© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

CHEMISTRY

BOOKS - CHETANA PUBLICATION

CHEMICAL KINETICS

Example

1. What is the influence of particle size of reacting solid on rate of a chemical reaction?

- Watch Video Solution

2. Why is finely divided nickel used in hydrogenation of oil?
3. What is the effect of change of temperature on the rate of reaction?

D Watch Video Solution

4. Which are the three major aspects of chemical reactions?

(D) Watch Video Solution

5. What is Chemical Kinetics?
6. How does the study of rate of reaction help chemists? OR State applications of Chemical Kinetics.

- Watch Video Solution

7. Defin: rate of reaction OR

Explain the term rate of reaction.

- Watch Video Solution

8. Define:Average rate of chemical reaction. OR

Explain : the term Average rate of chemical reaction
9. Define Instantaneous Rate of reaction.

D Watch Video Solution

10. How instantaneous rate of reaction is determined?

- Watch Video Solution

11. Express the rate of a reaction in terms of concentration of each constituent in the following reaction.

$$
H_{2}(g)+I_{2}(g) \rightarrow 2 H I_{(g)}
$$

D Watch Video Solution

12. For the reaction, $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3}$, what is the reationship among $\frac{d\left[\mathrm{~N}_{2}\right]}{d t}, \frac{d\left[\mathrm{H}_{2}\right]}{d t}$ and $\frac{d\left[\mathrm{NH}_{3}\right]}{d t}$?

D Watch Video Solution

13. What is rate law? Give an example.

- Watch Video Solution

14. What is a rate constant?

D Watch Video Solution

15. What is the relationshipbetween coefficientsof reactants in a balanced equation for an overall reaction and exponents in rate
law? In what case the coefficient are the exponents?

D Watch Video Solution

16. Explain the term: order of a reaction with examples.

D Watch Video Solution

17. Write characteristics of order of reaction.

- Watch Video Solution

18. For a reaction: $2 \mathrm{NO}_{g}+2 \mathrm{H}_{2(g) \rightarrow N_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{g}}$ the rate law is rate $=k[N O]_{2}\left[H_{2}\right]$. What is the overall order with respect to NO and $\mathrm{H}_{2} \mathrm{O}$? What is the overall order?
19. The equation $\mathrm{CHCl}_{3(g)}+C l_{2(g)} \rightarrow \mathbb{C l}_{4(g)}+H C l_{g}$ is first order in CHCl_{3} and $\frac{1}{2}$ order in Cl_{2}. Write the rate law and overall order of reaction.

D Watch Video Solution

20.

From
the
reaction:
$\mathrm{CH}_{3} \mathrm{Br}(\mathrm{aq})+\mathrm{OH}_{a q}^{(-)} \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{a q}+\mathrm{Br}_{a q}^{-}$, the rate law is:
rate $=k\left[\mathrm{CH}_{3} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]$.
How does reaction rate changes if $\left[\mathrm{OH}^{-}\right]$is decreased by a factor of 5 ?
$\mathrm{CH}_{3} \mathrm{Br}(a q)+\mathrm{OH}_{a q}^{(-)} \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{a q}+\mathrm{Br}_{a q}^{-}$, the rate law is: rate $=k\left[\mathrm{CH}_{3} \mathrm{Br}\right]\left[\mathrm{OH}^{-}\right]$.

What is change in rate if concentrations of both reactants are doubled?

- Watch Video Solution

22. Define and explain the term elementary reaction.

- Watch Video Solution

23. Define and explain the term molecularity of a reaction. Give examples.
24. For a reaction, $2 \mathrm{NO}_{2(g)} \rightarrow 2 \mathrm{NO}_{g}+\mathrm{O}_{2(g)}$, the reaction is found to be second order with respect to NO_{2}. Write its rate law. Also find its overall order and its molecularity.

- Watch Video Solution

25. What is a complex reaction?

D Watch Video Solution

26. What is the determining step?
27. What is Reaction intermdiate? Give example.

D Watch Video Solution

28. A reaction takes palce in two steps.
$\mathrm{NO}_{g}+\mathrm{Cl}_{2(g)} \rightarrow$
$\mathrm{NOCl}_{2(g)}+\mathrm{NO}_{g} \rightarrow$
Write the overall reaction.

(D) Watch Video Solution

29. A reaction takes palce in two steps.
$\mathrm{NO}_{g}+\mathrm{Cl}_{2(g)} \rightarrow$
$\mathrm{NOCl}_{2(g)}+\mathrm{NO}_{g} \rightarrow$
Identify reaction intermediate
30. Distinguish between: Order and Molecularity.

- Watch Video Solution

31. A reaction occurs in the following steps:
$\mathrm{NO}_{2(g)}+\mathrm{F}_{2(g)} \rightarrow \mathrm{NO}_{2} \mathrm{~F}_{g}+F_{g}$
$F_{g}+\mathrm{NO}_{2(g)} \rightarrow \mathrm{NO}_{2} \mathrm{~F}_{g}$
Write the equation of overall reaction.

- Watch Video Solution

32. A reaction occurs in the following steps:
$\mathrm{NO}_{2(g)}+\mathrm{F}_{2(g)} \rightarrow \mathrm{NO}_{2} \mathrm{~F}_{g}+F_{g}$
$F_{g}+\mathrm{NO}_{2(g)} \rightarrow \mathrm{NO}_{2} F_{g}$
Write rate law.

- Watch Video Solution

33. A reaction occurs in the following steps:
$\mathrm{NO}_{2(g)}+\mathrm{F}_{2(g)} \rightarrow \mathrm{NO}_{2} F_{g}+F_{g}$
$F_{g}+\mathrm{NO}_{2(g)} \rightarrow \mathrm{NO}_{2} F_{g}$
Identify the reaction intermediate.

