© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

CHEMISTRY

BOOKS - CHETANA PUBLICATION

Chemical Thermodynamics

1. (a) How do you define energy, (b) What are different forms of energy
(D) Watch Video Solution
2. What is thermodynamics ?

(D) Watch Video Solution

3. State the limitation of thermodynamics.

D Watch Video Solution

4. What are different types of systems?

D Watch Video Solution
5. Define: (1) Open system (2) Closed system (3) Isolated system.

0Watch Video Solution
6. Classify the following as open, closed or isolated system. (i) Animals and plants on the earth. (ii) Calorimeter. (iii) Thermos flask filled with hot tea. (iv) A tin containing Pepsi.

- Watch Video Solution

7. What is the difference between extensive and intensive properties?

- Watch Video Solution

8. What are intensive properties? Explain why density is intensive property.
9. What are state variables?

D Watch Video Solution

10. Define state of system and explain change of state.

- Watch Video Solution

11. Define and Explain state function.

- Watch Video Solution

12. What is path function?
13. What is a process? What are different types of processes?

- Watch Video Solution

14. Define and explain different types of processes.

- Watch Video Solution

15. Write the features of reversible process.

- Watch Video Solution

16. What are the ways of changing energy of a closed system?
17. Explain unit of work and energy.

- Watch Video Solution

18. Explain pressure-volume expansion work with the help of an example.

D Watch Video Solution

19. Explain PV compression work with an example.

- Watch Video Solution

20. Explain nature of heat in thermodynamics.
21. Explain sign conventions of Q, W and ΔU.

- Watch Video Solution

22. Derive an expression for work when gas expands against constant external pressure.

- Watch Video Solution

23. Derive an expression for pressure-volume work.

- Watch Video Solution

24. Derive the equation $W=-P_{e x t} \Delta V$

(D) Watch Video Solution

25. Comment on the statement: no work is involved in an expansion of gas in vacuum.

(D) Watch Video Solution

26. A free expansion of a gas results into no work. Explain.

(D) Watch Video Solution

27. Explain unit of work and energy.
(D) Watch Video Solution
28. Explain the concept of maximum work.

- Watch Video Solution

29. What are the conditions for maximum work?

- Watch Video Solution

30. Derive an expression for maximum work.

D Watch Video Solution

31. Derive an expression for work done during an Isothermal process
32. Explain concept of internal energy (U).

- Watch Video Solution

33. Explain the concept of change in internal energy with examples

D Watch Video Solution

34. 25 KJ work is done on the system and it releases 10 KJ of heat what is ΔU ?
35. State the first law of thermodynamics in different ways.

D Watch Video Solution

36. Deduce mathematical equation of first law of thermodynamics for the following processes: Adiabatic process

D Watch Video Solution

37. Deduce mathematical equation of first law of thermodynamics for the following processes: Isothermal process
38. Deduce mathematical equation of first law of thermodynamics for the following processes: Adiabatic process

- Watch Video Solution

39. Deduce mathematical equation of first law of thermodynamics for the following processes: Isochoric proecess

- Watch Video Solution

40. Deduce mathematical equation of first law of thermodynamics for the following processes: Isobaric process
41. Define and explain the term 'enthalpy'.

D Watch Video Solution

42. Derive expression for enthalpy change.

(D) Watch Video Solution

43. Prove that heat absorbed at constant pressure is nothing but change in enthalpy.

D Watch Video Solution

44. Derive relation between ΔH and ΔU for chemical reactions.

(D) Watch Video Solution

45. Derive relation $\Delta H=\Delta U+\Delta n_{g} R T$.

- Watch Video Solution

46. Obtain the relationship between ΔH and ΔU for gas phase reactions.

- Watch Video Solution

47. Derive expression for work done in a chemical reactions.
48. How does the sign of W depends on ΔV ?

- Watch Video Solution

49. Under what conditions $\Delta H=\Delta U$?

- Watch Video Solution

50. What is phase transition? Define : Enthalpy of fusion

D Watch Video Solution

51. What is phase transition? Define : Enthalpy of vaporisation
52. What is phase transition? Define : Enthalpy of sublimation

- Watch Video Solution

53. Define: Enthalpy of ionization

- Watch Video Solution

54. Define: Enthalpy of atomization

- Watch Video Solution

55. Define: Enthalpy of solution
56. Define: Enthalpy of dilution

- Watch Video Solution

57. Define and Explain Enthalpy of solution.

- Watch Video Solution

58.

For
$\mathrm{KCl}, \Delta_{L} H=699 \mathrm{~kJ} / \mathrm{mol}^{-I}$
and
$\Delta_{\text {hyd }} H=-681.8 \mathrm{~kJ} / \mathrm{mol}^{-1}$. What will be its enthalpy of solution?

- Watch Video Solution

59. What is thermometry ?

(D) Watch Video Solution

60. Define and explain enthalpy of chemical reaction (heat of reaction).

- Watch Video Solution

61. What are the factors affecting heat of reaction?

- Watch Video Solution

62. Explain exothermic reaction with example.
(D) Watch Video Solution
63. Explain endothermic reaction with example.

- Watch Video Solution

64. Distinguish between exothermic and endothermic reaction

- Watch Video Solution

65. What is standard enthalpy of reaction give example

D Watch Video Solution

66. What is standard state of a substance?
67. Write the rules for writing thermochemical equation.

- Watch Video Solution

68. Given the thermochemical equation.
$C_{2} H_{2}+\frac{5}{2} O_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(I) \Delta_{r} H^{\circ}=-1300 \mathrm{~kJ}$ Write thermochemical equations when (i) Coefficients of substances are multiplied by 2 (ii) Equation is reversed.

- Watch Video Solution

69. Define and explain standard enthalpy of formation with example.
70. Explain the step for calculation of standard enthalpy of reaction from standard enthalpy of formation.

- Watch Video Solution

71. What is standard enthalpy of combustion? Give an example

D Watch Video Solution

72. What is bond enthalpy. Given an example.

- Watch Video Solution

73. Write equation for bond enthalpy of $\mathrm{Cl}-\mathrm{Cl}$ bond in Cl_{2} molecule ΔH° for dissociation $C l_{2}$ molecule is 242.7 KJ

(D) Watch Video Solution

74. Explain Average bond enthalpy with example.

- Watch Video Solution

75. Explain average bond enthalpy in methane molecule.

D Watch Video Solution

76. How will you calculate reaction enthalpy from data on bond enthalpies?

- Watch Video Solution

77. State Hess's law of constant heat summation. Illustrate with an example state its application.

- Watch Video Solution

78. What are spontaneous process. Give its example and important features.

- Watch Video Solution

79. Energy is not only the criterion for spontaneity of reaction

Explain.
80. What is entropy. Give its unit.

- Watch Video Solution

81. Explain how entropy changes in the following processes.

Freezing of liquid

D Watch Video Solution

82. Explain how entropy changes in the following processes. sublimation of solid
83. Explain how entropy changes in the following processes. dissolving of sugar in water

- Watch Video Solution

84. Explain how entropy changes in the following processes.condensation of vapour

- Watch Video Solution

85. Explain what happens to entropy changes in: Dissolution of solid I_{2} in water.

- Watch Video Solution

86. Explain what happens to entropy changes in: Dissociation of H 2 molecule into atoms

- Watch Video Solution

87. Give reasons: The dissolution of ammonium chloridein water is endothermic still it dissolves in water.

- Watch Video Solution

88. Give reasons: A real crystal has more entropy than an ideal crystal.

- Watch Video Solution

89. Explain the relationship between entropy and heat transfer at given temperature.

- Watch Video Solution

90. Write a note on Quantitative aspect of entropy.

D Watch Video Solution

91. Explain Entropy and spontaneity of the process, with examples.

- Watch Video Solution

92. State second law of thermodynamics in the term of entropy.

(D) Watch Video Solution

93. If the entropy change of a reaction is ΔS. How will you calculate entropy of its surroundings ?

- Watch Video Solution

94. State whether ΔS is positive, negative or zero for the reaction $2 H_{g} \rightarrow H_{2(g)}$. explain.

- Watch Video Solution

95. What are the conditions for spontaneity with respect to total entropy.
96. Define Gibb's energy and change in Gibb's energy

- Watch Video Solution

97. Obtain the relation between ΔG and $\Delta S_{\rightarrow t a l}$ Comment on

Spontaneity of the reaction

(D) Watch Video Solution

98. Obtain temperature condition for equilibrium.

D Watch Video Solution

99. Obtain the relationship between $\operatorname{Delat} G^{\circ}$ of a reaction and equilibrium constant.

- Watch Video Solution

100. Three moles of an ideal gas are expanded isothermally from $15 \mathrm{dm}^{3}$ to $20 \mathrm{dm}^{3}$ at constant pressure of 1.2 bar . Estimate the amt of work in $d m^{3}$ bar J.

