© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - JEE MAINS PREVIOUS YEAR ENGLISH

CONTINUITY AND DIFFERENTIABILITY

Others

1. Let $f(x)=\left\{(x-1) \frac{\sin 1}{x-1}\right.$ if $x \neq 10, \quad$ if $x=1$. Then which one of the following is true? f is differentiable at $x=0$ and at $x-1 f$ is differentiable at $x=0$ but not at $x=1 f$ is differentiable at $x=0$ nor at $x=1 f$ is differentiable at $x=1$ but not at $x=0$
2. Let y be an implicit function of x defined by $x^{2 x}-2 x^{x} \cot y-1=0$. Then $y^{\prime}(1)$ equals

D Watch Video Solution

3. The value of p and q for which the function
$f(x)=\left\{\frac{\sin (p+1) x+\sin x}{x}, x<0 q, x=0 \frac{\sqrt{x+x^{2}}-\sqrt{x}}{x^{3 / 2}}, x>0\right\}$
is continuous for all x in R , are: (1) $p=\frac{1}{2}, q=-\frac{3}{2}$
$p=\frac{5}{2}, q=-\frac{1}{2}$ (3) $p=-\frac{3}{2}, q=\frac{1}{2}$ (4) $p=\frac{1}{2}, q=\frac{3}{2}$

D Watch Video Solution

4. Let $a, b r$ be such that the function f given by $f(x)=\ln |x|+b x^{2}+a x, x \neq 0$ has extreme values at $x=1$ and $x=2$. Statement 1: f has local maximum at $x=1$ and at $x=2$. Statement 2: $a=\frac{1}{2} \operatorname{and} b=\frac{-1}{4}$ (1) Statement 1 is false, statement 2
is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false

- View Text Solution

5. Consider the function $f(x)=|x-2|+|x-5|, x \in R$

Statement 1: $f^{\prime}(4)=0$ Statement 2: f is continuous in $[2,5]$, differentiable in $(2,5)$ and $f(2)=f(5)$. (1) Statement 1 is false, statement 2 is true (2) Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1 (3) Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1 (4) Statement 1 is true, statement 2 is false
6. If $x=-1$ and $x=2$ are extreme points of $f(x)=\alpha \log |x|+\beta x^{2}+x \quad, \quad$ then (1) $\quad \alpha=-6, \beta=\frac{1}{2}$
$\alpha=-6, \beta=-\frac{1}{2}$ (3) $\alpha=2, \beta=-\frac{1}{2}$ (4) $\alpha=2, \beta=\frac{1}{2}$

Watch Video Solution

7. For $x \in R, f(x)=|\log 2-\sin x|$ and $g(x)=f(f(x))$, then
(1) g is not differentiable at $x=0$
(2) $g^{\prime}(0)=\cos (\log 2)$
(3) $g^{\prime}(0)=-\cos (\log 2)$
(4) g is differentiable at $x=0$ and $g^{\prime}(0)=-\sin (\log 2)$
