendicular to the given lines.

- Watch Video Solution

77. Find the direction cosine of the vector $2 i+2 j-k$.

- Watch Video Solution

78. Find the distance of the point $(2,3,4)$ from
the plane $\bar{r} .(3 i-6 j+2 k)=-11$.

D Watch Video Solution
79. Find the shortest distance between the
lines $\quad \bar{r}=(2 i-j-k)+\lambda(3 i-5 j+2 k)$
and $\bar{r}=(i+2 j+k)+\mu(i-j+k)$

- Watch Video Solution

80. Find the equation of the Plane with
intercepts $2,3,4$ on X, Y, Z axes respectively.

D Watch Video Solution

81. Find the distance of the point $(-1,-2,3)$ from
the Plane $\bar{r} .(2 i-3 j+4 k)=4$

D Watch Video Solution

82. Consider the points $A(2,2,-1), \quad B(3,4,2)$,
$C(7,0,6)$. Find $A B$.
(Watch Video Solution
83. Consider the points $\mathrm{A}(2,2,-1), \quad \mathrm{B}(3,4,2)$,
$C(7,0,6)$. Find the Cartesian and vector equation of the plane passing through these points.

D Watch Video Solution

84. Consider the points $A(3,-4,-5)$ and $B(2,-3,1)$

Find the vector and Cartesian equation of the
line passing through the points A and B.

- Watch Video Solution

85. Consider the points $A(3,-4,-5)$ and $B(2,-3,1)$

Find the point where the line crosses the $X Y$ Plane.

- Watch Video Solution

86. Find the Cartesian equation of the plane
passing through the point (1,2,-3)
perpendicular to the vector $2 \mathrm{i}-\mathrm{j}+2 \mathrm{k}$.

- Watch Video Solution

87. Find the Cartesian equation of the plane passing through the point (1,2,-3) perpendicular to the vector $2 \mathrm{i}-\mathrm{j}+2 \mathrm{k}$.

Find the angle between the Plane and the line $\frac{x-1}{2}=\frac{y-3}{3}=\frac{z}{6}$

D Watch Video Solution

88. Find the angle between the lines having direction ratios $1,1,2$ and $\sqrt{3}-1,-\sqrt{3}-1,4$
89. If lines $\frac{x-1}{3}=\frac{y-1}{2 \lambda}=\frac{z-3}{2}$ and $\frac{x-1}{3 \lambda}=\frac{y-1}{1}=\frac{z-6}{-5}$ are perpendicular , find the value of λ

- Watch Video Solution

90. Find the equation of the plane passing through the points $(3,-1,2),(5,2,4),(-1,-1,6)$
91. Find the equation of the plane passing
through the points $(3,-1,2),(5,2,4),(-1,-1,6)$.Find
the perpendicular distance from the point $(6,5,9)$ to this plane.

D Watch Video Solution

92. Consider the vector equation of two planes
$\bar{r} .(2 i+j+k)=3, \bar{r}(i-j-k)=4$
Find vector equation of any plane through the intersection of the above two planes.
93. Consider the vector equation of two planes
$\bar{r} .(2 i+j+k)=3, \bar{r} .(i-j-k)=4 \quad$ Find vector equation of the plane through the intersection of the above planes and the point $(1,2,-1)$.

- Watch Video Solution

94. Consider the planes $2 x+y-2 z=5$ and
$3 x-6 y-2 z=7$.Find their normal vectors.
95. Consider the planes
$2 x+y-2 z=5$ and
$3 x-6 y-2 z=7$

Find the angle between these two planes.

D Watch Video Solution

96. If a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} are the direction
ratios of two lines, then write the condition of
its perpendicularity.

D Watch Video Solution

97. Find the angle between the lines
$\frac{x+3}{3}=\frac{y-1}{5}=\frac{z+3}{4}$ and
$\frac{x+1}{1}=\frac{y-4}{1}=\frac{z-5}{2}$.

