©゙’ doubtnut

MATHS

BOOKS - MAXIMUM PUBLICATION

VECTOR ALGEBRA

Example

1. Find $\vec{a}+\vec{b}, \vec{a}-\vec{b}$ and $\vec{b}+\vec{c}$ using the vectors.

$$
\begin{aligned}
& \vec{a}=3 i+4 j+k, \vec{b}=2 i-7 j-3 k \\
& \vec{c}=2 i+3 j-9 k
\end{aligned}
$$

2. Find the vectors passing through the point
$A(1,2,-3)$ and $B(-1,-2,1)$.

- Watch Video Solution

3. Find the Direction cosiness along $\overrightarrow{A B}$ where $\mathrm{A}(4,5,6)$ and $B(6,3,8)$

- Watch Video Solution

4. Show that the points A, B and C with position vectors $\vec{a}=3 i-4 j-4 k, \vec{b}=2 i-j+k \quad$ and
$\vec{c}=i-3 j-5 k$ respectively form the vertices of a right angled triangle.
5. Prove that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

D Watch Video Solution

6. Consider the vector $\vec{p}=2 i-j+k$. Find two vectors
\vec{q} and \vec{r} such that \vec{p}, \vec{q} and \vec{r} are mutually perpendicular.

- Watch Video Solution

7. Find $\vec{a} \cdot \vec{b}, \vec{a} \times \vec{b}$ and $\vec{b} \times \vec{c}$ using the vectors.
$\vec{a}=3 i+4 j+k, \vec{b}=2 i-7 j-3 k$

$$
\vec{c}=2 i+3 j-9 k .
$$

- Watch Video Solution

8. If $\vec{a}=3 i+j+2 k$, FInd magnitude of \vec{a}.

- Watch Video Solution

9. If $\vec{a}=3 i+j+2 k$,

If the projection of \vec{a} on another vector \vec{b} is $\sqrt{14}$, which among the following could be \vec{b} ?
i+j+k
$6 i+2 j+4 k$
$3 i-j+2 k$
$2 i+3 j+k$
A. $i+j+k$
B. $6 \mathbf{i}+2 j+4 k$
C. $3 \mathrm{i}-\mathrm{j}+2 \mathrm{k}$
D. $2 i+3 j+k$

Answer:

- Watch Video Solution

10. If $\vec{a}=3 i+j+2 k$,

If \vec{a} makes an angle 60° with a vector \vec{c}, find the projection of \vec{a} on \vec{c}.
11. The projection of the vector $2 i+3 j+2 k$ on the vector $i+j+k$ is a) $\frac{3}{\sqrt{3}}$ b) $\frac{7}{\sqrt{3}}$ c) $\frac{3}{\sqrt{17}}$ d) $\frac{7}{\sqrt{17}}$
A. $\frac{3}{\sqrt{3}}$
B. $\frac{7}{\sqrt{3}}$
C. $\frac{3}{\sqrt{17}}$
D. $\frac{7}{\sqrt{17}}$

Answer:

- Watch Video Solution

12. Find the area of a parallelogram whose adjacent sides are the vector $2 i+j+k$ and $i-j$.
13. The angle between the vectors $i+j$ and $j+k$ is
A. 60°
B. 30°
C. 45°
D. 90°

Answer:

D Watch Video Solution

14. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that
$\vec{a}+\vec{b}+\vec{c}=0$, find the value of
$\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.

- Watch Video Solution

15. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors then,
$\vec{a} \cdot \vec{a}=$

- Watch Video Solution

16. Hence, show that $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=\frac{-3}{2}$ if
$\vec{a}+\vec{b}+\vec{c}=0$.

- Watch Video Solution

17. Let $A(2,3), B(1,4), C(0,-2)$ and $D(x, y)$ are vertices of a parallelogram $A B C D$.

Write the postion vectors $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .

- Watch Video Solution

18. Let $A(2,3), B(1,4), C(0,-2)$ and $D(x, y)$ are vertices of a parallelogram $A B C D$.

Find the value of x and y.