- Watch Video Solution

34. A complex reaction takes place in two steps.
$\mathrm{NO}_{g}+\mathrm{O}_{3(g)} \rightarrow \mathrm{NO}_{3(g)}+\mathrm{O}_{g}$
$\mathrm{NO}_{3(g)}+\mathrm{O}_{g} \rightarrow \mathrm{NO}_{2(g)}+\mathrm{O}_{2(g)}$
The predicted rate law is: rate $=k[\mathrm{NO}]\left[\mathrm{O}_{3}\right]$

Identify the rate determing step. Write overall reaction. Which is the reaction intermediate? Why?

- Watch Video Solution

35. A reaction occurs in the following steps:
$\mathrm{NO}_{2(g)}+F_{2(g)} \rightarrow \mathrm{NO}_{2} F_{g}+F_{g}$
$F_{g}+\mathrm{NO}_{2(g)} \rightarrow \mathrm{NO}_{2} F_{g}$
Identify the reaction intermediate.

- Watch Video Solution

36. Write molecularity of the following reaction:
$2 \mathrm{NO}_{g}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{g}$

D Watch Video Solution

37. A certain reaction occurs in the following steps
$C l_{g}+O_{3(g)} \rightarrow C l O_{g}+O_{2(g)}$
$C l O_{g}+O_{g} \rightarrow C l_{g}+O_{2(g)}$
What is the molecularity of each of elementary steps?

- Watch Video Solution

38. A certain reaction occurs in the following steps
$\mathrm{Cl}_{g}+\mathrm{O}_{3(g)} \rightarrow \mathrm{ClO}_{g}+\mathrm{O}_{2(g)}$
$\mathrm{ClO}_{g}+\mathrm{O}_{g} \rightarrow \mathrm{Cl}_{g}+\mathrm{O}_{2(g)}$
Identify the reaction intermediate and write the chemical equation for overall reaction.
39. Find the overall order
$\mathrm{CHCl}_{3(g)}+\mathrm{Cl}_{2(g)} \rightarrow \mathrm{Cl}_{4(g)}+\mathrm{HCl}_{g}$ Rate $=k\left[\mathrm{CHCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]$
$2 \mathrm{NO}_{g}+\mathrm{O}(2(g)) \rightarrow 2 \mathrm{NO}_{2(g)}$ Rate $=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$

- Watch Video Solution

40. Define integrated rate law.

- Watch Video Solution

41. Derive the integrated rate law for first order reaction: A products OR

Derive the rate equation for first order reaction.
42. The integrated rate equation for first order reaction $A \rightarrow$ products is given by

- Watch Video Solution

43. Explain the exponential rate law expression for the first order reaction.

- Watch Video Solution

44. What are the units of rate constant of first order reaction?

D Watch Video Solution

45. How will you represent first order reactions graphically?
46. Write any two examples of first-order reactions.

- Watch Video Solution

47. Derive the integrated rate law for zero order reaction.

- Watch Video Solution

48. Derive the integrated rate law for zero order reaction.

- Watch Video Solution

49. What are the units of rate constant of zero-order reaction.

(Watch Video Solution

50.

D Watch Video Solution
51. Write examples of zero-order reactions.

- Watch Video Solution

52. Define half-life period.
53. Derive the relation between half-life and rate constant of the first-order reaction.

- Watch Video Solution

54. Give the graphical representation of half-life period reaction against concentration for first order reaction

D Watch Video Solution

55. Derive the relation between half-life and rate constant of the zero-order reaction.
56. How do half-lives of the first order and zero order reactions change with initial concentration of reactants?

- Watch Video Solution

57. What are pseudo-first order reactions? Given one example and explain why it is pseudo-first order?

- Watch Video Solution

58.

The
reaction
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(a q)+\mathrm{H}_{2} \mathrm{O}($ excess $) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)$
can it be of pseudo first order type?
59. What are the requirements for a bimolecular reaction to take place? OR

What are requirements for the collision reactant molecules to lead to products.

D Watch Video Solution

60. Define Activation Energy.

D Watch Video Solution

61. Explain the concept of potential energy barrier.
62. If a gaseous reaction has activation energy $75 \mathrm{kJmol}^{-1}$ at 298 k , find the fraction of successful collision.

- Watch Video Solution

63. Why all collisions between reactant molecules do not lead to a chemical reaction?

- Watch Video Solution

64. Write Arrhenius equation and explain the terms involved in it.
65. Explain with the help of Arrhenius equation, how does the rate of reaction changes withactivation energy.

- Watch Video Solution

66. Explain with the help of Arrhenius equation, how does the rate of reaction changes withactivation energy.

- Watch Video Solution

67. How will you determine activation energy graphically using

Arrhenius equation?
68. How will you determine activation energy from rate constants at two different temperatures?

- Watch Video Solution

69. What is the effect of change of temperature on the rate of reaction?

- Watch Video Solution

70. What is catalyst? Explain with example.
71. How catalyst increases the rate of reaction? Explain with help of potential energy diagram for catalyzed and unanalyzed reactions.

- Watch Video Solution

72. Explain graphically the effect of catalyst on the rate of reaction.

D Watch Video Solution

73. Consider the reaction $2 A+2 B \rightarrow 2 C$. Suppose that at a particular moment during the reaction, rate of disappearance of A is $0.076 M / s$

What is the rate of consumption of B ?
74. Consider the reaction $2 A+2 B \rightarrow 2 C$. Suppose that at a particular moment during the reaction, rate of disappearance of A is $0.076 M / s$

What is the rate of the reaction?

- Watch Video Solution

75. Consider the reaction
$3 I_{a q}^{-}+S_{2} \mathrm{O}_{8(a q)}^{2-} \rightarrow I_{3(a q)}^{-}+2 \mathrm{SO}_{4(a q)}^{2-}$
At a particular time $\mathrm{t}, \frac{d\left[\mathrm{SO}_{4}^{2-}\right]}{d t}=2.2 \times 10^{-2} \mathrm{M} / \mathrm{s}$ What are the values of
$-\frac{d\left[I^{-}\right]}{d t}$ at the same time?
76. Consider the reaction
$3 \mathrm{I}_{a q}^{-}+\mathrm{S}_{2} \mathrm{O}_{8(a q)}^{2-} \rightarrow I_{3(a q)}^{-}+2 \mathrm{SO}_{4(a q)}^{2-}$
At a particular time $\mathrm{t}, \frac{d\left[\mathrm{SO}_{4}^{2-}\right]}{d t}=2.2 \times 10^{-2} \mathrm{M} / \mathrm{s}$ What are the values of
$-\frac{d\left[\mathrm{~S}_{2} \mathrm{O}_{8}^{2-}\right]}{d t}$ at the same time?

