

MATHS

BOOKS - MAXIMUM PUBLICATION

VECTOR ALGEBRA

1. Find
$$\overrightarrow{a} + \overrightarrow{b}$$
, $\overrightarrow{a} - \overrightarrow{b}$ and $\overrightarrow{b} + \overrightarrow{c}$ using the vectors.
 $\overrightarrow{a} = 3i + 4j + k$, $\overrightarrow{b} = 2i - 7j - 3k$ and
 $\overrightarrow{c} = 2i + 3j - 9k$.

2. Find the vectors passing through the point A(1, 2, -3) and B(-1, -2, 1). Watch Video Solution

3. Find the Direction cosiness along \overrightarrow{AB} where A(4,5,6) and B(6,3,8)

Watch Video Solution

4. Show that the points A, B and C with position vectors $\overrightarrow{a} = 3i - 4j - 4k$, $\overrightarrow{b} = 2i - j + k$ and $\overrightarrow{c} = i - 3j - 5k$ respectively form the vertices of a right

angled triangle.

5. Prove that
$$\left[\overrightarrow{a} + \overrightarrow{b}\overrightarrow{b} + \overrightarrow{c}\overrightarrow{c} + \overrightarrow{a}\right] = 2\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$$

Watch Video Solution

6. Consider the vector $\overrightarrow{p} = 2i - j + k$. Find two vectors \overrightarrow{q} and \overrightarrow{r} such that $\overrightarrow{p}, \overrightarrow{q}$ and \overrightarrow{r} are mutually perpendicular.

7. Find \overrightarrow{a} . \overrightarrow{b} , \overrightarrow{a} \times \overrightarrow{b} and \overrightarrow{b} \times \overrightarrow{c} using the vectors. $\overrightarrow{a} = 3i + 4j + k$, $\overrightarrow{b} = 2i - 7j - 3k$ and

$$\overrightarrow{c}=2i+3j-9k.$$

among the following could be $\stackrel{
ightarrow}{b}$?

i+j+k

6i+2j+4k

3i-j+2k

2i+3j+k

A. i+j+k

B. 6i+2j+4k

C. 3i-j+2k

D. 2i+3j+k

Answer:

10. If
$$\stackrel{
ightarrow}{a}=3i+j+2k$$
,

If \overrightarrow{a} makes an angle 60° with a vector \overrightarrow{c} , find the projection of \overrightarrow{a} on \overrightarrow{c} .

11. The projection of the vector 2i + 3j + 2k on the vector

$$i+j+k$$
 is a) $rac{3}{\sqrt{3}}$ b) $rac{7}{\sqrt{3}}$ c) $rac{3}{\sqrt{17}}$ d) $rac{7}{\sqrt{17}}$

A.
$$\frac{3}{\sqrt{3}}$$

B.
$$\frac{7}{\sqrt{3}}$$

C.
$$\frac{3}{\sqrt{17}}$$

D.
$$\frac{7}{\sqrt{17}}$$

Answer:

Watch Video Solution

12. Find the area of a parallelogram whose adjacent sides

are the vector 2i + j + k and i - j.

13. The angle between the vectors i+j and j+k is

A. $60\degree$

 $\mathsf{B.}\,30\degree$

 $\mathsf{C.}\,45\degree$

D. 90°

Answer:

14. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are unit vectors such that
 $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, find the value of

$$\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}.$$
Watch Video Solution
$$15. \text{ If } \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \text{ are unit vectors then,}$$

$$\overrightarrow{a} \cdot \overrightarrow{a} = ___$$
Watch Video Solution

16. Hence, show that
$$\overrightarrow{a}$$
. \overrightarrow{b} + \overrightarrow{b} . \overrightarrow{c} + \overrightarrow{c} . \overrightarrow{a} = $\frac{-3}{2}$ if

$$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=0.$$

17. Let A(2,3), B(1,4), C(0,-2) and D(x,y) are

vertices of a parallelogram ABCD.

Write the postion vectors A,B,C and D.

Watch Video Solution

18. Let A(2,3), B(1,4), C(0, -2) and D(x,y) are

vertices of a parallelogram ABCD.

Find the value of x and y.

19. Find the position vector of a point R which divides the line joining the points P and Q whose vectors are

i+2j-k and -i+j+k in the ratio $2\!:\!1$

Internally.