- Watch Video Solution

101. Calculate the constant external pressure required to compress 2 moles of an ideal gas from volume of $25 d \mathrm{~m}^{3} \rightarrow 13 \mathrm{dm}^{3}$ when the work obtained is 4862.4 J .
102. One mole of an ideal gas is compressed from 500 cm 3 against a constant external pressure of $1.2 \times 10^{5} \mathrm{~Pa}$ The work involved in the process is 36.0 J . Calculate the final volume.

- Watch Video Solution

103. Three moles of an ideal gas are expanded isothermally from a volume of $300 \mathrm{~cm}^{3}$ to 2.5 L at 300 K against a pressure of 1.9 atm. Calculate the work done in L atm and joules

- Watch Video Solution

104. Calculate the work done when 5 moles of an W, ideal gas
expanded from $1 m^{3} \rightarrow 10 m^{3}$ against a constant external
pressure of $2.026 \times 10^{2} \mathrm{Nm}^{-2}$.

- Watch Video Solution

105. 6 moles of ideal gas are expanded isothermally and reversibly from $20 \mathrm{~m}^{3}$ to $40 \mathrm{~m}^{3}$ at 300 k . Calculate work done $\left(R=8.314 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}\right)$.

- Watch Video Solution

106. 2 moles of an ideal gas are expanded isothermally and reversibly from 20 L to 30 L at 300K. Calculate the work done $\left(R=8.314 J K^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

107. 22 g of CO_{2} are compressed isothermally and reversibly at 298 K frominitial pressure of 100 Kpa when the work obtained is 1.2 KJ. Find the final pressure.

D Watch Video Solution

108. 300 m mol of an ideal gas occupies $13.7 d \mathrm{~m}^{3}$ at 300 K .

Calculate the work done when the gas is expanded until its volume has increased by $2.3 d m^{3}$ (a) isothermally against a constant external pressure of 0.3 bar (b) isothermally and reversibly (c) into vaccum.

- Watch Video Solution

109. Three moles of an ideal gas are compressed isothermally and reversibly to a volume of 2 L . The work done is 2.983 kj at $22^{\circ} \mathrm{C}$. Calculate the initial volume of the gas

D Watch Video Solution

110. $2.8 \times 10^{-2} \mathrm{~kg}$ of nitrogen is expanded isothermally and reversibly at 300 K from $15.15 \times 10^{5} N M^{-2}$ when the work done is found to be -17.33 KJ Find the final pressure.

D Watch Video Solution

111. Calculate the maximum work when 24 g of O_{2} are expanded isothermally and reversibly from the pressure of 1.6 bar to1bar at 298 K .

Watch Video Solution

112. Calculate the work done in the decomposition of 132 g of $\mathrm{NH}_{4} \mathrm{NO}_{3} \mathrm{at} 100^{\circ} \mathrm{CNH}_{4} \mathrm{NO}_{3(s)} \rightarrow \mathrm{N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O} \quad$ State whether work is done on the system or by the system.

- Watch Video Solution

113. Calculate the work done during synthesis of NH_{3} in which volume changes from $8 d m^{3}$ to $4 d m^{3}$ at a Constant external pressure of 43 bar. In what direction the work energy flows?
114. Calculate the amount of work done in the: oxidation of1mole $\mathrm{HCl}(g) a t 200^{\circ} \mathrm{C}$ according to reaction $4 \mathrm{HCl}(g)+\mathrm{O}_{2} \rightarrow 2 \mathrm{Cl}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$.

D Watch Video Solution

115. Calculate the amount of work done in the :decomposition of 1mole of $\operatorname{NOat} 300^{\circ} \mathrm{C}$ for the reaction
$2 \mathrm{NO}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)$

D Watch Video Solution

116. Calculate the work done and comment on whether work is done on or by the system for the decomposition of 2 moles of $\mathrm{NH}_{4} \mathrm{NO}_{3} \mathrm{at} 100^{\circ} \mathrm{C} \mathrm{NH}_{4} \mathrm{NO}_{3}(s) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
117. Calculate standard enthalpy of reaction $2 \mathrm{C}_{2} \mathrm{H}_{6 l \mathrm{~g}}+7 \mathrm{O}_{2 \mathrm{gg}} \rightarrow 4 \mathrm{CO}_{2 \mathrm{Lg}}+6 \mathrm{H}_{2} \mathrm{O}_{6}$ Given that $\Delta_{1} \mathrm{H}^{\circ}\left(\mathrm{CO}_{2}\right)=-393.5 \mathrm{k} / / \mathrm{mol}$ $\Delta_{1} \mathrm{H}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right) \quad=\quad-285.8 \mathrm{~kJ} / \mathrm{mol}$ $\Delta_{f} H^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right) \quad=-84.9 \mathrm{~kJ} / \mathrm{mol}(2$

- Watch Video Solution

118. Estimate the std enthalpy of combustion of $\mathrm{CH}_{4(\mathrm{~g})}$. If Delat $_{t} H^{\circ}\left(C H_{4}\right)=-78.4 k \frac{j}{m}$ ol $\Delta_{t} H^{\circ}\left(C O_{2}\right)=-393.5 \mathrm{kj} / \mathrm{mol}$ $\& \Delta \Delta_{t} H^{\circ}\left(H_{2} O\right)=-285.8 \mathrm{~kJ} / \mathrm{mol}$
119. ΔH for the reaction, $2 \mathrm{C}(s)+3 \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{2} H_{6}(g)$ is -84.4 kJ at $25^{\circ} C$. Calculate $\Delta \mathrm{U}$ for the reaction at $25^{\circ} C .(\mathrm{R}=$ 8.314 $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)

(D) Watch Video Solution

120. Calculate the work done in oxidation of 4 m moles of SO_{2}
at $\quad 25^{\circ} \mathrm{C} \quad$ if $\quad 2 \mathrm{SO}_{2}(g)+02(g) \rightarrow 2 \mathrm{SO}_{2}(g) \quad \mathrm{R} \quad=$ $8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ State whether work is done on the system or by the system.

- Watch Video Solution

121. In a particular reaction 2 kJ of heat is released by the system and 6 kJ of work is done on the system. Determine ΔH and $\Delta U ?$

Watch Video Solution

122. Calculate ΔU at 298 k for the reaction
$C_{2} H_{4}(g)+\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{C} 2 \mathrm{H} 5 \mathrm{Cl}(\mathrm{g})$ DeltaH $=-72.3 \mathrm{~kJ}$ How much PV work is done.

- Watch Video Solution

123. The enthalpy changes for the reaction $C_{2} H_{4}(g)+H_{2}(g) \rightarrow C_{2} H_{6}(g)$ is -620J When 100 ml of ethylene and 100 ml of H_{2} reacts at 1 bar pressure. Calculate the pressure volume type of work and ΔU for the reaction

- Watch Video Solution

124. Two moles of ideal g'as are expanded isothennally from a volume of 20.5 L to the volume of 25.5 L against a constant external pressure of 1atm. Calculate amount of work in L.atm and J (1L.atm =101.3J)

- Watch Video Solution

125. Calculate the constant external pressure required to compress one mole of an ideal gas from a volume of 20 L to 8 L when the Work obtained is 44.9 L atm.

- Watch Video Solution

126. $4.4 \times 10^{-2} \mathrm{~kg}$ of CO_{2} are compressed isothennally and reversibly at 293K from the initial pressure of 150 kPa when the
work obtained is 1.245 kJ . Find the final pressure. $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.