- Watch Video Solution

98. Find the shortest distance between the
lines

$$
\bar{r}=i+j+\lambda(2 i-j+k)
$$

$\bar{r}=2 i+j-k+\mu(3 i-5 j+2 k)$

- Watch Video Solution

99. The equation of the line which passes
through the point $(1,2,3)$ and parallel to the vector $3 i+2 j-2 k$ is

$$
\begin{aligned}
& \text { A. } \bar{r}=3 i+2 j-2 k+\lambda(i+2 j+3 k) \\
& \text { B. } \bar{r}=2 i-5 k+\lambda(3 i+2 j-2 k) \\
& \text { C. } \bar{r}=i+2 j+3 k+\lambda(-2 i+4 j-2 k) \\
& \text { D. } \bar{r}=i+2 j+3 k+\lambda(3 i+2 j-2 k)
\end{aligned}
$$

Answer:

D Watch Video Solution

100. Find the angle between the pair lines

$$
\begin{aligned}
& \bar{r}=2 i-5 j+k+\lambda(3 i+2 j+6 k) \text { and } \\
& \bar{r}=7 i-6 k+\mu(i+2 j+2 k)
\end{aligned}
$$

D Watch Video Solution

101.Consider the

lines

$\frac{x-3}{2}=\frac{y-1}{5}=\frac{z+3}{4}$ and
$\frac{x+5}{1}=\frac{y+2}{1}=\frac{z-3}{2}$
Find the angle between them.

- Watch Video Solution

102.

Consider
the
lines
$\frac{x-3}{2}=\frac{y-1}{5}=\frac{z+3}{4}$ and
$\frac{x+5}{1}=\frac{y+2}{1}=\frac{z-3}{2}$
Find the shortest distance between them

D Watch Video Solution
103. Find the vector equation of the Plane Passing through the intersection of the planes
$\bar{r} .(i+j+k)=6$
and
$\bar{r} .(2 i+3 j+4 k)=-5$ and through the point (1,1,1).

D Watch Video Solution

104. Express the vector equation
$\bar{r} .(5 i+3 j+4 k)=0$ of a Plane in Cartesian
form and hence find its perpendicular distance from the origin.

- Watch Video Solution

105. Given the plane $5 x-2 y+4 z-9=0$

Find the foot of the perpendicular drawn from
the origin to the Plane.

D Watch Video Solution
106. Given the plane $5 x-2 y+4 z-9=0$

Find the foot of the perpendicular drawn from the origin to the Plane.
write the vector and Cartesian equation of this
perpendicular.

- Watch Video Solution

107. The foot of the perpendicular from the origin to a plane is $\mathrm{P}(4,-2,5)$. Write $\overline{O P}$
108. The foot of the perpendicular from the origin to a plane is $\mathrm{P}(4,-2,5)$. Write $\overline{O P}$

Find the equation of the plane in vector and Cartesian form.

- Watch Video Solution

109.

Consider
the
lines

$$
\begin{aligned}
& \frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} \text { and } \\
& \frac{x+3}{3}=\frac{y+7}{2}=\frac{z-6}{4}
\end{aligned}
$$

Express the equation to the lines into vector form.

D Watch Video Solution

$$
\begin{aligned}
& \text { 110. Consider the lines } \\
& \frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} \text { and } \\
& \frac{x+3}{3}=\frac{y+7}{2}=\frac{z-6}{4}
\end{aligned}
$$

Find the shortest distance between the lines.
111. Consider the Cartesian equation of a line $\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-5}{-2}$

Find its vector equation.

- Watch Video Solution

112. Consider the Cartesian equation of a line $\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-5}{-2}$

Find the intersecting point with the plane

$$
5 x+2 y-6 z-7=0
$$

113. The foot of the perpendicular drawn from origin to a Plane is $(4,-2,5)$.

How far is the plane from origin?

D Watch Video Solution

114. The foot of the perpendicular drawn from origin to a Plane is $(4,-2,5)$.

Find a unit vector perpendicular to that Plane.

D Watch Video Solution

115. The foot of the perpendicular drawn from origin to a Plane is $(4,-2,5)$.

Obtain the equation of the Plane in general form

D Watch Video Solution

116. Equation of the plane with intercepts $2,3,4$
on the x, y, z axis respectively is
A. $2 x+3 y+4 z=1$
B. $2 x+3 y+4 z=12$
C. $6 x+4 y+3 z=1$
D. $6 x+4 y+3 z=12$

Answer:

D Watch Video Solution

117. Find the Cartesian equation of the plane passing through the point $A(2,5,-3), B(-2,-3,5)$ and $C(5,3,-3)$.
118. The distance of the plane $x+y+z=1$ from
the point $(1,1,1)$ is
a) 4 units b) $\frac{1}{\sqrt{3}}$ units c) $\frac{4}{\sqrt{3}}$ units d) $\frac{1}{4 \sqrt{3}}$ units
A. 4 units
B. $\frac{1}{\sqrt{3}}$ units
C. $\frac{4}{\sqrt{3}}$ units
D. $\frac{1}{4 \sqrt{3}}$ units
119. Find the equation of the plane passing through ($1,0,-2$) and perpendicular to each of the planes $2 x+y-z=2$ and $x-y-z=3$

- Watch Video Solution

120. The lines $x-1=y=z$ is perpendicular to the line.....a) $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z}{-3}$

$$
x-2=y-2=z \quad \text { с) } \frac{x-2}{1}=\frac{y-1}{2}=\frac{z}{3}
$$

$$
\text { d) } x=y=z / 2
$$

$$
\text { A. } \frac{x-2}{1}=\frac{y-1}{2}=\frac{z}{-3}
$$

$$
\text { B. } x-2=y-2=z
$$

$$
\text { C. } \frac{x-2}{1}=\frac{y-1}{2}=\frac{z}{3}
$$

$$
\text { D. } x=y=z / 2
$$

Answer:

121. Find the shortest distance between the
lines $\bar{r}=i+2 j+3 k+\lambda(i+j+k)$ and
$\bar{r}=i+j+k+\mu(i+j+k)$

D Watch Video Solution

122. Find the shortest distance between the lines $\quad \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \quad$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$

D Watch Video Solution
123. Find the equation of the Plane passing through one point ($-1,3,2$) and $\perp r$ to the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$

D Watch Video Solution

124. A line makes equal angles with the coordinate axis. Find the direction cosines.

- Watch Video Solution

125. Find the equation of the plane passing through (1,1,-1),(2,3,5) and (-1,4,-5).

D Watch Video Solution

126. Find p and q, if the plane $x+p y+q z=0$ is perpendicular to the plane $3 x+2 y+z=0$ and the line $\frac{x-3}{2}=\frac{y-2}{3}=\frac{z-1}{1}$

- Watch Video Solution

127. Given the straight linrs
$\bar{r}=3 i+2 j-4 k+\lambda(i+2 j+2 k) \quad$ and
$\bar{r}=5 i-2 k+\mu(3 i+2 j+6 k)$
Find the angle between the lines.

D Watch Video Solution

128. Given the straight linrs

$$
\begin{array}{ll}
\bar{r} & =3 i+2 j-4 k+\lambda(i+2 j+2 k) \\
\bar{r} & =5 i-2 k+\mu(3 i+2 j+6 k)
\end{array}
$$

Obtain the unit vector perpendicular to both the lines.

D Watch Video Solution

129. Given the straight lines
$\bar{r}=3 i+2 j-4 k+\lambda(i+2 j+2 k) \quad$ and
$\bar{r}=5 i-2 k+\mu(3 i+2 j+6 k)$

Form the equation of the line perpendicular to
the given lines and passing through the point $(1,1,1)$
130. Write the Cartesian equation of the straight line through the point $(1,2,3)$ and along the vector $3 i+j+2 k$

- Watch Video Solution

131. Write the Cartesian equation of the straight line through the point $(1,2,3)$ and along the vector $3 i+j+2 k$.Write a general point on this straight line.
132. Write the Cartesian equation of the straight line through the point $(1,2,3)$ and along the vector $3 i+j+2 k$. Find the point of intersection of this straight line with the plane $2 x+3 y-z+2=0$

- Watch Video Solution

133. Find the distance from $(1,2,3)$ to the plane
$2 x+3 y-z+2=0$

- Watch Video Solution

134. Consider a plane passing through the point ($5,2,-4$) and perpendicular to the line
$\bar{r}=(i+j)+\lambda(2 i+3 j-k)$
Write the equation in Cartesian form.

- Watch Video Solution

135. Consider a plane passing through the point $(5,2,-4)$ and perpendicular to the line
$\bar{r}=(i+j)+\lambda(2 i+3 j-k)$

Find its distance from the point (1,2,-1).

- Watch Video Solution

136. Consider a plane passing through the point $(5,2,-4)$ and perpendicular to the line

$$
\bar{r}=(i+j)+\lambda(2 i+3 j-k)
$$

Find the angle made by it with line

$$
\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-3}{-2}
$$

- Watch Video Solution