20. Find the position vector of a point R which divides the line joining the points P and Q whose vectors i + 2j - k and -i + j + k in the ratio 2:1

externally.

21. Choose the correct answer from the backet. If a unit vector \hat{a} makes angles $\frac{\pi}{4}$ with i and $\frac{\pi}{3}$ with j and acute

angle θ with k.

then θ is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer:

22. Find a unit vector \hat{a} .

23. Write down a unit vector in XY plane, making an angle

of 60° with the positive direction of x-axis.

• Watch Video Solution
24. Let the vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 denotes the sides of a
triangle ABC.
Prove that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$.
• Watch Video Solution
25. Find the projection of a vector $i + 3j + 7k$ on the

vector 7i - j + 8k.

26. If \overrightarrow{a} and \overrightarrow{b} are any two vectors, then $\overrightarrow{a} \times \overrightarrow{b}$ is a) a vector on the same plane where \overrightarrow{a} and \overrightarrow{b} lie.

b) ab cos theeta

c) a vector parallel to both a and b

d) a vector perpendicular to both a and b.

Watch Video Solution

27. Let $\overrightarrow{a} = 2i + 4j - 5k$, $\overrightarrow{b} = i + 2j + 3k$. Then find a

unit vector perpendicular to both \overrightarrow{a} and \overrightarrow{b} .

28. Find a vector of magnitude 5 in the direction parpendicular to both \overrightarrow{a} and \overrightarrow{b} .

29. Consider a vector that is inclined at an angle 45° to x -

axis and 60° to y - axis. Find the dc's of the Vector.

30. Consider a vector that is inclined at an angle 45° to x - axis and 60° to y - axis. Find a unit vector in the direction of the above vector.

31. Find a vector which is of magnitude 10 units in the

direction of the above vector.

Watch Video Solution
32. Consider the point $A(2,1,1)$ and $B(4,2,3)$
Find the vector \overrightarrow{ab}
Watch Video Solution
33. Consider the point $A(2,1,1)$ and $B(4,2,3).$ Find the
direction cosines of $\stackrel{ ightarrow}{ab}$
Watch Video Solution

34. Consider the point A(2, 1, 1) and B(4, 2, 3). Find the angle made by \overrightarrow{ab} with the positive direction of X-axis.

Watch Video Solution

35. If i+j+k, 2i+5j, 3i+2j-3k, i-6j-k

respectively are the position vector of points A,B,C and D. Then find \overrightarrow{AB} and \overrightarrow{CD} .

36. If i + j + k, 2i + 5j, 3i + 2j - 3k, i - 6j - k

respectively are the position vector of points A,B,C and D.

```
Then find the angle between the vectors \overrightarrow{AB} and \overrightarrow{CD}.
```


38. Let ABCD be a parallelogram with sides as given in the

figure.

Find the distance between the sides AB and DC.

39. Consider

$$\overrightarrow{a} = i + 2j - 3k, \overrightarrow{b} = 3i - j + 2k, \overrightarrow{c} = 11i + 2j.$$
 Find
 $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} \cdot \overrightarrow{b}$.
Vatch Video Solution

40. Consider
$$\overrightarrow{a} = i + 2j - 3k, \, \overrightarrow{b} = 3i - j + 2k, \, \overrightarrow{c} = 11i + 2j.$$

43. Let A (1,-1,4), B(2,1,2) and C(1,-2,-3).Find the area of the parallelogram formed by \overrightarrow{AB} and \overrightarrow{AC} as adjacent sides.

45. Using the figure following questions.

Find the coordinate of the vertexD.

46. OABCDEFG is acube with edges of length 8 units and axes are shown. L,M,N are midpoints of the edges FG, GD, GB respectively.

Find p.v's of F,B,D and G.

47. OABCDEFG is acube with edges of length 8 units and

axes are shown. L,M,N are midpoints of the edges FG, GD,

GB respectively.

Show that the angle between the main diagonis is $heta=\cos^{-1}igg(rac{1}{3}igg)$

48. OABCDEFG is acube with edges of length 8 units and axes are shown. L,M,N are midpoints of the edges FG, GD, GB respectively.

Find the p.v's of L,M,N.

49. OABCDEFG is acube with edges of length 8 units and axes are shown. L,M,N are midpoints of the edges FG, GD, GB respectively.