- Watch Video Solution

127. $8.8 \times 10^{-3} \mathrm{~kg}$ of $C O_{2}$ at 300 K are isothermally and reversibly compressed till the pressure is doubled. Calculate the maximum work assuming ideal behaviours for $\mathrm{CO}_{2} .(\mathrm{R}=8.314$
$\mathrm{J} / \mathrm{K} / \mathrm{mole}, \mathrm{C}=12,0=16$)

- Watch Video Solution

128. Three moles of an ideal gas are expanded isothermally
from a volume of $300 \mathrm{~cm}^{3}$ to 2.5 L at 300 K against a pressure of
1.9 atm. Calculate the work done in L atm and joules
129. Three moles of an ideal gas are compressed isothermally and reversibly to a volume of 2 L . The work done is 2.983 kj at $22^{\circ} \mathrm{C}$. Calculate the initial volume of the gas

- Watch Video Solution

130. A sample of gas absorbs 4000 kj of heat (a) if volume remains constant what is ΔU ? (b) Suppose that in addition to absorption of heat by thesample, the surrounding does 200 kj of work on the sample.What is ΔU ? (c) Suppose that as the original sample absorbs heat, it expands against atmospheric pressure and does 600 kj of work, on its surroundings. What is
131. Oxidation of propane is represented as
$C_{3} H_{8(g)}+5 O_{2(g)} \rightarrow 3 \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2} O_{g} \Delta H^{\circ}=-2043 K J$
How much pressure volume work is done andwhat is the value
ΔU at constant pressure of latm when the volume change is + 22.4 L .

- Watch Video Solution

132. The heat of formation of methane gas at 298 K is -74.894 kj when the measurements are made at constant pressure. What
will be the heat of formation of CH_{4} at the same temperature but at constant volume? $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

133. In a particular reaction the system absorbs 12 kJ of heat and does 3 kJ of work on its surroundings. What are changes in internal energy and enthalpy of system?

D Watch Video Solution

134. In a particular reaction 2 kJ of heat is released from the system and 8 kJ of work is done on the system. What are changes in internal energy and enthalpy of system?

D Watch Video Solution

135. An ideal gas expands from a volume of 5 dm 3 to 15dm3against a constant external pressure of $2.025 \times 10^{5} \mathrm{Nm}^{-2}$. Find ΔH if Δu is 410 J.
136. Calculate the difference in heat of reaction at constant pressure and at constant volume at 300K. $C_{s}+2 \mathrm{H}_{2(g) \rightarrow C H_{4(g)}}$ ($R=8.314) K^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

137. How much heat is evolved when 12 gm of CO reacts with NO2 according to the following reaction, $4 C O_{(g)}+2 \mathrm{NO}_{2(g)} \rightarrow 4 \mathrm{CO}_{2(g)}+N_{2(g)} \Delta H^{\circ}=-1200 k J$
138. $2 \mathrm{SO}_{2}(g)+\mathrm{O} 2(g) \rightarrow 2 \mathrm{SO} 3(\mathrm{~g})$ From this reaction calculate work done due to oxidation of one mole of SO_{2} at $50^{\circ} \mathrm{C}$.

- Watch Video Solution

139. Calculate $\operatorname{Delat} H^{\circ}$ forthe followingreaction at 298 K

$$
\mathrm{H}_{2} \mathrm{~B}_{4} \mathrm{O}_{7(s)}+\mathrm{H}_{2} \mathrm{O}_{i} \rightarrow \mathrm{HBO}_{2 a q}
$$

- Watch Video Solution

140. Calculate the total heat required (a) to melt 180 g to ice at $O^{\circ} C$ (b) heat it to $100^{\circ} C$ and then (c) vaporise it at that temperature. Given $\Delta_{f u s} \mathrm{H}^{\wedge} @(d)=6.01$ kjmolatO^@C Delta
vapH_H2O) $=40.7 \mathrm{kjmolat} 100^{\wedge} O^{\circ} \mathrm{C}^{(} @ C^{\prime}$ Specific heat of water

- Watch Video Solution

141. Calculate standard enthalpy of the reaction
$\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{CO} \mathrm{(g)}^{2 F e_{(s)}+3 \mathrm{CO}_{2(\mathrm{~g})} \text { omthe follow } \in \text { gdate }, ~}$ DeltafH^@ (Fe_2O_3) =-824.2 kj mol^(-1), DeltafH^@ (Fe_2O_3)=
$-110.5 \mathrm{kj} \mathrm{mol}^{\wedge}(-1)$ DeltafH$^{\wedge} @(C O 2)=-393.5 \mathrm{~kJ} \mathrm{~mol}{ }^{\wedge}(-1)^{\wedge}$

- Watch Video Solution

142. Calculate $\mathrm{C}-\mathrm{Cl}$ bond enthalpy from following data:

$$
\mathrm{CH}_{3} \mathrm{CI}(g)+\mathrm{CI}_{2}(g) \rightarrow \mathrm{CH}_{2} C I_{2}(g)+H C I(g) \Delta H^{\circ}=-104 k j
$$

Bond	$\mathrm{C}-\mathrm{H}$	$\mathrm{Cl}-\mathrm{Cl}$	$\mathrm{H}-\mathrm{Cl}$
$\Delta \mathrm{H}^{\circ} / \mathrm{kmmol}$	414	243	431

(Watch Video Solution

143. 6.24 g of ethanol are vapourized by supplying 5.89 kj of heat energy. What is enthalpy of vapourization of ethanol?

- Watch Video Solution

144. State whether following ,reactions are spontaneous or not. Further State whether they are exothermic or endothermic.
$\Delta H=-110 k J$ and $\Delta S=+40 J K^{-1} a t 400 K$

- Watch Video Solution

145. State whether following ,reactions are spontaneous or not.

Further State whether they are exothermic or endothermic.
$\Delta H=-50 \mathrm{~kJ}$ and $\Delta S=+130 J K^{-1} a t 250 K$

- Watch Video Solution

146. For a certain reaction, $\Delta H^{\circ}=-224 \mathrm{kj}$ and $\Delta S^{\circ}=-153 \mathrm{JK}^{-1}$. At what temperature the change over from spontaneous to non-spontaneous will occur?

(Watch Video Solution

147.

For
the
reaction,
$C_{2} H_{4}(g)+H_{2}(g) \rightarrow C_{2} H_{6}(g), K_{p}=3.356 \times 10^{17}$
Calculate
$\Delta \mathrm{G}^{\circ}$ for the reaction at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

148. Calculate AStotal and state whether the reaction is spontaneous or non-spontaneous at $25^{\circ} \mathrm{C}$. $H g S(s)+O_{2}(g) \rightarrow H g(I)+S O_{2}(g) \Delta H^{\circ}=-238.6 \mathrm{kj}, \Delta S^{\circ}=$ $+36.7 \mathrm{~J} \mathrm{~K}^{\wedge}(-1)^{\prime}$.

- Watch Video Solution

149. Although ΔS for the formation of two moles of water from H_{2} and O_{2} is $=-327 \mathrm{JK}-1$ it is spontaneous.Explain (Given $\Delta H f$ or thereactionis $-572 K J)$

- Watch Video Solution

150. For a certain reaction, $\Delta H^{\circ}=-219 \mathrm{~kJ}$ and $\Delta S^{\circ}=-21 J K^{-1}$

Determine whether the reaction is spontaneous or
nonspontaneous.

(D) Watch Video Solution

151. Determine $\Delta S_{\text {Total }}$ and decide whether the following reaction is spontaneous at
$298 \mathrm{~K} . \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}_{s}+3 \mathrm{CO}_{2(\mathrm{~g})}$
$\Delta H^{\circ}=-24.8 k j, \Delta S^{\circ}=+15 J K^{-1}$

- Watch Video Solution

152. Calculate ΔG for the reaction at $25^{\circ} C$
$\mathrm{CO}_{(g)}+2 \mathrm{H}_{2(g)} \leftrightarrow \mathrm{CH}_{3} \mathrm{OH}_{(g)} \Delta G^{\circ}=-24.8 \mathrm{kjmol}^{-1} \quad$ if
$P_{C O}=4 a t m, P_{H_{2}}=2 \mathrm{~atm}, P_{\mathrm{CH}_{3} \mathrm{OH}}=2 \mathrm{~atm}$,
153. For a water gas reaction
$C(s)+H_{2} O(g) \leftrightarrow C O(g)+H_{2}(g) a t 1000^{\circ} C$, the standard Gibb's energy change is $-8.1 \mathrm{KJmol}^{-1}$. Calculate the value of equilibrium constant.