- Watch Video Solution

19. Find the position vector of a point R which divides the
line joining the points P and Q whose vectors are
$i+2 j-k$ and $-i+j+k$ in the ratio $2: 1$ Internally.

- Watch Video Solution

20. Find the position vector of a point R which divides the line joining the points P and Q whose vectors $i+2 j-k$ and $-i+j+k$ in the ratio $2: 1$
externally.

- Watch Video Solution

21. Choose the correct answer from the backet. If a unit vector \widehat{a} makes angles $\frac{\pi}{4}$ with i and $\frac{\pi}{3}$ with j and acute
angle θ with k .
then θ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer:

D Watch Video Solution

22. Find a unit vector \widehat{a}.
23. Write down a unit vector in XY plane, making an angle of 60° with the positive direction of x-axis.

- Watch Video Solution

24. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ denotes the sides of a triangle $A B C$.

Prove that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$.

- Watch Video Solution

25. Find the projection of a vector $i+3 j+7 k$ on the vector $7 i-j+8 k$.
26. If \vec{a} and \vec{b} are any two vectors, then $\vec{a} \times \vec{b}$ is
a) a vector on the same plane where \vec{a} and \vec{b} lie.
b) $a b \cos$ theeta
c) a vector parallel to both a and b
d) a vector perpendicular to both a and b.

D Watch Video Solution

27. Let $\vec{a}=2 i+4 j-5 k, \vec{b}=i+2 j+3 k$. Then find a unit vector perpendicular to both \vec{a} and \vec{b}.

D Watch Video Solution

28. Find a vector of magnitude 5 in the direction parpendicular to both \vec{a} and \vec{b}.

- Watch Video Solution

29. Consider a vector that is inclined at an angle 45° to x axis and 60° to y - axis. Find the dc's of the Vector.

- Watch Video Solution

30. Consider a vector that is inclined at an angle 45° to x axis and 60° to y -axis. Find a unit vector in the direction of the above vector.
31. Find a vector which is of magnitude 10 units in the direction of the above vector.

- Watch Video Solution

32. Consider the point $A(2,1,1)$ and $B(4,2,3)$

Find the vector $\overrightarrow{a b}$

- Watch Video Solution

33. Consider the point $A(2,1,1)$ and $B(4,2,3)$.Find the direction cosines of $\overrightarrow{a b}$
34. Consider the point $A(2,1,1)$ and $B(4,2,3)$. Find the angle made by $\overrightarrow{a b}$ with the positive direction of X -axis.

- Watch Video Solution

35. If $i+j+k, 2 i+5 j, 3 i+2 j-3 k, i-6 j-k$ respectively are the position vector of points A, B, C and D. Then find $\overrightarrow{A B}$ and $\overrightarrow{C D}$.

- Watch Video Solution

36. If $i+j+k, 2 i+5 j, 3 i+2 j-3 k, i-6 j-k$ respectively are the position vector of points A, B, C and D.

Then find the angle between the vectors $\overrightarrow{A B}$ and $\overrightarrow{C D}$.

- Watch Video Solution

37. If $i+j+k, 2 i+5 j, 3 i+2 j-3 k, i-6 j-k$ respectively are the position vector of points A, B, C and D.

Then
Deduce that $\overrightarrow{A B}$ parallel to $\overrightarrow{C D}$.

- Watch Video Solution

38. Let $A B C D$ be a parallelogram with sides as given in the figure.

Find the distance between the sides $A B$ and $D C$.

D Watch Video Solution

39.

Consider
$\vec{a}=i+2 j-3 k, \vec{b}=3 i-j+2 k, \vec{c}=11 i+2 j$. Find
$\vec{a}+\vec{b}$ and $\vec{a} \cdot \vec{b}$.

D Watch Video Solution

40.

Consider
$\vec{a}=i+2 j-3 k, \vec{b}=3 i-j+2 k, \vec{c}=11 i+2 j$.

Show that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are orthogonal.