Show that $\overrightarrow{LM}+\overrightarrow{MN}+\overrightarrow{NL}=0$

51. Using the figure answer the following questions

Find the coordinate of D.

52. Consider the parallelogram ABCD .Find \overrightarrow{AB} and \overrightarrow{AD}

53. Consider the parallelogram ABCD.Find the area of the

parallelogram

ABCD.

55. Consider the parallelogram ABCD.Find coordinate of C.

56. Consider the following quadrilateral ABCD in which P,Q,R,S are the mid points of the sides.

57. Consider the following quadrilateral ABCD in which P,Q,R,S are the mid points of the sides.

Show that PQRS is a parallelogram.

58. Consider the following quadrilateral ABCD in which P,Q,R,S are the mid points of the sides.

If	\overrightarrow{a}	is	any	vector,	prove	that
			,	,		

59. With help of a suitable figure for any three vectors

60. If $\overrightarrow{a} = i - j + k$ and $\overrightarrow{b} = 2i - 2j - k$. What is the projection of \overrightarrow{a} on \overrightarrow{b} ?

Watch Video Solution

61. If
$$\overrightarrow{a} = 3i - j - 5k$$
 and $\overrightarrow{b} = i - 5j + 3k$ Show that $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are perpendicular.

Watch Video Solution

62. Given the position vectors of three points as A(i - j + k), B(4i + 5j + 7k)C(3i + 3j + 5k) Find \overrightarrow{AB} and \overrightarrow{BC} .

63. Given the position vectors of three points as A(i-j+k), B(4i+5j+7k)C(3i+3j+5k). Prove

that A,B and C are collinear points.

(1,-1,2), find the coordinates of Q.

66. The angle between the vectors \overrightarrow{a} and \overrightarrow{b} such that $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right| = \sqrt{2}$ and \overrightarrow{a} . $\overrightarrow{b} = 1$ is

A.
$$\frac{\pi}{2}$$

B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$

Answer:

67. Find the unit vector along $\overrightarrow{a} - \overrightarrow{b}$ where $\overrightarrow{a} = i + 3j - k$ and $\overrightarrow{b} = 3i + 2j + k$.

Watch Video Solution

68. Consider the vectors
$$\overrightarrow{a} = 2i + j - 2k$$
 and $\overrightarrow{b} = 6i - 3j + 2k$. Find $\overrightarrow{a} \cdot \overrightarrow{b}$ and $\overrightarrow{a} \times \overrightarrow{b}$.

Watch Video Solution

69. Consider the vectors
$$\overrightarrow{a} = 2i + j - 2k$$
 and
 $\overrightarrow{b} = 6i - 3j + 2k$. Verify that
 $\left|\overrightarrow{a} \times \overrightarrow{b}\right|^2 = \left|\overrightarrow{a}\right|^2 \left|\overrightarrow{b}\right|^2 - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)^2$

70. For any three vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
, show that
 $\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} + \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} + \overrightarrow{b}) = 0$
Watch Video Solution

71. Given A(1, 1, 1), B(1, 2, 3), C(2, 3, 1) are the vertices

of riangle ABC a triangle. Find the area of the riangle ABC.

Watch Video Solution

72. Consider A(2, 3, 4), B(4, 3, 2) and C(5, 2, -1) be any three points.

Find the projection of \overrightarrow{BC} on \overrightarrow{AB} .

75. The adjacent sides of a parallelogram are $\overrightarrow{a}=3i+\lambda j+4k$ and $\overrightarrow{b}=i-\lambda j+k$. Find $\overrightarrow{a} imes \overrightarrow{b}$

76. The adjacent sides of a parallelogram are $\overrightarrow{a}=3i+\lambda j+4k$ and $\overrightarrow{b}=i-\lambda j+k.$ If the area of the

parallelogram is $\sqrt{42}$ square units, find the value of λ .

Watch Video Solution

77. Let
$$\overrightarrow{a} = 2i - j + 2k$$
 and $\overrightarrow{b} = 6i + 2j + 3k$. Find a unit vector in the direction of $\overrightarrow{a} + \overrightarrow{b}$.

78. Let $\overrightarrow{a} = 2i - j + 2k$ and $\overrightarrow{b} = 6i + 2j + 3k$ Find the angle between \overrightarrow{a} and \overrightarrow{b} .