D Watch Video Solution

77. Consider the reaction
$3 \mathrm{I}_{a q}^{-}+\mathrm{S}_{2} \mathrm{O}_{8(a q)}^{2-} \rightarrow I_{3(a q)}^{-}+2 \mathrm{SO}_{4(a q)}^{2-}$
At a particular time $\mathrm{t}, \frac{d\left[\mathrm{SO}_{4}^{2-}\right]}{d t}=2.2 \times 10^{-2} \mathrm{M} / \mathrm{s}$ What are the values of
$\frac{d\left[I_{3}^{-}\right]}{d t}$ at the same time?
78. For the rection $2 \mathrm{NOBr}(g) \rightarrow 2 \mathrm{NO}_{2}(g)+\mathrm{Br}(g)$, the rate law is rate $=k[N O B r]^{2}$. If the rate of reaction is $6.5 \times 10^{\wedge}(-6) \mathrm{mole} \quad \mathrm{L}^{\wedge}(-1)$ stheconcentrationof $\mathrm{NOBris} 2 \times x 10^{\wedge}(-3)$ mole $L^{\wedge}(-1)^{\prime}$. What be the rate constant for the reaction?

D Watch Video Solution

79. The rate law for the reaction
$\mathrm{C}_{2} \mathrm{H}_{4} B r_{2}+3 I^{-\rightarrow} \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{Br}^{-+} I_{3}^{-}$ rate $=k\left[C_{2} H_{4} B r_{2}\right]\left[I^{-}\right]$. The rate of the reaction is found to be $1.1 \times 10^{-4} M / s$ when the concentrations of $C_{2} H_{4} B r_{2}$ and I^{-}are 0.12 M and 0.18 M respectively. Calculate the rate constant of the reaction.
80. Write the rate law for the reaction, $A+B \rightarrow P$ from the following data:

		[B] moles $\mathrm{dm} \mathrm{sec}^{-1}$ (Initial)	Initial rate? moles dm^{-3} sed
(i)	0.4	0.2	4.0×10^{-5}
(ii)	0.6	0.2	6.0×10^{-5}
(iii)	0.8	0.4	3.2×10^{4}

- Watch Video Solution

81. The rate of the reaction, $A+B \rightarrow P$ is
3.6×10^{-2} moldm ${ }^{-3} s^{-1}$ when $[\mathrm{A}]=0.2$ moles $d m^{-3}$ and $[\mathrm{B}]=$
0.1 moles $d m^{-3}$. Calculate the rate constant if the reaction is firss order in A and second order in B.

- Watch Video Solution

82. For the reaction, $A+B \rightarrow P$, if [B] is doubled at constant
[A], the rate of the reacton doubles. If $[A]$ tripled and $[B]$ is doubled, the reaction increases by a factor by a factor of 6 . What is the order of the reaction with respect to each reactant and the overall of the reaction?

(D) Watch Video Solution

83. The reaction $F_{2}(g)+2 \mathrm{ClO}_{2}(g)$ is first order in each of the reactants. The rate of the reaction in each of the reactants. The rate of the reaction is $4.88 \times 10^{-4} M / s$ when $\left[F_{2}\right]=0.015 M$ and $\left[\mathrm{ClO}_{2}\right]=0.025 \mathrm{M}$. Calculate the rate constant of the reaction.
84. Consider the reaction $2 A+2 B \rightarrow 2 C+D$. From the following data, calculate the order and rate constant of the reaction.

$[\mathrm{A}] /[\mathrm{M}$	$[\mathrm{B}] / \mathrm{M}$	$\mathrm{\Gamma} / \mathrm{Ms}^{-1}$
0.488	0.160	0.24
0.244	0.160	0.06
0.244	0.320	0.12

Write the rate law of the reaction.

- Watch Video Solution

85. For the reaction $2 A+B \rightarrow$ products, find the rate law from the following data

$[\mathrm{A}] /[\mathrm{M}$	$[\mathrm{B}] / \mathrm{M}$	$\mathrm{rate} / \mathrm{Ms}^{-1}$
0.3	0.05	0.15
0.6	0.05	0.30
0.6	0.20	1.20
-	.	

What is the rate constant and order of the reaction?

(Watch Video Solution

86. For the reaction : $2 A+2 B \rightarrow 2 C+D$, if concentration of A is doubled at constant [B], the rate increase by a factor of 4 . If the concentration of B is doubled with [A] being constant the rate is double. Write the rate law of the reaction.

- Watch Video Solution

87. For the reaction : $2 A+2 B \rightarrow 2 C+D$, if concentration of A is doubled at constant $[B]$, the rate increase by a factor of 4 . If the concentration of B is doubled with [A] being constant the rate is double. Write the rate law of the reaction.

D Watch Video Solution

88. The rate law for the reaction $A+B \rightarrow C$ is found to be rate $=k[A]^{2}[B]$. The rate constant of the reaction at $25^{\circ} C$ is 6.25 $M^{-2} S^{-1}$. What is the rate of reaction, When $[A]=0.1 \mathrm{~mol} . d m^{-3}$ and $[B]=0.2 \mathrm{~mol} . \mathrm{dm} \mathrm{m}^{-3}$?

- Watch Video Solution

89. A complex reaction takes place in two steps.
$\mathrm{NO}_{g}+\mathrm{O}_{3(g)} \rightarrow \mathrm{NO}_{3(g)}+\mathrm{O}_{g}$
$\mathrm{NO}_{3(g)}+\mathrm{O}_{g} \rightarrow \mathrm{NO}_{2(g)}+\mathrm{O}_{2(g)}$
The predicted rate law is: rate $=k[\mathrm{NO}]\left[\mathrm{O}_{3}\right]$
Identify the rate determing step. Write overall reaction. Which is
the reaction intermediate? Why?