- Watch Video Solution

41. Let $\mathrm{A}(1,-1,4), \mathrm{B}(2,1,2)$ and $\mathrm{C}(1,-2,-3)$. Find $\overrightarrow{A B}$.

- Watch Video Solution

42. Let $A(1,-1,4), B(2,1,2)$ and $C(1,-2,-3)$. Find the angle between $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
43. Let $A(1,-1,4), B(2,1,2)$ and $C(1,-2,3)$.Find the area of the parallelogram formed by $\overrightarrow{A B}$ and $\overrightarrow{A C}$ as adjacent sides.

- Watch Video Solution

44. Using the figure following questions.

Find $\overrightarrow{O D}$.

- Watch Video Solution

45. Using the figure following questions.

Find the coordinate of the vertexD.

- Watch Video Solution

46. OABCDEFG is acube with edges of length 8 units and axes are shown. L,M,N are midpoints of the edges FG, GD, GB respectively.

Find p.v's of F,B,D and G.

- Watch Video Solution

47. OABCDEFG is acube with edges of length 8 units and axes are shown. $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are midpoints of the edges FG, GD,

GB respectively.

Show that the angle between the main diagonis is $\theta=\cos ^{-1}\left(\frac{1}{3}\right)$

48. OABCDEFG is acube with edges of length 8 units and axes are shown. $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are midpoints of the edges FG, GD, GB respectively.

Find the p.v's of L, M, N.

49. OABCDEFG is acube with edges of length 8 units and axes are shown. $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are midpoints of the edges FG, GD, GB respectively.

Show that $\overrightarrow{L M}+\overrightarrow{M N}+\overrightarrow{N L}=0$

50. Using the figure answer the following questions

Find $\overrightarrow{A D}$
vis

- Watch Video Solution

51. Using the figure answer the following questions

Find the coordinate of D.

- Watch Video Solution

53. Consider the parallelogram ABCD.Find the area of the parallelogram

- Watch Video Solution

54. Consider the parallelogram $A B C D$. .ind $\overrightarrow{A C}$.

55. Consider the parallelogram ABCD.Find coordinate of C.

- Watch Video Solution

56. Consider the following quadrilateral $A B C D$ in which P, Q, R, S are the mid points of the sides.

Find $\overrightarrow{P Q}$ and $\overrightarrow{S R}$ in terms of $\overrightarrow{A C}$.
かunco.

- Watch Video Solution

57. Consider the following quadrilateral $A B C D$ in which P, Q, R, S are the mid points of the sides.

Show that PQRS is a parallelogram．

かリッが

－Watch Video Solution

58．Consider the following quadrilateral $A B C D$ in which P, Q, R, S are the mid points of the sides．
If \vec{a} is any vector，prove that

$$
\vec{a}=(\vec{a} \cdot i) i+(\vec{a} \cdot j) j+(\vec{a} \cdot k) k
$$

かucs.

- Watch Video Solution

59. With help of a suitable figure for any three vectors
\vec{a}, \vec{b} and \vec{c}
show that
$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$

- Watch Video Solution

60. If $\vec{a}=i-j+k$ and $\vec{b}=2 i-2 j-k$. What is the projection of \vec{a} on \vec{b} ?

- Watch Video Solution

61. If $\vec{a}=3 i-j-5 k$ and $\vec{b}=i-5 j+3 k$ Show that
$\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.

- Watch Video Solution

62. Given the position vectors of three points as $A(i-j+k), B(4 i+5 j+7 k) C(3 i+3 j+5 k)$ Find $\overrightarrow{A B}$ and $\overrightarrow{B C}$.
63. Given the position vectors of three points as
$A(i-j+k), B(4 i+5 j+7 k) C(3 i+3 j+5 k) . \quad$ Prove that A, B and C are collinear points.