79. Consider the triangle ABC with vertices A(1,1,1), B(1,2,3)

and C(2,3,1)

Find \overrightarrow{AB} and \overrightarrow{AC} .

Watch Video Solution

80. Consider the triangle ABC with vertices A(1,1,1), B(1,2,3)

and C(2,3,1).Find $\overrightarrow{AB} \times \overrightarrow{AC}$.

81. Consider the triangle ABC with vertices A(1,1,1), B(1,2,3)

and C(2,3,1).Hence find the area of the triangle.

82. Consider the vectors

$$\overrightarrow{a}=i-7j+7k, \ \overrightarrow{b}=3i-2j+2k.$$
Find \overrightarrow{a} . \overrightarrow{b} .

83. Consider the vectors
$$\overrightarrow{a} = i - 7j + 7k, \ \overrightarrow{b} = 3i - 2j + 2k$$
.Find the angle

84. Consider the vectors

$$\overrightarrow{a} = i - 7j + 7k, \, \overrightarrow{b} = 3i - 2j + 2k.$$

Find the area of parallelogram with adjacent sides \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

85. If the points A and B are (1,2,-1) and (2,1,-1) respectively, then \overrightarrow{AB} is

B. i-j

C. 2i+j-k

D. i+j+k

Answer:

Watch Video Solution

86. Find the value of λ for which the vectors 2i - 4j + 5k,

 $i-\lambda j+k$ and 3i+2j-5k are coplanar.

87. Find the angle between the vectors $\overrightarrow{a} = 2i + j - k$ and $\overrightarrow{b} = i - j + k$.

Watch Video Solution

88.
$$\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{a} + \overrightarrow{b}\right)$$
 is equal to a) \overrightarrow{a} b)
 $\left|\overrightarrow{a}\right|^2 - \left|\overrightarrow{b}\right|^2$ c) $\overrightarrow{a} \times \overrightarrow{b}$ d) $2\left(\overrightarrow{a} \times \overrightarrow{b}\right)$

A.
$$\stackrel{
ightarrow}{a}$$

$$\begin{array}{l} \mathsf{B}. \left| \overrightarrow{a} \right|^2 - \left| \overrightarrow{b} \right|^2 \\ \mathsf{C}. \overrightarrow{a} \times \overrightarrow{b} \\ \mathsf{D}. 2 \left(\overrightarrow{a} \times \overrightarrow{b} \right) \end{array}$$

Answer:

93. Let A(2, 3, 4), B(4, 3, 2) and C(5, 2, -1) be three points.Find \overrightarrow{AB} and \overrightarrow{BC} .

94. Let A(2, 3, 4), B(4, 3, 2) and C(5, 2, -1) be three points .Find the projection of \overrightarrow{BC} on \overrightarrow{AB} .

95. Let A(2,3,4), B(4,3,2) and C(5,2,-1) be three

points

Find the area of the triangle ABC.

Vatch Video Solution

96. ABCD is a parallelogram with A as the origin. \overrightarrow{b} and \overrightarrow{d}

are position vector of B and D respectively. What is the

C?

are position vector of B and D respectively.

99. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , \overrightarrow{d} respectively are the position vectors representing the vertices A,B,C,D of a parallelogram, then write \overrightarrow{d} in terms of \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} .

Watch Video Solution

100. Find the projection vector of

$$\stackrel{
ightarrow}{b}=i+2j+k$$
 along the vector

102. Write the magnitude of a vector \overrightarrow{a} in terms of dot

product.

103. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{a} + \overrightarrow{b} are unit vectors, then prove that the angle between \overrightarrow{a} and \overrightarrow{b} is $\frac{2\pi}{3}$

104. If 2i+j-3k and mi+3j-k are

Watch Video Solution

parpendicular to each other, then find 'm'. Also find the

area of the Rectangle having these two vectors as sides.

Vatch Video Solution
105. Consider the triangle ABC with vertices

$$A(1, 2, 3), B(-1, 0, 4), C(0, 1, 2)$$

Find \overrightarrow{AB} and \overrightarrow{AC} .

106. Consider the triangle ABC with vertices A(1, 2, 3), B(-1, 0, 4), C(0, 1, 2)

Find $\angle A$.

107. Consider the triangle ABC with vertices A(1, 2, 3), B(-1, 0, 4), C(0, 1, 2)

Find the area of the triangle ABC.