- Watch Video Solution

154. K_{p} for the reaction, $\mathrm{MgCO}_{3(s)} \rightarrow \mathrm{MgO}_{(s)}+\mathrm{CO}_{2(g)}$ is 9×10^{-10}. Calculate ΔG° for the reactionat $25^{\circ} C$.

D Watch Video Solution

155. At $60^{\circ} \mathrm{C}$, dinitrogen tetraoxide is fifty percent dissociated.

Calculate the standard free energy change at this temperature and at one atmosphere.
156. Calculate $\Delta S_{\text {sun }}$. when one mole of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is formed from its elements under standard conditions if $\Delta_{t} H^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=-238.9 \mathrm{kjmol}(-1)$.

(Watch Video Solution

157. For a certain reaction, $\Delta H^{\circ}=-224 k J$ and $\Delta S^{\circ}=-153 J K^{-1}$. At what temperature will it change from spontaneous to non-spontaneous?

Watch Video Solution

158. Determine whether the following reaction will be spontaneous or non-spontaneous under standard conditions.
'Zn_((s)) + Cu^2+_((aq)) rarr Zn^2+_((aq)) + Cu_((s)) DeltaH^@ = 219 kj, DeltaS^@ =- 21 JK^(-1).

- Watch Video Solution

159. One mole of an ideal gas is compressed from 500 cm 3 against a constant external pressure of $1.2 \times 10^{5} \mathrm{~Pa}$ The work involved in the process is 36.0 J . Calculate the final volume.

- Watch Video Solution

160. Calculate the maximum work when 24 g of O_{2} are expanded isothermally and reversibly from the pressure of 1.6
bar to1bar at 298 K.

D Watch Video Solution

161. Three moles of an ideal gas are compressed isothermally and reversibly to a volume of 2 L . The work done is 2.983 kj at
$22^{\circ} \mathrm{C}$. Calculate the initial volume of the gas

- Watch Video Solution

162. $2.8 \times 10^{-2} \mathrm{~kg}$ of nitrogen is expanded isothermally and reversibly at 300 K from $15.15 \times 10^{5} N M^{-2}$ when the work done is found to be -17.33 KJ Find the final pressure.
163. Calculate the work done in lit-atm, joule, erg, calorie, when an ideal gas expands from 5 L to 10 L against a constant pressure of 304 cm of Hg .

D Watch Video Solution

164. A chemical reaction takes place in a container of cross sectional area $100 \mathrm{~cm}^{2}$. the container has a loosely fitted piston one end. As a result of the reaction, a piston is pushed out through 10 cm against an external pressure of 1.0 atm.

Calculate the work done by the system.

- Watch Video Solution

165. A certain amount of gas is compressed from 101.325 kPa to 1013.25 kPa at 300 K and heat given out is 5.15 kJ . Calculate the number of moles.

- Watch Video Solution

166. 0.28 mmol of a perfect gas occupies12.7L at 310 K after that volume increase by 3.3 L Calculate the work done when the gas
expands (i) isothermally against a constant external pressure of 0.25 atm

- Watch Video Solution

167. 0.28 mmol of a perfect gas occupies 12.7 L at 310 K . after that volume increase by 3.3L. Calculate the work done when the gas
expands. isothermally and reversibly

- Watch Video Solution

168. 0.28 mmol of a perfect gas occupies12.7L at 310 K . Calculate the work done when the gas expands. into vacuum, until its volume has increased by 3.3 L .

- Watch Video Solution

169. Calculate the work done in the following reaction when 2 moles of HCl are used at constant pressure and 432 K . $4 \mathrm{HCI}_{(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{CI}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}((g))$ State whether work is done on the system or by the system
170. Calculate and find volume in m 3 if the work done is 1.515
kjduring isothermal expansion of $15.5 \times 10^{-3} m^{3}$ of an ideal gas against a pressure of $2.02 \times 105 \mathrm{Nm}^{-2}(\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} / \mathrm{K})$

(D) Watch Video Solution

171. A sample of gas absorbs 4000 kJ of heat. If volume remains constant, what is ΔU ?

- Watch Video Solution

172. A sample of gas absorbs 4000 kJ of heat. Suppose that in addition to absorption of heat by the sample, the surroundings, does 2000 J of work on the sample, what is ΔU ?
173. A sample of gas absorbs 4000 kj of heat (a) if volume remains constant what is ΔU ? (b) Suppose that in addition to absorption of heat by thesample, the surrounding does 200 kj of work on the sample.What is ΔU ? (c) Suppose that as the original sample absorbs heat, it expands against atmospheric pressure and does 600 kj of work, on its surroundings. What is $\Delta U ?$

(Watch Video Solution

174. 38.55 kjof heat is absorbed when 6.0 g of 02 react with C1F $\begin{array}{lll}\text { according } & \text { to } & \text { the } \\ 2 C I F_{g}+O_{2(g)} \rightarrow C I_{2} O_{g}+O F_{2(g)}\end{array}$ What is the standard enthalpy of the reaction?
175.

$\mathrm{CH}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Delta \mathrm{H}=-527 \mathrm{~kJ}$
How much heat will be evolved in the formation of 30 g of CO_{2}
?

- Watch Video Solution

176. The heat of the reaction,
$\mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+3.5 \mathrm{O} 2_{(g)} \rightarrow 2 \mathrm{CO}_{2(g)}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} i s-1560.63 \mathrm{~kJ}$ at 298 K .Calculate the heat of the reaction at constant volume and at $298 \mathrm{~K} .\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

177. Calculate heat of formation of carbon dioxide at constant volume at 300 K. Given that: $C(s)+O 2(g) \rightarrow \mathrm{CO}_{2}(g) \Delta H=-393 k J$

- Watch Video Solution

178. Calculate heat of formation of water at constant volume at 300 K.

Given that:
$H_{2(g)}+\frac{1}{2} O_{2(g)} \rightarrow H_{2} O_{l} \Delta H=-284.2 k J$

- Watch Video Solution

179. Calculate heat of formation of ethanol at constant volume
at 300
K.
Given
that:
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O} 2(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{l} \Delta H=-1362.7 \mathrm{~kJ}$
180. Calculate the enthalpy of hydrogenation of C 2 H 4 , $C_{2} H_{4(g)}+H_{2(g)} \rightarrow C 2 H_{6(g)}$ Given bond enthalpies of $\mathrm{H}-\mathrm{H}$, $\mathrm{C}=\mathrm{C}, \mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{H}$ bonds as $433,615,347$ and $413 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

- Watch Video Solution

181. Estimate the standard enthalpy of combustion of acetylene from the following data: $\Delta_{f} H^{\circ}\left(C O_{2}\right)=-393.5 \mathrm{kjmol}^{-1}$
$\Delta_{f} H^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)=-285.8 \mathrm{kjmol}^{-1}$
$\Delta_{f} H^{\circ}\left(C_{2} H_{2}\right)=+227.3 \mathrm{kjmol}^{-1}$

- Watch Video Solution

182. The enthalpy changes for the reaction
$C_{2} H_{4}(g)+H_{2}(g) \rightarrow C_{2} H_{6}(g)$ is -620J When 100 ml of ethylene and 100 ml of H_{2} reacts at 1 bar pressure. Calculate the pressure volume type of work and ΔU for the reaction

- Watch Video Solution

183. The heat evolved in a reaction of 7.5 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ with enough CO is 1.164 kj . Calculate ΔH° for the reaction. (At wt. of
$\mathrm{Fe}=56) \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO}_{(g)} \rightarrow 2 \mathrm{Fe}_{(s)}+3 \mathrm{CO}_{2(g)}$

- Watch Video Solution

184. The standard enthalpy change for the reaction

$$
H_{2(g)} \rightarrow H_{(g)}+H_{(g)} i s+436.4 k j \mathrm{~mol}^{\wedge}(-1)^{\wedge} . \quad \text { Calculate }
$$

standard enthalpy of formation of atomic hydrogen.