- Watch Video Solution

64. Write the unit vector in direction of $i+2 j-3 k$.

D Watch Video Solution

65. If $\overrightarrow{P Q}=3 i+2 j-k$ and the coordinate of P are
$(1,-1,2)$, find the coordinates of Q .
66. The angle between the vectors \vec{a} and \vec{b} such that $|\vec{a}|=|\vec{b}|=\sqrt{2}$ and $\vec{a} \cdot \vec{b}=1$ is
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. 0

Answer:

- Watch Video Solution

67. Find the unit vector along $\vec{a}-\vec{b}$ where $\vec{a}=i+3 j-k$ and $\vec{b}=3 i+2 j+k$.

- Watch Video Solution

68. Consider the vectors $\vec{a}=2 i+j-2 k$ and $\vec{b}=6 i-3 j+2 k$. Find $\vec{a} \cdot \vec{b}$ and $\vec{a} \times \vec{b}$.

- Watch Video Solution

69. Consider the vectors $\vec{a}=2 i+j-2 k$ and
$\vec{b}=6 i-3 j+2 k$.Verify

$$
|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}
$$

70. For any three vectors $\vec{a}, \vec{b}, \vec{c}$, show that $\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=0$

- Watch Video Solution

71. Given $A(1,1,1), B(1,2,3), C(2,3,1)$ are the vertices of $\triangle A B C$ a triangle. Find the area of the $\triangle A B C$.

- Watch Video Solution

72. Consider $A(2,3,4), B(4,3,2)$ and $C(5,2,-1)$ be any three points.

Find the projection of $\overrightarrow{B C}$ on $\overrightarrow{A B}$.

(Watch Video Solution

73. Consider $A(2,3,4), B(4,3,2)$ and $C(5,2,-1)$ be any three points. Find the area of triangle $A B C$.

D Watch Video Solution

74. Find the angle between the vectors $\vec{a}=3 i+4 j+k$ and $\vec{b}=2 i+3 j-k$.

D Watch Video Solution

75. The adjacent sides of a parallelogram are $\vec{a}=3 i+\lambda j+4 k$ and $\vec{b}=i-\lambda j+k$. Find $\vec{a} \times \vec{b}$

D Watch Video Solution

76. The adjacent sides of a parallelogram are $\vec{a}=3 i+\lambda j+4 k$ and $\vec{b}=i-\lambda j+k$.If the area of the parallelogram is $\sqrt{42}$ square units, find the value of λ.

D Watch Video Solution

77. Let $\vec{a}=2 i-j+2 k$ and $\vec{b}=6 i+2 j+3 k$. Find a unit vector in the direction of $\vec{a}+\vec{b}$.

- Watch Video Solution

78. Let $\vec{a}=2 i-j+2 k$ and $\vec{b}=6 i+2 j+3 k$

Find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

79. Consider the triangle $A B C$ with vertices $A(1,1,1), B(1,2,3)$ and $C(2,3,1)$

Find $\overrightarrow{A B}$ and $\overrightarrow{A C}$.

- Watch Video Solution

80. Consider the triangle $A B C$ with vertices $A(1,1,1), B(1,2,3)$ and $\mathrm{C}(2,3,1)$. Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
81. Consider the triangle $A B C$ with vertices $A(1,1,1), B(1,2,3)$ and $C(2,3,1)$.Hence find the area of the triangle.

- Watch Video Solution

82. Consider the vectors
$\vec{a}=i-7 j+7 k, \vec{b}=3 i-2 j+2 k$.
Find $\vec{a} \cdot \vec{b}$.

D Watch Video Solution

$$
\begin{aligned}
& \text { 83. Consider } \\
& \vec{a}=i-7 j+7 k, \vec{b}=3 i-2 j+2 k \text {. Find }
\end{aligned}
$$

between \vec{a} and \vec{b}.

- Watch Video Solution

84. Consider the vectors
$\vec{a}=i-7 j+7 k, \vec{b}=3 i-2 j+2 k$.
Find the area of parallelogram with adjacent sides \vec{a} and \vec{b}.