(D) Watch Video Solution

90. The half life of first order reaction is 990 s . If the initial concentration of the reactant is $0.08 \mathrm{~mol} d m^{3}$, what concentration would remain after 35 minutes?

- Watch Video Solution

91. In a first order reaction 60% of the reactant decomposes in

45minutes.Calculate the half life for the reaction.

- Watch Video Solution

92. The half life of a first order reaction is 0.5 min . Calculate time needed for the reactant to reduce to 20% and the amount decomposed in 55 s .
93. In a first order reaction, the concentration of reactant decreases from $20 \mathrm{mmol} d m^{-3}$ to $8 \mathrm{mmol} d m^{-3}$ in 38 minutes.

What is the half life of reaction?

D Watch Video Solution

94. The half life a first order reaction is 1.7 hr .How long will it take for 20% of the reactant to react?

- Watch Video Solution

95. Show that time required for 99.9% completion of a first order reaction is three the time required for 90% completion.
96. A first order reaction takes 40 minutes for 30% decomposition. Calculate its half life.

- Watch Video Solution

97. The gaseous reaction $A_{2} \rightarrow 2 A$ is first order in A_{2}. After 12.3
minutes 65% of A_{2} remains undecomposed. How long will it take to decompose 90% of A_{2} ? What is the half life of the reaction?

- Watch Video Solution

98. The rate constant of a first order reaction is $6.8 \times 10^{-4} s^{-1}$.

If the initial concentration of the reactant is 0.04 M , what is its
molarity after 20 minutes? How long will it take for 25% of the reactant to react?

- Watch Video Solution

99. The rate constants for a first order reaction are $0.6 s^{-1}$ at 313 K and $0.045 \mathrm{~s}^{-1}$ at 293 K . What is the activation energy?

- Watch Video Solution

100. A first order gas phase reaction has activation energy of $240 \mathrm{kJmol}^{-1}$. If the pre-exponential factor is $1.6 \times 10^{13} s^{-1}$. What is the rate constant of the reaction at 600 K ?
101. The half life of a first order reaction is 900 min at 820 K.Estimate its half life at 720 K if the energy of activation of the reaction is $250 \mathrm{kJmol}^{-1}$

- Watch Video Solution

102. The energy of activation for a first order reaction is
$104 \mathrm{~kJ} / \mathrm{mol}$. The rate constant at $25^{\circ} \mathrm{C}$ is $3.7 \times 10^{-5} \mathrm{~s}^{-1}$. What
is the rate constant at $30^{\circ} \mathrm{C} ?(R=8.314 \mathrm{j} / \mathrm{Kmol})$]

- Watch Video Solution

103. What is the energy of activation of a reaction whose rate constant doubles when thetemperature changes from 303 K to
104. The rate constant of a reaction at $500^{\circ} \mathrm{C}$ is $1.6 \times 10^{3} M^{-1} s^{-1}$. What is the frequency factor of the reaction if its activation energy is $56 \mathrm{kJmol}^{-1} .\left(9.72 \times 106 \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$

- Watch Video Solution

105. The rate constant for the first order reaction is given by $\log _{10} k=14.34-1.25 \times 10^{4} T$. Calculate activation energy of the reaction $(239.3 k J / m o l)$

D Watch Video Solution

106. What fraction of molecules in a gas at 300 K collide with an energy equal to activation energy of $50 \mathrm{KJ} / \mathrm{mol}$?

(D) Watch Video Solution

107. A first order gas phase reaction has activation energy of $240 \mathrm{kJmol}^{-1}$. If the pre-exponential factor is $1.6 \times 10^{13} \mathrm{~s}^{-1}$. What is the rate constant of the reaction at 600 K ?

- Watch Video Solution

108. The half life of a first order reaction is 900 min at 820 K.Estimate its half life at 720 K if the energy of activation of the reaction is $250 \mathrm{kJmol}^{-1}$

- Watch Video Solution

1. In the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5(g)} \rightarrow 4 \mathrm{NO}_{2(g)}+O_{2}$ at a certain time. The rate of formation of $N O_{2}$ is $0.08 \mathrm{Ms}^{-1}$. Find the rate of consumption of $\mathrm{N}_{2} \mathrm{O}_{5}$, rate of formation of O_{2} and the rate of the reaction.

- Watch Video Solution

2. Find the rate constant, at 298 K temperature of a chemical reaction with rate law, rate $=k[X][Y]^{2}$. The rate of reaction is found to be $0.40 \mathrm{M} / \mathrm{s}$ and $[\mathrm{X}]=0.6 \mathrm{M}$ and $[\mathrm{Y}]=0.39 \mathrm{M}$.

- Watch Video Solution

3. For a reaction $A+2 B \rightarrow C$, the rate law is, rate= $k \times[A] \times[B]^{2}$. If the rate constant of the reaction is $3.74 \times 10^{-2} M^{-2} s^{-1}$, calculate the rate of the reaction when
the concentrations of A and B are 0.126 M and 0.142 M respectively.

- Watch Video Solution

4. The rate of chemical reaction would

(D) Watch Video Solution

5. Find the rate constant of the following first order reaction $A \rightarrow B$, if the rate of reaction is $6.4 \times 10^{-4} M s^{-1}$ and active mass of A is 0.20 M at room temperature.
6. The rate of the reaction, $A \rightarrow$ products is $2.15 \times 10^{-3} \mathrm{Ms}^{-1}$ when concentration of A is 0.35 M . Determine the rate constant if the reaction is (a) first order in $A(b)$ second order in A.

- Watch Video Solution

7. A first order takes 30 minutes to complete 20%. Calculate the rate constant for the reaction.

D Watch Video Solution

8. \% Relative humidity (for a given temperature)
9. Half-life period of a firsr oder reaction is 56.5 min . Calculate rate constant in per second.

- Watch Video Solution

10. If the half-life period of a zero order reaction with initial concentration 0.1 M is 32.4 min . What will be the half-life when the concentration is 0.5 M ?