D Watch Video Solution

185. For a certain reaction $\Delta H=-25 k J$ and
$\Delta S=-40 \mathrm{JK}^{-1}$. At what temperature will it change from
spontaneous to non-spontaneous reaction?

- Watch Video Solution

186. Calculate Kp for the reaction,
$\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}$
$\Delta G^{\circ}=-100 k j m o^{1-1}$ at $25^{\circ} C$.

- Watch Video Solution

187. Calculate AStotal and state whether the reaction is spontaneous or non-spontaneous at $25^{\circ} C$.
$H g S(s)+\mathrm{O}_{2}(g) \rightarrow H g(I)+S O_{2}(g) \Delta H^{\circ}=-238.6 \mathrm{kj}, \Delta S^{\circ}=$ $+36.7 \mathrm{~J} \mathrm{~K}^{\wedge}(-1)^{\prime}$.

- Watch Video Solution

188. For melting of ice at $25^{\circ} C$ the enthalpy of fusion is $6.97 \mathrm{kjmol}^{-1}$ and entropy of fusion is $25.4 \mathrm{JK}-1 \mathrm{~mol}^{-1}$.

Calculate free energy change and predict whether melting of ice is spontaneous or not at this temperature.

- Watch Video Solution

189. Calculate the standard entropy change for a reaction $X \rightarrow Y$ if the value of $\Delta H^{\circ}=+28.40 \mathrm{~kJ}$ and equilibrium constant is $1.8 \times 10-7$ at 298 K .

D Watch Video Solution

190. Calculate the standard entropy change for a reaction $X \rightarrow Y$ if the value of $\Delta H^{\circ}=+28.40 \mathrm{~kJ}$ and equilibrium constant is $1.8 \times 10-7$ at 298 K .

D Watch Video Solution

191. Determine whether the reactions with the following AH and

AS values are spontaneous or non-spontaneous. State whether
they are exothermic or endothermic: DeltaH $=-40 \mathrm{kj}$ and DeltaS
$=+135 \mathrm{JK}-1$ at $300 \mathrm{KDeltaH}=-60 \mathrm{kj}$ and DeltaS $=-160 \mathrm{JK}-1$ at 400 K

(D) Watch Video Solution

192. K_{p} for the reaction. $2 \mathrm{SO}_{2(g)} \mathrm{O2}_{(\mathrm{g})} \rightarrow 2 \mathrm{SO}_{3(\mathrm{~g})} i s 7.1 \mathrm{x}$ $10^{\wedge}(24)$ at $298 K$. Calculate $\Delta G^{\circ} f$ or thereaction. $\mathrm{R}=8.314 \mathrm{~J}$ $K^{\wedge}(-1) \mathrm{mol}^{\wedge}(-1)^{\wedge}$.

(D) Watch Video Solution

193. Calculate AStotal and state whether the reaction is spontaneous or non-spontaneous at $25^{\circ} C$. $H g S(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{Hg}(\mathrm{I})+S \mathrm{O}_{2}(g) \Delta H^{\circ}=-238.6 \mathrm{kj}, \Delta S^{\circ}=$ $+36.7 \mathrm{~J}^{\wedge}(-1)^{\prime}$.
194. In a process 701J of heat is absorbed by a system \& 394J of work is done by the system What is the change in internal energy for the process

- Watch Video Solution

195. The reaction of Cyanamide $\mathrm{NH}_{2} \mathrm{CN}_{(s)}$ with dioxygen carried out in a bomb calorimeter and AU was found to be-741.7
$\mathrm{KJ} / \mathrm{mol}$ at 298 K . Calculates the enthalpy change for the reaction at 298 K .

- Watch Video Solution

196. Enthalpies of formation of
$\mathrm{CO}_{(g)}, \mathrm{CO}_{(\mathrm{g})} \mathrm{N}_{2} \mathrm{O}_{(\mathrm{g})} 4 \mathrm{~N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ are -110, -393.81\& 9.7 KJ mol'1 respectively find the value of H for the reaction.
$\mathrm{N}_{2} \mathrm{O}_{4}+3 \mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{N}_{2} \mathrm{O}_{(\mathrm{g})}+3 \mathrm{CO}_{2}$,

- Watch Video Solution

197. The equilibrium constant for a reaction is 10 . What will be the value of $\Delta G^{\circ} R=8.314 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$ at $\mathrm{T}=300 \mathrm{~K}$

- Watch Video Solution

198. 300 mol of perfect gas occupies 13L at 320k Calculate the work done-in Joules when the gas expands by volume of 3L
more : Isothermally against a constant external pressure of 0.2 atm.

- Watch Video Solution

199. 300 m mol of an ideal gas occupies $13.7 d m^{3}$ at $300 K$.

Calculate the work done when the gas is expanded until its volume has increased by $2.3 d m^{3}$ (a) isothermally against a constant external pressure of 0.3 bar (b) isothermally and reversibly (c) into vaccum.

- Watch Video Solution

200. 300 m mol of an ideal gas occupies $13.7 d \mathrm{~m}^{3}$ at 300 K .

Calculate the work done when the gas is expanded until its volume has increased by $2.3 d m^{3}$ (a) isothermally against a
constant external pressure of 0.3 bar (b) isothermally and reversibly (c) into vaccum.

- Watch Video Solution

201. What is the value of ASsurr for following reaction at 298 k ?
$6 \mathrm{Co}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(i)} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}-((s))+6 \mathrm{O}_{2(g)} \quad$ given that, $\Delta G^{\circ}=2879 \mathrm{kjmol}^{-1} \Delta S=-210 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

202. One mole of a gas expands by 3L against a constant pressure of 3 atmosphere work done in \qquad L-atmosphere
203. One mole of a gas expands by 3L against a constant pressure of 3 atmosphere. calculate work done in Joules

(D) Watch Video Solution

204. One mole of a gas expands by 3 L against a constant pressure of 3 atmosphere work done in calories

(D) Watch Video Solution

205. Determine whether reactions With following ΔH and ΔS
values are spontaneous or non spontaneous. State whether they are exothermic or endothermic.
$\Delta H=-110 k j$ and $\Delta S=+40 J K-l m o l-1 a t 400 K$
206. Determine whether reactions With following ΔH and ΔS values are spontaneous or non spontaneous. State whether they are exothermic or endothermic.
$\Delta H=+40 \mathrm{kj}$ and $\Delta S=-120 \mathrm{JK}-1 \mathrm{~mol}-1 \mathrm{at} 250 \mathrm{~K}$

- Watch Video Solution

207. Calculate $\mathrm{C}-\mathrm{Cl}$ bond enthalpy from following data: $\mathrm{CH}_{3} \mathrm{CI}(g)+\mathrm{CI}_{2}(g) \rightarrow \mathrm{CH}_{2} C I_{2}(g)+\mathrm{HCI}(g) \Delta H^{\circ}=-104 k j$

D Watch Video Solution
208. Calculate ΔH° for the reaction between ethene and water to form ethyl alcohol from the following data $\Delta H^{\circ} C_{2} H_{2} O H_{(g)}-1368 k J$
$\Delta_{c} H^{\circ} C_{2} H_{2} O H 4((g))-1410 k J$ Does the calculated ΔH° represent the enthalpy of formation of liquid ethanol.