- Watch Video Solution

85. If the points A and B are $(1,2,-1)$ and $(2,1,-1)$ respectively, then $\overrightarrow{A B}$ is
A. $i+j$
B. $i-j$
C. $2 \mathrm{i}+\mathrm{j}-\mathrm{k}$
D. $i+j+k$

Answer:

(Watch Video Solution

86. Find the value of λ for which the vectors $2 i-4 j+5 k$,
$i-\lambda j+k$ and $3 i+2 j-5 k$ are coplanar.

- Watch Video Solution

87. Find the angle between the vectors $\vec{a}=2 i+j-k$ and $\vec{b}=i-j+k$.

- Watch Video Solution

88. $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})$ is equal to a) \vec{a} b)
$|\vec{a}|^{2}-|\vec{b}|^{2}$ c) $\vec{a} \times \vec{b}$ d) $2(\vec{a} \times \vec{b})$
A. \vec{a}
B. $|\vec{a}|^{2}-|\vec{b}|^{2}$
C. $\vec{a} \times \vec{b}$
D. $2(\vec{a} \times \vec{b})$

- Watch Video Solution

89. Using vectors, show that the points
$A(1,2,7), B(2,6,3), C(3,10,-1)$ are collinear.

D Watch Video Solution

90. Find a vector in the direction of $\vec{r}=3 i-4 j$ that has a magnitude of 9 .

D Watch Video Solution

91. For any three vectors \vec{a}, \vec{b} and \vec{c}, and, prove that

$$
(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})
$$

D Watch Video Solution

92. Find a unit vector perpendicular to $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$, where $\vec{a}=i-3 j+3 k$ and $\vec{b}=3 i-3 j+2 k$.

- Watch Video Solution

93. Let $A(2,3,4), B(4,3,2)$ and $C(5,2,-1)$ be three points.Find $\overrightarrow{A B}$ and $\overrightarrow{B C}$.

- Watch Video Solution

94. Let $A(2,3,4), B(4,3,2)$ and $C(5,2,-1)$ be three points. Find the projection of $\overrightarrow{B C}$ on $\overrightarrow{A B}$.

D Watch Video Solution

95. Let $A(2,3,4), B(4,3,2)$ and $C(5,2,-1)$ be three points

Find the area of the triangle $A B C$.

- Watch Video Solution

96. ABCD is a parallelogram with A as the origin. \vec{b} and \vec{d} are position vector of B and D respectively. What is the position of vector

- Watch Video Solution

97. ABCD is a parallelogram with A as the origin. \vec{b} and \vec{d} are position vector of B and D respectively.What is the angle between $\overrightarrow{A B}$ and $\overrightarrow{A D}$?

- Watch Video Solution

98. ABCD is a parallelogram with A as the origin. \vec{b} and \vec{d} are position vector of B and D respectively.

If $|\overrightarrow{A C}|=|\overrightarrow{B D}|$, show that $A B C D$ is a Rectangle.

- Watch Video Solution

99. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ respectively are the position vectors representing the vertices A, B, C, D of a parallelogram, then write \vec{d} in terms of $\vec{a}, \vec{b}, \vec{c}$.

- Watch Video Solution

100. Find the projection vector of
$\vec{b}=i+2 j+k$ along the vector
$\vec{a}=2 i+j+2 k$. Also write \vec{b} as the sum of a vector along \vec{a} and a parpendicular to \vec{a}.

D Watch Video Solution

101. Find the area of a parallelogram for which the vectors
$2 i+j, 3 i+j+4 k$ are adjacent sides.

D Watch Video Solution

102. Write the magnitude of a vector \vec{a} in terms of dot product.
103. If $\vec{a}, \vec{b}, \vec{a}+\vec{b}$ are unit vectors, then prove that the angle between \vec{a} and \vec{b} is $\frac{2 \pi}{3}$

- Watch Video Solution

104. If $2 i+j-3 k$ and $m i+3 j-k$ are parpendicular to each other, then find ' m '. Also find the area of the Rectangle having these two vectors as sides.

- Watch Video Solution

105. Consider the triangle $A B C$ with vertices
$A(1,2,3), B(-1,0,4), C(0,1,2)$
Find $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
106. Consider the triangle $A B C$ with vertices
$A(1,2,3), B(-1,0,4), C(0,1,2)$
Find $\angle A$.

- Watch Video Solution

107. Consider the triangle $A B C$ with vertices
$A(1,2,3), B(-1,0,4), C(0,1,2)$
Find the area of the triangle ABC.

- Watch Video Solution