- Watch Video Solution

11. Sucrose decomposes in acid solution to give glucose and fructose according to the first order rate law. The half life of the reaction 3 hours. Calculate fraction of sucrose which will remain after 8 hours.
12. Calculate the activation energy of a reaction for which rate constant becomes four times when temperature changes from $30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Given : $R=8.314 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

13. What is the energy of activation of a chemical reaction, whose rate constant doubles, when the temperature is raised from $17^{\circ} C$ to $27^{\circ} C$. Given: $R=8.314 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

14. Find the frequency constant and half life period of a first order reaction, if its rate constant and activation energy are
$1.11 \times 10^{-4} s^{-1} \quad$ and
$300^{\circ} \mathrm{C} .(R=2 \mathrm{Cal} / \mathrm{mol} . \mathrm{K})$ 39.3 kcal mol^{-1} at

- Watch Video Solution

15. For a first order reaction, the frequency factor and rate constant at 600 K are $1.6 \times 10^{13} s^{-1}$ and $2.05 \times 10^{-8} s^{-1}$ respectively. Find the energy of activation.

- Watch Video Solution

16. The rate constant of a certain first order reaction is
$3.12 \times 10^{-3} \mathrm{~min}^{-1}$

How many minutes does it make for the reactant concentration to deop to 0.02 M if the initial concentration of the reactant in 0.045 M ?
17. The rate constant of a certain first order reaction is $3.12 \times 10^{-3} \mathrm{~min}^{-1}$

What is the molarity of the reactant after 1.5 hours, If initial concentration is 0.045 M ?

- Watch Video Solution

18. In a first order reaction, the concentration of reactant decreases from $20 \mathrm{mmol} d m^{-3}$ to $8 \mathrm{mmol} d m^{-3}$ in 38 minutes.

What is the half life of reaction?

- Watch Video Solution

19. The rate constant of a first order reaction is $6.8 \times 10^{-4} s^{-1}$. If the initial concentration of the reactant is 0.04 M , what is its molarity after 20 minutes? How long will it take for 25% of the reactant to react?

D Watch Video Solution

20. The rate constants for a first order reaction are $0.6 s^{-1}$ at 313 K and $0.045 s^{-1}$ at 293 K . What is the activation energy?

- Watch Video Solution

21. The energy of activation for a first order reaction is $104 \mathrm{~kJ} / \mathrm{mol}$. The rate constant at $25^{\circ} \mathrm{C}$ is $3.7 \times 10^{-5} \mathrm{~s}^{-1}$. What is the rate constant at $30^{\circ} \mathrm{C} ?(R=8.314 \mathrm{j} / \mathrm{Kmol})$]
22. What is the energy of activation of a reaction whose rate constant doubles when thetemperature changes from 303 K to 313 K ?

- Watch Video Solution

23. The half life a first order reaction is 1.7 hr . How long will it take for 20% of the reactant to react?

- Watch Video Solution

24. In a first order reaction 60% of the reactant decomposes in

45minutes.Calculate the half life for the reaction.
25. The rate law for the reaction $A+B \rightarrow C$ is found to be rate $=k[A]^{2}[B]$. The rate constant of the reaction at $25^{\circ} C$ is 6.25 $M^{-2} S^{-1}$. What is the rate of reaction, When $[A]=0.1 \mathrm{~mol} . d m^{-3}$ and $[B]=0.2 \mathrm{~mol} . d m^{-3}$?
A. Concentrations of A and B are both dobuled.
B. $[A]$ is doubled and $[B]$ is kept constant
C. $[B]$ is dobuled and $[A]$ is halved
D. $[A]$ is kept constant and $[B\}$ is halved.

Answer:

- Watch Video Solution

26. The order of the reaction for which the units of rate constant are $\mathrm{mol} d \mathrm{~m}^{-3} s^{-1}$ is
A. 1
B. 3
C. 0
D. 2

Answer:

- Watch Video Solution

27. The rate coristant for the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is $4.98 \times 10^{-4} \mathrm{~s}^{-1}$. The order of reaction is
A. 2
B. 1
C. 0
D. 3

Answer:

D Watch Video Solution

28. Show that time required for 99.9% completion of a first order reaction is three the time required for 90% completion.
A. t
B. 2 t
C. $\frac{t}{2}$
D. 3 t

Answer:

- Watch Video Solution

29. Slope of the graph $\ln [A]_{t}$ - versus t for first order'reaction is
A. \#NAME?
B. k
C. $k / 2.303$
D. $-k / 2.303$

Answer:

30. What is the half life of a first.order reaction if time required to decrease concentration of reactant from. 0.8 M to 0.2 M is $12-$ h?

- Watch Video Solution

31. The reaction, $3 \mathrm{ClO}^{\theta} \rightarrow \mathrm{ClO}_{3}^{\theta}+2 \mathrm{Cl}^{\theta}$ occurs in two steps, $2 \mathrm{ClO}^{\theta} \rightarrow \mathrm{ClO}_{2}^{\theta}+\mathrm{Cl}^{\theta}$
$\mathrm{ClO}_{2}^{\theta}+\mathrm{ClO}^{\theta} \rightarrow \mathrm{ClO}_{3}^{\theta}+\mathrm{Cl}^{\theta}$
The reaction intermediate is
A. $C l^{\Theta}$
B. $\mathrm{ClO}_{2}^{\theta}$
C. $\mathrm{ClO}_{3}^{\theta}$
D. $C l O^{\theta}$

- Watch Video Solution

32. The elementary reaction $\mathrm{O}_{3}(g)+\mathrm{O}(g) \rightarrow 2 \mathrm{O}_{2}(g)$ is
A. unimolecular and second order
B. biomolecular and first order
C. biomolecular and second order
D. unimolecular and first order

Answer:

- Watch Video Solution

33. Rate law for the reaction, $2 \mathrm{NO}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{NOCI}$ is rate $=$ $k[N O]^{2}\left[C l_{2}\right]$. Thus of k would increase with
A. increase of temperature
B. increase of concentration of NO
C. increase of concentration of Cl_{2}
D. increase of concentrations of both $C l_{2}$ and NO

Answer:

- Watch Video Solution

34. For an endothermic reaction, $X \rightarrow Y$. If E_{f} is activation energy of the forward reaction and E_{r} that for reverse reaction, which of the following is correct ?
A. $E_{f}=E_{r}$
B. $E_{f}<E_{r}$
C. $E_{f}>E_{r}$
D. $\delta H=E_{f}-E_{r}$ is negative

Answer:

(D) Watch Video Solution

35. The rate of a chemical reaction can be expressed in terms of \qquad
A. rate of consumption of catalyst
B. rate of consumption of reactants only
C. rate of consumption of reactants and formation of products both
D. rate of formation of products only.