- Watch Video Solution

209. 5 moles of helium expand isothermally and reversibly form a pressure $40 \times 10-5 \mathrm{Nm}^{-2} \rightarrow 4 \times 10^{-5} a t 300 K$ Calculate the work done, change in internal energy and heat absorbed during the expansion. $\left(R-8.314 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

1. The correct thermodynamic conditions for the spontaneous reaction at all temperatures are
A. $\Delta H<0$ and $\Delta S>0$
B. $\Delta H>0$ and $\Delta S<0$
C. $\Delta H<0$ and $\Delta S<0$
D. $\Delta H<0$ and $\Delta S=0$

Answer:

(D) Watch Video Solution

2. A gas is allowed to expand in a well insulated container against a constant extremal pressure of 2.5 bar from an initial
volume of 2.5 L to a final volume of 4.5L.The change in internal energy. ΔU of the gas will be
A. -505 J
B. $+505 J$
C. $-1013 J$
D. 1013 J

Answer:

(D) Watch Video Solution

3. In which of the following entropy of the system decreases?
A. Crystallization of liquid in to solid
B. Temperature of crystalline solid in increased from 0 K to 115 K
C. $H_{2(g)} \rightarrow 2 H_{(g)}$
D. $2 \mathrm{NaHCO}_{3}(s) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$

Answer:

Watch Video Solution

4. The enthalpy of formation for all elements in their standard state is
A. unit
B. Zero
C. less than zero
D. different elements

Answer:

- Watch Video Solution

5. Which of the following reaction is exothermic?
A. $H_{2}(g) \rightarrow 2 H(g)$
B. $C(s) \rightarrow C(g)$
C. $2 C I(g) \rightarrow C I_{2}(g)$
D. $\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)}$

Answer:

6. 6.24 g of ethanol are vaporized by supplying 5.89 kJ of heat.Enthalpy of vaporization of ethanol will be
A. $43.4 \mathrm{kJol}^{-1}$
B. $60.2 \mathrm{k} \mathrm{Jmol}^{-1}$
C. $38.9 \mathrm{kJmol}^{-1}$
D. $204 \mathrm{kJmol}^{-1}$

Answer:

- Watch Video Solution

7. If the standard enthalpy of formation of methanol is $-238.9 \mathrm{kJmol}^{-1}$ then entropy change of the surroundings will be.
A. $-801.7 \mathrm{JK}^{-1}$
B. 801.7 JK^{-1}
C. $0.8017 J K^{-1}$
D. $-0.8017 J K^{-1}$

Answer:

- Watch Video Solution

8. For vaporization of water at $1 \mathrm{bar}, \Delta H=40.63 \mathrm{kJmol}^{-1}$ and
$\Delta S=108.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ At what temperature, $\Delta G=0$?
A. 273.4 K
B. 393.4 K
C. 373.4 K

Answer:

- Watch Video Solution

9. Bond enthalpies of $\mathrm{H}-\mathrm{H}, \mathrm{Cl}-\mathrm{Cl}$ and $\mathrm{H}-\mathrm{Cl}$ bonds are $434 \mathrm{kjmol}^{-1}$, $242 \mathrm{kjmol}^{-1}$ and $431 \mathrm{kjmol}^{-1}$, respectively. Enthalpy of formation of HCl is
A. A. $245 \mathrm{kJmol}^{-1}$
B. B. $-93 \mathrm{kJmol}^{-1}$
C. C. $-245 \mathrm{kJmol}^{-1}$
D. D. $93 \mathrm{kJmol}^{-1}$

Answer:

10. Which of the following is not a state function?
A. q_{p}
B. q
C. enthalpy
D. entropy

Answer:

D Watch Video Solution

11. Which of the following is not an extensive property?
A. molarity
B. heat capacity
C. mass
D. volume

Answer:

- Watch Video Solution

12. An endothermic reaction is one in which heat content of
A. products is more than that of reactants
B. reactants is more products in same
C. reactants and products is same
D. none of these

Answer:

(D) Watch Video Solution

13. In a chemical reaction, work is done by the system when
A. number of molesof gaseous reactantsisequal to the number of moles of gaseous products
B. total number of moles increases
C. number of moles of gaseous substances decreases
D. number of moles of gaseous product is greater than the number of moles of gaseous reactants.

Answer:

- Watch Video Solution

14. Which of the following is an intensive property?
A. enthalpy
B. Mass
C. Temperature
D. volume

Answer:

D Watch Video Solution

15. When a sample of an ideal gas is allowed to expand at constant temperature against an atmospheric pressure,
A. surroundings do work on the system
B. $\Delta U=0$
C. no heat exchange takes place between the system and surroundigs
D. internal energy of the system work is done

Answer:

- Watch Video Solution

16. A gas of 0.320 kJ works on its surroundings and absorbs 120
J of heat from the surroundings. Hence, ΔU is
A. 440 kJ
B. 200J
C. 120.32J
D. $-200 J$

- Watch Video Solution

17. In the reaction, $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl} \Delta \mathrm{H}=-184 \mathrm{~kJ}$, if 2 moles of H 2 react with 2 moles of $C l_{2}$, then ΔU is equal to
A. $-184 k J$
B. $-368 k J$
C. zero
D. +368 kJ

Answer:

18. The enthalpies of formation of $\mathrm{N}_{2} \mathrm{O}$ and NO at 298 K are 82 and $90 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$. The enthalpy of the reaction :
$2 \mathrm{~N}_{2} \mathrm{O}_{(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightarrow 4 \mathrm{NO}_{(g)}$ is
A. $+8 k j$
B. 88 kJ
C. $-16 k J$
D. 196kJ

Answer:

- Watch Video Solution

19. For which of the following substances $\Delta_{f} H^{\circ}$ is not zero.
A. $\mathrm{Ca}(\mathrm{s})$
B. $\mathrm{He}(\mathrm{g})$
C. P(red)
D. $\mathrm{CH}_{3} \mathrm{OH}_{(i)}$

Answer:

- Watch Video Solution

20. If for a reaction, ΔH is negative and ΔS is positive then the reaction is
A. spontaneous at all temperatures
B. non-spontaneous at all temperatures
C. spontaneous only at high temperature
D. spontaneous only at low temperature

D Watch Video Solution

21. Properties of a system which are proportional to the quantity of matter contained in the system are called
A. thermodynamic variables
B. mass variables
C. extensive properties
D. intensive properties

Answer:

- Watch Video Solution

22. Obtain the relationship between $\operatorname{Delat} G^{\circ}$ of a reaction and equilibrium constant.
A. $-\Delta G^{\circ}=\frac{R T}{\operatorname{InK}}$
B. $\Delta G^{\circ}=\frac{R T}{\operatorname{InK}}$
c. $\frac{R T \operatorname{In} K}{\Delta G^{\circ}}=-1$
D. $\Delta G^{\circ}=R T \operatorname{In} K$

Answer:

- Watch Video Solution

23. ΔH for the reaction $2 \mathrm{H}_{g} \rightarrow H_{2}(g)$ will be
A. zero
B. positive
C. negative
D. infinite

Answer:

D Watch Video Solution

24. For the process, $\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}_{(g)}$ at $100^{\circ} \mathrm{C}, \Delta S$ is
A. positive
B. negative
C. zero
D. unpredictable

Answer:

25. Which represents largest amount of energy?
A. 5 calorie
B. 2 Joule
C. 5erg
D. 5 eV

Answer:

- Watch Video Solution

26. Which of the following process is non-spontaneous?
A. dissolving KCI in water
B. mixing of iodine vapour and nitrogen gas
C. decomposition of NaCl to Na
D. freezing of water at 270 K

Answer:

D Watch Video Solution

27. For which of the following reaction ΔS is negative?
A. $M g_{(s)}+C I_{2(g)} \rightarrow M g C I_{2(s)}$
B. $\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
C. $\mathrm{CaCO}_{3(s)} \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
D. $I_{2(g)} \rightarrow 2 I_{g}$

Answer:

28. A gas expands in volume from 2 L to 5 L against a pressure of1atm at constant temperature. The work done by the gas will be
A. $+3 J$
B. -303.9 J
C. -303.9 L. atm
D. +303.9 L atm

Answer:

29. A thermally isolated gaseous system can exchange energy with the surroundings. The mode of transfer of energy can be
A. heat
B. work
C. heat and radiation
D. none of these

Answer:

- Watch Video Solution

30. Which of the following groups includes two intensive properties and one extensive property of a system?
A. temperature, energy, mass
B. mass, volume, density
C. optical activity, volume, specific heat
D. boiling point volume energy

Answer:

- Watch Video Solution

31. Identify the state function among the following.
A. q
B. $q-w$
C. q / w
D. $q+w$

Answer:

- Watch Video Solution

32. Energy equivalent to one erg, one joule, and one calorie in the increasing order is
A. 1 erg $<1 J<1$ cal
B. $1 e r g<1 c a l<1 J$
C. 1 cal $<1 J<1 e r g$
D. $1 J<1 \mathrm{cal}<1 \mathrm{erg}$

Answer:

- Watch Video Solution

33. During an isothermal expansion of an ideal gas,
A. the internal energy increases
B. the temperature decreases
C. the internal energy remains unchanged
D. the internal energy decreases

Answer:

- Watch Video Solution

34. Which one of the following statements is incorrect?
A. For isothermal process, $\mathrm{dU}=0$
B. For isochoric process, $\mathrm{dT}=0$
C. For adiabatic process, $q=0$
D. For isobaric process, $\mathrm{dP}=0$

- Watch Video Solution

35. The temperature of the system decreases in an
A. isothermal compression
B. isothermal expansion
C. adiabetic compression
D. adiabatic expansion

Answer:

- Watch Video Solution

36. For a cyclic process, which of the following is correct ?
A. Work done is zero
B. change in internal energy is not zero
C. No heat is absorbed or evolved
D. $\Delta U=0$

Answer:

37. A gas absorbs 100 calories of heat energy and is compressed from 10.0 L to 5.0 L by applying an external pressure of 2.0atm. The change in internal energy is
A. 312 cal
B. 342 cal
C. 426 cal

Answer:

D Watch Video Solution

38. Work done in vaporization of 1 mole of water at 373 K against a pressure of 1 atm.is approximately. Assume ideal gas behavior
A. -3100.0 J
B. -31.20 J
C. -20.2 J
D. $+3100 J$

Answer:

39. A gas can expand from 100 mL to 250 mL under a constant pressure of 2 atm. The work done by the gas is
A. 30.38 Joule
B. 25 Joule
C. 5 kJoule
D. 16 Joule

Answer:

- Watch Video Solution

40. $2 \times 10^{-3} \mathrm{~kg}$ of H_{2} and $32 \times 10^{-3} \mathrm{~kg}$ of O_{2} separately expand reversibly from the same initial pressure to same final
pressure at the same constant temperature. The work done by these gases are W_{1} and W_{2} respectively. Then,
A. $W 1>W 2$
B. $W 1<W 2$
C. $W_{1}=W_{2}$
D. $W_{2}=16 W_{1}$

Answer:

(D) Watch Video Solution

41. Two moles of an ideal gas expand spontaneously into a vacuum. The work done is
A. infinity
B. zero
C. 2J
D. 40J

Answer:

- Watch Video Solution

42. When an ideal gas expands in vacuum, no work is done because
A. opposing force is very large
B. driving force is very small
C. gas moecules do not move away from each other
D. Opposing force is almost zero

- Watch Video Solution

43. Which of the following is a non-spontaneous process?
A. Water flowing downhill
B. Expansion of a gas into vacuum
C. Evaporation of water from clothes during drying
D. Heat flowing from colder body to a hotter body

Answer:

- Watch Video Solution

44. Which of the following is not a state function?
A. Internal energy
B. Enthalpy
C. Work
D. Pressure

Answer:

- Watch Video Solution

45. A gas absorbs 250 J of heat and expands from 1 litre to 10
litre at constant temperature against external pressure of 0.5 atm. The values of q, w and ΔU will be respectively
A. $-250 J, 455 J, 710 J$
B. $250 \mathrm{~J},-455 \mathrm{~J},-205 \mathrm{~J}$
C. $-250 J,-455 J,-205 J$
D. $-250 J, 455 J, 205 J$

Answer:

- Watch Video Solution

46. Which of the following is not correct about enthalpy?
A. It is an extensive property
B. It is not a state function
C. Its absolute value cannot be determined
D. Enthalpy of a compound- Enthalpy of formation of that compound.

Answer:

47. If the pressure of asystem isnot fixed, the enthalpy change can be defined as
A. $\Delta H=\Delta U+\Delta(P V)$
B. $\Delta H=\Delta U+P \Delta V$
C. $H=U+P V$
D. $H=U+\Delta(P V)$

Answer:

- Watch Video Solution

48. The difference between heats of reaction at constant pressure and constant volume for the reaction
$2 \mathrm{C}_{6} \mathrm{H}_{6(i)}+15 O_{2(g)} \rightarrow 12 \mathrm{CO}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}((I))$ at $25^{\circ} \mathrm{C}$ in kJ is
A. -7.43
B. +3.72
C. -3.72
D. +7.43

Answer:

- Watch Video Solution

49. During the evaporation of a liquid,
A. the enthalpy decreases
B. the enthalpy increases
C. the enthalpy remains unchanged
D. the internal energy decreases

Answer:

D Watch Video Solution

50. For an endothermic reaction,where ΔH represents the enthalpy of the reaction in $\mathrm{kJ} \mathrm{mol}^{-1}$, the minimum value for the energy of activation will be
A. less than ΔH
B. Zero
C. more than ΔH
D. equal to ΔH

Answer:

D Watch Video Solution

51. You are given the following two reactions :
$\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)} \Delta H=-890.4 k J$, $2 \mathrm{HgO}_{(s)} \rightarrow 2 \mathrm{Hg}_{(l)}+\mathrm{O}_{2(g)} \Delta H=+181.6 k J$ Which one of the following statements is correct?
A. Both reactions are exothermic
B. Both reactions are endothermic
C. Reaction: is endothermic and is exothermic
D. Reaction: is exothermic and is endothermic
52. The activation energy of exothermic reaction is 20 kj . The heat of the same reaction is -50 kj . The activation energy of the reverse reaction in kj would be
A. 30
B. 20
C. 70
D. 50

Answer:

D Watch Video Solution

53. Translational energy is not prossessed by
A. water
B. ice
C. C_{12} gas
D. argon gas

Answer:

Watch Video Solution

54. The internal energy of a system can be changed by
A. heat flow into the system
B. work done by the system
C. work done on the system
D. All of these

- Watch Video Solution

55. The change in the internal energy of a system for 1 mole of a gas is equal to
A. $\mathrm{Cv} / \mathrm{dT}$
B. CvdT
C. Cv / T
D. Cv T

Answer:

- Watch Video Solution

56. The molar heat capacity of water is \qquad if its specific heat capacity is $4.184 J K^{1}$.
A. $4.184 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
B. $75.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
C. $185 \mathrm{Jmol}^{-1} \mathrm{~K}-1$
D. $1 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

Answer:

- Watch Video Solution

57. For two moles of an ideal gas, which of the following is true?
A. $C_{p}-C_{v}=2 R$
B. $C_{v}-C_{p}=2 R$
C. $C_{p}-C_{v}=R$
D. $C_{P}-C_{v}=R / 2$

Answer:

D Watch Video Solution

58. Which of the following is true?
A. $\left(\frac{d q}{d T}\right)_{P}=C_{P}$
B. $\left(\frac{d q}{d T}\right)_{V}=C_{V}$
C. $\frac{d H}{d T}=C_{P}$
D. All of these

Answer:

59. The molar heat capacity of water is \qquad if its specific heat capacity is $4.184 J K^{1}$.
A. an extensive property
B. an intensive property
C. a path function
D. independent of temperature

Answer:

(D) Watch Video Solution

60. Calculate the heat of reaction at 298 K for the reaction $C_{2} H_{4(g)}+H_{2}(g) \rightarrow C_{2} H_{6(g)}$ given the heats of combustion
of ethylene, hydrogen and ehane are 337.0,68.4 and 373.0 kcal respectviely.
A. 23.4 kcal
B. 62.2 kcal
C. 32.4 kcal
D. 34.2 kcal

Answer:

- Watch Video Solution

61. The enthalpies of elements in their standard states are taken as
A. zero at 298 K
B. unity at 298 K
C. zero at 273 K
D. zero at 25 K

Answer:

- Watch Video Solution

62. The standard heat of formation of diamond is
A. same as that of graphite
B. greater than that of graphite
C. less than of graphite
D. taken as zero

- Watch Video Solution

63. Which of the following values of $\Delta_{f} H$ represents the least stable product?
A. $-229.6 k J$
B. $-76 k J$
C. $+12.1 k J$
D. $+102.6 k J$

Answer:

- Watch Video Solution

64. The enthalpies of formation of $\mathrm{N}_{2} \mathrm{O}$ and NO at 298 K are 82 and $90 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$. The enthalpy of the reaction : $2 \mathrm{~N}_{2} \mathrm{O}_{(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightarrow 4 \mathrm{NO}_{(g)}$ is
A. $-8 k J$
B. $+98 k J$
C. $-74 k J$
D. $+196 k J$

Answer:

- Watch Video Solution

65. The latent heat of vaporization of a liquid at 500 K at1atm pressure is $10 \mathrm{kcal} / \mathrm{mol}$. The change in the internal energy of 3
mole of liquid at same temperature will be
A. $-13 k c a l$
B. +13 kcal
C. $+27 k c a l$
D. $-27 k c a l$

Answer:

D Watch Video Solution

66. For a gaseous reaction involving complete combustion of isobutane,
A. $\Delta H=\Delta U$
B. $\Delta H>\Delta U$
C. $\Delta H<\Delta U$
D. $\Delta H=0, \Delta U \neq 0$

Answer:

- Watch Video Solution

67. The difference between ΔH and ΔU for the combustion of methane at $27^{\circ} C$ would be
A. $8.314 \times 300(-3) J$
B. $8.314 \times 27(-3) J$
C. $8.314 \times 300(-2) J$
D. zero
68. Enthalpy of combustion of carbon is -395 kj.The amount of carbon needed to evolve 39.5 kJ is
A. 1 mole
B. 0.5 mol
C. 1.2 g
D. 6 g

Answer:

69. The heats of combustion of hydrogen, carbon monoxide and methane are $-285,-284$ and $-890 \mathrm{kjmol}^{-1}$. The calorific value is maximum for
A. H_{2}
B. $C O$
C. CH_{4}
D. Cannot be predicated as information is incompete

Answer:

- Watch Video Solution

70. The decreasing order of calorific values is
A. $C_{2} H_{2}>C_{4} H_{10}>C_{3} H_{8}>C_{2} H_{4}$
B. $C_{4} H_{10}>C_{3} H_{8}>C_{2} H_{4}>C_{2} H_{2}$
C. $C_{2} H_{4}>C_{3} H_{8}>C_{4} H_{10}>C_{2} H_{2}$
D. $C_{3} H_{8}>C_{2} H_{4}>C_{4} H_{10}>C_{2} H_{2}$

Answer:

- Watch Video Solution

71. The heat evolved in the combustion of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is given by the equation $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})} \rightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+6 \mathrm{H}_{2} \mathrm{O}_{(i)}$, $\Delta H=-680 k c a l$ The weight of $C O_{2(g)}$ produced when 170 kcal of heat is evolved in the combustion of glucose is.
A. 264 g
B. 66 g
C. 11 g
D. 44 g

Answer:

D Watch Video Solution

72. A person requires $A \mathrm{~kJ}$ of energy daily. If the heat of combustion of cane sugar is -BkJ , then his daily consumption of sugar would be
A. $\frac{A}{B} g$
B. $342 \frac{A}{B} g$
C. $342 \frac{B}{A} g$
D. $\frac{B}{A} g$

Answer:

73. A person submits to a diet of 9,500 kj per day and expends energy in all forms to a total of $12,000 \mathrm{kj}$ per day. If the energy lost was stored as sucrose (1632 kj per 100 g), the number of days the man will take to lose 1 kg of sucrose (ignoring water loss) would be
A. 6 days
B. 6.53 days
C. 5 days
D. 4 days

Answer:

74. The bond dissodation energies of gaseous $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 104,58 and 103 kcal respectively.The enthalpy of formation of HCl gas would be
A. A. $-44 k c a l$
B. B. -88 kcal
C. C. $-22 k c a l$
D. D. $-11 k c a l$

Answer:

- Watch Video Solution

75. Given thebond energiesof $\mathrm{N}=\mathrm{N}, \mathrm{H}-\mathrm{H}$, and $\mathrm{N}-\mathrm{H}$ bonds are 945,

436 and $391 \mathrm{kj} \mathrm{mol}^{-1}$ respectively. The enthalpy of the reaction

$$
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightarrow 2 \mathrm{NH}_{3(g)} \text { is }
$$

A. $-93 k J$
B. $102 k J$
C. 90 kJ
D. $105 k J$

Answer:

- Watch Video Solution

76. The bond energy of an O-H bond is $109 \mathrm{kcal}_{\mathrm{kc}} \mathrm{mol}^{-1}$. When a mole of water is formed
A. 218 kcal is released
B. 109 kcal is released
C. 218 kcal is absorbed
D. 109 kcal is absorbed

Answer:

D Watch Video Solution

77. The mutual heat of neutralisation of 40 g NaOH and 60 g $\mathrm{CH}_{3} \mathrm{COOH}$ will be
A. 57.1 kJ
B. less than 57.1 kJ
C. more than 57.1 kJ
D. 13.7 kJ

Answer:

78. When 10 ml NaOH is added to 10 ml HCl ,the temperature rises by $3^{\circ} \mathrm{C}$. If 100 ml each of same solutions are mixed the temperature will rise by
A. A. $30^{\circ} C$
B. B. $3^{\circ} C$
C. C. $0.3^{\circ} \mathrm{C}$
D. D. Can not be predicted

Answer:

- Watch Video Solution

79. The heat of neutralization of a strong acid and a strong base is- 60 kj . The heat released by mixing 0.5 moles of HCl and
0.2 moles of NaOH would be
A. A. -12 kJ
B. B. -60 kJ
C. C. -30 kJ
D. D. -20 kJ

Answer:

- Watch Video Solution

80. The enthalpy of neutralization of NaOH with HCl is-57.32 kJ while with acetic add it is- 55.2 kJ . This difference is because
A. acetic acid is an organic acid
B. acetic acid is little solube in water
C. acetic acid is weak acid and requires lesser amount of NaOh for neutrolization
D. some heat is required to ionise acetic acid completely

Answer:

- Watch Video Solution

81. The work done during the process when 1 mol of gas is allowed to expand into vaccum is
A. $+v e$
B. $-v e$
C. 0
D. 1

- Watch Video Solution

82. Which of the following is an extensive property?
A. Surface tension
B. Refraction index
C. Energy
D. Temperature

Answer:

83. The enthalpy of formation for all elements in their standard state is
A. unity
B. zero
C. Less than zero
D. different elements

Answer:

- Watch Video Solution

84. In which of the following entropy of the system decreases?
A. Crystallization of liquid in to solid
B. Temperature of crystalline solid is increased from OK to

115K `H_2(g)rarr2H(g)
C. $H_{2(g)} \rightarrow 2 H_{(g)}$
D. $2 \mathrm{NaHCO}_{3(s)} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{Co}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)}$

Answer:

- Watch Video Solution

85. Give the mathematical expression of first low of thermodynamics:

- Watch Video Solution

86. What is the second law of thermodynamics?
87. What is enthalpy of the fusion?

- Watch Video Solution

88. In the reaction, $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl} \Delta \mathrm{H}=-184 \mathrm{~kJ}$, if 2 moles of H 2 react with 2 moles of $C l_{2}$, then ΔU is equal to

D Watch Video Solution

89. 22 g of CO_{2} are compressed isothermally and reversibly at 298 K frominitial pressure of 100 Kpa when the work obtained is
1.2 KJ. Find the final pressure.
90. A System absorbs 520J of heat and perform work of 210J calculate the change in internal energy.

(D) Watch Video Solution

91. 38.55 kjof heat is absorbed when 6.0 g of 02 react with C1F according to the reaction, $2 C I F_{g}+O_{2(g)} \rightarrow C I_{2} O_{g}+O F_{2(g)}$ What is the standard enthalpy of the reaction?

- Watch Video Solution

92. Calculate the total heat required (a) to melt 180 g to ice at $O^{\circ} C$ (b) heat it to $100^{\circ} C$ and then (c) vaporise it at that temperature. Given $\Delta_{f u s} \mathrm{H}^{\wedge} @(d)=6.01$ kjmolat O^{\wedge} @C Delta

- Watch Video Solution

93. 300 m mol of an ideal gas occupies $13.7 d \mathrm{~m}^{3}$ at 300 K .

Calculate the work done when the gas is expanded until its volume has increased by $2.3 d m^{3}$ (a) isothermally against a constant external pressure of 0.3 bar (b) isothermally and reversibly (c) into vaccum.

- Watch Video Solution

94. State Hess's law of constant heat summation Illustrate with an example state its application.
95. Obtain the relation between ΔG and $\Delta S_{\rightarrow t a l}$ Comment on Spontaneity of the reaction

- Watch Video Solution