Answer:

D Watch Video Solution

36. The rate of a chemical reaction can be expressed in terms of \qquad
A. $\operatorname{Lmol}^{-1} t(-1)$
B. $m o l d m^{-3} t^{-1}$
C. Ms
D. $M^{-1} s^{-1}$

- Watch Video Solution

37. In the reaction $A+3 B \rightarrow 2 C$, the rate of formation of C
is \qquad
A. the same as rate of consumption of A
B. the same as the rate of consumption of B
C. twice the rate of consumption of A
D. $\frac{3}{2}$ times the rate of consumption of B.

Answer:

38. The instantaneous rate of reaction $2 A+B \rightarrow C+3 D$ is given be
A. $\frac{d A}{d t}$
B. $\frac{1}{2} \frac{d[A]}{d t}$
C. $\frac{d[B]}{d t}$
D. $\frac{1}{3} \frac{d[D]}{d t}$

Answer:

- Watch Video Solution

39. A reaction is first order with respect to reactant A and second order with respect to reactant B. The rate law for the reaction is given by
A. rate $=k[A][B]^{2}$
B. rate $=[A][B]^{2}$
C. rate $=k[A]^{2}[B]$
D. rate $=k[A]^{0}[B]^{2}$

Answer:

D Watch Video Solution

40. Molecularity of an elementary reaction
A. may be zero
B. is always integral
C. may be semi-integral
D. may be integral,fractional or zero.

- Watch Video Solution

41. What are the units of rate constant of first order reaction?
-2
A. \min
B. s
C. s^{-1}
D. min

Answer:

42. The integrated rate equation for first order reaction $A \rightarrow$ products is given by
A. $k=\frac{2.3030}{t} \frac{\ln [A]_{0}}{[A]_{t}}$
B. $k=\frac{1}{t} \frac{\ln [A]_{0}}{[A]_{t}}$
C. $k=\frac{2.303}{t} \frac{\log _{10}[A]_{t}}{[A]_{0}}$
D. $k=\frac{1}{t} \frac{\ln [A]_{t}}{[A]_{0}}$

Answer:

- Watch Video Solution

43. The half life period for a first order reaction is \qquad .
A. 1800s
B. 60 min
C. 15 min
D. 900 s

Answer:

- Watch Video Solution

44. The slope of the straight line obtained by plotting rate versus concentration of reactant for a first order reaction is
A. $-k$
B. $k / 2.303$
C. $-k / 2.303$
D. k

Answer:

45. The reaction between $H_{2(g)}$ and $I C I_{g}$ occurs in the following steps:
$\mathrm{H}_{2}+\mathrm{ICI} \rightarrow \mathrm{HI}+\mathrm{HCl}$
$\mathrm{HI}+\mathrm{ICI} \rightarrow \mathrm{I}_{2}+\mathrm{HCl}$

The reaction intermediate in the reaction is
A. HCl
B. HI
C. I_{2}
D. ICI

Answer:

46. Consider the reaction $2 \mathrm{NO}_{g}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{2(g)}$. If $\frac{d\left[N O_{2}\right]}{d t}=0.052 M / s$ then $-\frac{d\left[O_{2}\right]}{d t}$ will be
A. $0.052 M / s$
B. $0.114 M / s$
C. $0.026 M / s$
D. $-0.026 M / s$

Answer:

- Watch Video Solution

47. The rate of the first order reaction $A \rightarrow$ products, is 0.01 M sr1, when reactant concentration is 0.2 M . The rate constant for the reaction is-
A. $0.05 s^{-1}$
B. 0.05 min
C. $0.1 s^{-1}$
D. $0.01 s^{-1}$

Answer:

(D) Watch Video Solution

48. The rate constant of a reaction
A. decrease with increasing E_{a}
B. decreases with decreasing E_{a}
C. is independent of E_{a}
D. decreases with increasing temperature

- Watch Video Solution

49. The rate constant of a reaction is 2.1×10^{-2} litremol $^{-1} s^{-1}$
. The order of reaction is
A. $5.76 \times 10^{-3} s^{-1}$
B. $1.086 \times 10^{-3} s^{-1}$
C. $-2.5 \times 10^{-3} s^{-1}$
D. $2.5 \times 10^{-3} s^{-1}$

Answer:

- Watch Video Solution

50. A catalyst increases the rate of the reaction by
A. increasing E_{a}
B. increasing T
C. decreasing E_{a}
D. decreasing T

Answer:

- Watch Video Solution

51. The formation of $S O_{3}$ from $S O_{2}$ and O_{2} takes place in the following steps:
$2 \mathrm{SO}_{2}+2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{SO}_{3}+2 \mathrm{NO}$
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$
A. $N O$ is intermediate
B. NO_{2} is catalyst
C. NO_{2} is catalyst and NO is intermediate
D. NO is catalyt and NO_{2} is intermediate.

Answer:

- Watch Video Solution

52. The Arrhenius equation is
A. $A=k^{-E a / R T}$
B. $\frac{A}{k}=e^{E a / R T}$
C. $k=A e^{-(E a / R T)}$
D. $k=A e^{R T / E a}$

- Watch Video Solution

53. The rate of reaction at specific instant is called
A. integrated rate law
B. average rate
C. constant rate
D. instantaneous rate

Answer:

54. Rate constant does not depend upon unit of concentration for reactant whose order is \qquad .
A. zero
B. first
C. fractional
D. infinite

Answer:

(D) Watch Video Solution

55. The rate of reaction depends on reactants
A. concentration
B. temperature
C. catalyst
D. above all

Answer:

- Watch Video Solution

56. The rate of reaction is negative with respect to \qquad .
A. products
B. reactants
C. both (a) and (b)
D. catalyst

Answer:

57. The order of the reaction $2 \mathrm{NO}_{g}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{2(g)}$ having Rate $=k\left[N O_{2}\right]^{2}\left[O_{2}\right]$ is
A. one
B. two
C. four
D. three

Answer:

D Watch Video Solution

58. What are the units of rate constant of first order reaction?
A. M or i^{-1}
B. s^{-1}
C. $S^{-1} \mathrm{Mol}^{-1} d m^{3}$
D. Mols71dm3

Answer:

- Watch Video Solution

59. Which order of reaction obeys the expression $t_{1 / 2}=\frac{1}{k a}$
A. zero
B. first
C. third
D. second
60. The relation between half life and initial concentration is given by
A. a^{n-1}
B. $\frac{1}{a^{n-1}}$
C. a^{-n}
D. $\frac{1}{a}$

Answer:

- Watch Video Solution

61. Tritium undergoes radioactive decay giving
A. third order reaction
B. second order reaction
C. first order reaction
D. zero order reaction

Answer:

(D) Watch Video Solution

62. Time required to complete 90% of the first order reaction is
A. $\frac{2.303}{k}$
B. $\frac{2 \times 0.693}{k}$
C. $\frac{2 \times 693}{k}$
D. $\frac{0.301}{k}$

- Watch Video Solution

63. Half-life $t_{1 / 2}$ of first order reaction is \qquad
A. dependent of concentration
B. independent of concentration
C. dependent of time
D. dependent of molecularity

Answer:

D Watch Video Solution

64. Some bimolecular reactions which follow the kinetics of first order are called
A. unimolecular reactions
B. pseudo unimolecular reactions
C. first order reactions
D. bimolecular reactions

Answer:

- Watch Video Solution

65. In decomposition of $\mathrm{NH}_{3}(\mathrm{~g}) \ldots \ldots$ surface is used.
A. cold Pt
B. hot Pt
C. Pt
D. Ni

Answer:

- Watch Video Solution

66. Decomposition of NH_{3} takes place in presence of \qquad
A. hot Pt
B. tungsten
C. hot tungsten
D. Pt

Answer:

67. Decomposition of nitrous oxide takes place in presence of _____catalyst.
A. Ni
B. Pd
C. Pt
D. $\mathrm{Zn}-\mathrm{Cu}$

Answer:

- Watch Video Solution

68. hydrolysis of nitrous oxide to nitrogen and oxygen is order reaction.
A. first
B. second
C. pseudo
D. zero

Answer:

D Watch Video Solution

69. The hydrolysis of ethyl acetate
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}}, \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
is \qquad
A. pseudo first order
B. second order
C. third order
D. zero order

Answer:

- Watch Video Solution

70. Molecularity of reaction can be \qquad
A. negative
B. integral
C. zero
D. fractional

Answer:

71. For a single step reaction : $A+2 B \rightarrow$ products the molecularity is \qquad
A. zero
B. one
C. two
D. three

Answer:

D Watch Video Solution

72. The molecularity and order of the reaction

$$
2 \mathrm{NO}_{g}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})} \text { are___respectively. }
$$

A. one and one
B. two and two
C. three and three
D. two and three

Answer:

- Watch Video Solution

73. During breaking and making of bonds, the colloidal molecule must have \qquad
A. potential energy
B. vibrational energy
C. activation energy
D. proper orientation

- Watch Video Solution

74. The minimum kinetic energy required for a molecular collision to lead a reaction is called
A. potential energy
B. activation energy
C. total energy
D. translational energy

Answer:

75. Average kinetic energy is proportional to \qquad
A. temperature
B. pressure
C. concentration
D. volume

Answer:

- Watch Video Solution

76. Arrhenius mathemical expression shows the relationship between
A. E_{a}, k and T
B. E_{a}, P and T
C. T, P and V
D. T, E_{a} and V

Answer:

D Watch Video Solution

77. A catalyst increases the rate of the reaction by
A. increasing Ea
B. increasing T
C. decreasing Ea
D. decreasing T

Answer:

78. Decomposition of KClO_{3} takes place in presence of catalyst \qquad
A. MnO_{2}
B. Pt
C. Pd
D. Ni

Answer:

- Watch Video Solution

79. Decompositon of $\mathrm{H}_{2} \mathrm{O}_{2}$ takes place in presence of a catalyst
A. MnO_{2}
B. I-ions
C. Cl-ions
D. Pt

Answer:

D Watch Video Solution

80. Chemical kinetics a branch of physical chemistry, deals with
A. structure of molecules
B. heat changes in a reaction
C. physical changes in a reaction
D. rate of reactions

- Watch Video Solution

81. Under a given set of experimental conditions with increase in the concentration of the reactants, the rate of chemical reaction
A. decreases
B. increases
C. remians constant
D. first decreases and increases

Answer:

82. K represents the rate constant of a reaction when $\log K$ is plotted against $1 / T$ ($\mathrm{T}=$ temperature) the graph obtained is a
A. curve
B. a strainght line with a constant positive slope
C. a strainght line with constant negative slope
D. a straight line with no slope

Answer:

- Watch Video Solution

83. With increase in temperature the value of the rate constant of a reaction generally
A. increases
B. decreases with decreasing E_{a}
C. may increase or decrease
D. may not change

Answer:

D Watch Video Solution

84. In reactions involving gaseous reactants and gaseous products the units of rate are
A. Atm
B. Atm-sec
C. Atm. sec^{-1}
D. $A t m^{2} \sec t^{2}$

- Watch Video Solution

determining step of the reaction is
A. $A \rightarrow B$
B. $C \rightarrow D$
C. $B \rightarrow C$
D. $A \rightarrow D$

Answer:

86. The rate of chemical reaction would
A. increase as the reaction proceeds
B. decrease as the reaction proceeds
C. may increase or decrease during the reaction
D. remains constant as the reaction proceeds

Answer:

- Watch Video Solution

87. The factor which does not influence the rate of reaction is
A. Nature of reactants.
B. Concentration of the reactants
C. Temperature
D. Molecular mass

Answer:

D Watch Video Solution

88. The rate of chemical reaction depends on the nature of reactants because
A. The number of bonds broken in the reactant molecules and the number of bonds formed in product molecules changes
B. Some of the reactants are solids at the room temperature
C. Some of the reactants are coloured
D. Some of rectants are liquid at room temperature

Answer:

- Watch Video Solution

89. The rate of reaction increases with increase of temperature because
A. the concentration of the reactants
B. temperature of the reaction
C. time of the reaction
D. with all the three

Answer:

90. Dimensions of rate of reaction involves
A. concentration only
B. time only
C. both concentration and time
D. neither time nor concentration

Answer:

- Watch Video Solution

91. A catalyst
A. Increase the heat of the reaction
B. Decrease the heat of the reaction
C. Does not alter the heat of the reaction
D. Increases the number of collisions

Answer:

- Watch Video Solution

92. What are the units of rate constant of zero-order reaction.
A. $m o l L^{-1} s^{-1}$
B. $\mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
C. $L^{2} \mathrm{~mol}^{-2} s^{-1}$
D. s^{-1}

Answer:

93. The rate of the first order reaction $A \rightarrow$ products, is 0.01 M sr1, when reactant concentration is 0.2 M . The rate constant for the reaction is-
A. $0.05 s^{-1}$
B. $0.05 \mathrm{~min}^{-1}$
C. $0.1 s^{-1}$
D. $0.01 s^{-1}$

Answer:

- Watch Video Solution

94. If a graph is plotted between $\operatorname{Ln} \mathrm{K}$ and $1 / T$ for the first order reaction, the slope of the strainght line so obtained is
given by-
A. $-\frac{E_{a}}{R}$
B. $-\frac{E_{a}}{2.303 . R}$
C. $-\frac{2.303}{E_{a} R}$
D. $-\frac{E_{a}}{2.303}$

Answer:

- Watch Video Solution

95. The half life of a first order reaction is 30 min and the initial concentration of the reactant is 0.1 M . If the initial concentration of reactant is doubled, then the half life of the reaction will be
A. 1800s
B. 60 min
C. 15 min
D. 900 s

Answer:

D Watch Video Solution

96. Derive the integrated rate law for zero order reaction.

- Watch Video Solution

97. Identify the Molecularity of following reaction-

$$
C l(g)+C l(g)+N_{2(g)} \rightarrow C l_{2}(g)+N_{2}(g)
$$

98. The graph of temperature against time is

- Watch Video Solution

99. Express the rate of the following reaction in terms of change in concentration of each substance:

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

- Watch Video Solution

100. Distinguish between: Order and Molecularity.

D Watch Video Solution

101. What is the Molecualrity and order of the following examples -
$2 \mathrm{NO}_{2}+F_{2} \rightarrow 2 \mathrm{NO}_{2} F$ Rate $=k\left[\mathrm{NO}_{2}\right]\left[F_{2}\right]$

- Watch Video Solution

102. Find the overall order

$$
\begin{aligned}
& \mathrm{CHCl}_{3(g)}+\mathrm{Cl}_{2(g)} \rightarrow \mathrm{Cl}_{4(g)}+\mathrm{HCl}_{g} \text { Rate }=k\left[\mathrm{CHCl}_{3}\right]\left[\mathrm{Cl}_{2}\right] \\
& 2 \mathrm{NO}_{g}+\mathrm{O}(2(g)) \rightarrow 2 \mathrm{NO}_{2(g)} \text { Rate }=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]
\end{aligned}
$$

- Watch Video Solution

103. For the reaction $2 A+B \rightarrow$ products, find the rate law
from the following data

$[\mathrm{A}] /[\mathrm{M}$	$[\mathrm{B}] / \mathrm{M}$	$\mathrm{rate} / \mathrm{Ms}^{-1}$
0.3	0.05	0.15
0.6	0.05	0.30
0.6	0.20	1.20
.-	.	

What is the rate constant and order of the reaction?

- Watch Video Solution

104. Write a note on semen.

- Watch Video Solution

105. Draw the graph of [A]t against time for a first order reaction.
106. The rate constant of a first order reaction is $6.8 \times 10^{-4} s^{-1}$. If the initial concentration of the reactant is 0.04 M , what is its molarity after 20 minutes? How long will it take for 25% of the reactant to react?

D Watch Video Solution

107. reaction has rate constant $1.73 \times 10^{-3} \mathrm{~min}^{-1}$ and $4.86 \times 10^{-3} \mathrm{~min}^{-1}$ at 300 K and 330 K respectively. Calculate the energy of activation of this reaction. [Given: $\mathrm{R}=8.314 \mathrm{JK}^{\wedge}(-1)$ mol^{-1}

- Watch Video Solution

108. A catalyst increases the rate of the reaction by
109. The rate law for the reaction
$C_{2} H_{4} B r_{2}+3 I^{-\rightarrow} C_{2} H_{4}+2 \mathrm{Br}^{-+} I_{3}^{-}$ rate $=k\left[C_{2} H_{4} B r_{2}\right]\left[I^{-}\right]$. The rate of the reaction is found to be $1.1 \times 10^{-4} M / s$ when the concentrations of $C_{2} H_{4} B r_{2}$ and I^{-}are 0.12 M and 0.18 M respectively. Calculate the rate constant of the reaction.

- Watch Video Solution

110. For the reaction $\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$, the rate of reaction if, experimentally found to be proportional to the square of the concentrations of NO_{2}, and independent of that of CO. Write rate law.
111. A complex reaction takes place in two steps as follows. Write its overall reaction, identify the intermediate.
$\mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$

- Watch Video Solution

112. A complex reaction takes place in two steps as follows. Write its overall reaction, identify the intermediate.
$\mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$

- Watch Video Solution

