©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CHETANA PUBLICATION

Ionic Equilibria

Example

1. What is chemical equilibrium?

- Watch Video Solution

2. What are electrolytes?
3. What is ionic equilibrium?

- Watch Video Solution

4. Define electrolytes.

Watch Video Solution
5. What are non-electroytes?

- Watch Video Solution

6. What are strong and weak electrolytes? Give two examples each.
7. Which of the following is a strong electrolyte? $\mathrm{HF}, \mathrm{AgCI}, \mathrm{CuSO}_{4}, \mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{H}_{3} \mathrm{PO}_{4}$

- Watch Video Solution

8. Classity the following as strong and weak electrolytes. $\mathrm{BaSO} 4, \mathrm{HCOOH}, \mathrm{HCN}, \mathrm{MnSO} 4, \mathrm{FeSO} 4, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCl}, \mathrm{NaOH}, \mathrm{HNO} 3$

- Watch Video Solution

9. What is ionization and dissociation?

- Watch Video Solution

10. Define degree of dissociation or ionization.

- Watch Video Solution

11. Name the adds present in (a) Vinegar (b) Lemons (c) tamarind paste and name the base present in household deaning products.

- Watch Video Solution

12. What are acid and base according to Arrhenius theory?

- Watch Video Solution

13. What are bare ions and hydronium ions?

- Watch Video Solution

14. Define acid base according to Bronsted-Lowry theory.
15. Explain with an example Bronsted-Lowry concept of acid and base. OR What is meant by conjugate add-base pair?

- Watch Video Solution

16. Write examples of conjugate add-base pairs.

- Watch Video Solution

17. Define acid and base according to Lewis theory with examples.

- Watch Video Solution

18. Why cations are Lewis acids?

- Watch Video Solution

19. Write examples of Lewis acids and Lewis bases (any one of each).

- Watch Video Solution

20. Ammonia serves as a Lewis base whereas $A 1 C I_{3}$ is a Lewis acid. Explain.

- Watch Video Solution

21. All Bronsted bases are also Lewis bases but all Bronsted acid are not Lewis acid. Explain.

- Watch Video Solution

22. Explain amphoteric nature of water.

- Watch Video Solution

23. Write a reaction in which water act as a base.

- Watch Video Solution

24. How are acids and bases classified?

- Watch Video Solution

25. Define Strong Acid and Bases.

- Watch Video Solution

26. Define Weak acids and Weak bases.

- Watch Video Solution

27. Define and explain dissociation constant of a weak acid.
28. Define and explain dissociation constant of a weak base.

- Watch Video Solution

29. Derive the relationship between degree of dissociation and dissociation constant in weak electrolytes. (any one)

- Watch Video Solution

30. Define degree of dissodation. Derive Ostwald's dilution law for $\mathrm{CH}_{3} \mathrm{COOH}$.

- Watch Video Solution

31. Explain autoionization of water.
32. Define ionic product of water.

- Watch Video Solution

33. Define ionic product of water.

- Watch Video Solution

34. Find out the values of ionic product Kw of water at various temperatures. 273K, 283K, 293K, 303K, 313K, 323K

- Watch Video Solution

35. What is pH scale?
36. Define pH and pOH . Derive relationship between pH and pOH .

- Watch Video Solution

37. Derive the relation $\mathrm{pH}+\mathrm{pOH}=14$.

- Watch Video Solution

38. Using a pH scale, explain acidity, basicity and neutrality of an aqueous solution.

- Watch Video Solution

39. How pH of pure water vary with temperature? Explain.

- Watch Video Solution

40. Define hydrolysis. What are the types of salts? Write one example each.

- Watch Video Solution

41. Why salt of strong acid and strong base does not undergo hydrolysis or is neutral to litmus?

- Watch Video Solution

42. Why is KCl solution neutral to litmus?

- Watch Video Solution

43. Explain the hydrolysis of salt of strong acid and weak base.

- Watch Video Solution

44. Discuss hydrolysis of salt of weak acid and strong base.

- Watch Video Solution

45. Write a note on hydrolysis of salt of weak acid and weak base.

- Watch Video Solution

46. Why an aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ is acidic while that of HCOOK is basic?

- Watch Video Solution

47. Why is it necessary to add $\mathrm{H}_{2} \mathrm{SO}_{4}$ while preparing the solution of CuSO_{4} ?
48. Aqueous solution of sodium carbonate is alkaline whereas aqueous solution of ammonium chloride is acidic.

D Watch Video Solution

49. What is meant by hydrolysis? A solution of $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ is neutral. Why?

- Watch Video Solution

50. A solution of $\mathrm{NH}_{4} F$ is slightly acidic. Why?

- Watch Video Solution

51. The solution of $\mathrm{NH}_{4} \mathrm{CN}$ is basic in nature. Explain.

(Watch Video Solution

52. Explain the acidic nature of an aqueous solution of ferric nitrate.

- Watch Video Solution

53. Define Buffer Solution.

- Watch Video Solution

54. Home made jams and gellies without any added chemical preservative additives spoil in a few days whereas commercial jams and jellies have a long shelf life. Explain. What role does added sodium benzoate play?

- Watch Video Solution

55. What are the various types of Buffer solution? Give one example of each.
56. How are basic buffer solutions prepared?

- Watch Video Solution

57. How are buffer solutions prepared?

- Watch Video Solution

58. Write the Henderson Hasselbalch equation for pH of buffers.

- Watch Video Solution

59. Define Buffer Solution.

- Watch Video Solution

60. Write a note on buffer action of an acidic buffer.

D Watch Video Solution

61. Write a note on buffer action of basic buffer.

- Watch Video Solution

62. Write properties of buffer solution

- Watch Video Solution

63. Write properties of buffer solution
64. What happens to the pH if a few drops of an acid are added to $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$ solution?

- Watch Video Solution

65. A buffer solution of acetic acid and sodium acetate is diluted 10 times.

What is the effect on its pH ?

- Watch Video Solution

66. What is the importance of buffers in biochemical system?

- Watch Video Solution

67. What are the applications of buffer solutions?

- Watch Video Solution

68. What is solubility of a compound?

- Watch Video Solution

69. Explain saturated solution.

- Watch Video Solution

70. What is meant by sparingly soluble salt?

- Watch Video Solution

71. Define solubility product. Derive an expression for solubility product of AgCl .
72. Write the solubility equilibrium and solubility product expression for a general salt BA.

Watch Video Solution

73. A sparingly soluble salt having general formula $B_{x} A_{y}$ and molar solubility ' S ' is in equilibrium with its saturated solution. Derive the relationship between solubility and solubility product for the salt.

- Watch Video Solution

74. Define molar solubility.

- Watch Video Solution

75. What is the relationship between molar solubility and solubility product for the salt $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$?
76. What is the relationship between molar solubility and solubility product for salts given below: $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.

- Watch Video Solution

77. What is the relationship between molar solubility and solubility product for salts given below: $\mathrm{Cr}(\mathrm{OH})_{3}$.

- Watch Video Solution

78. Explain the relation between ionic product and solubility product to predict whether a precipitate will form when two solutions are mixed?

- Watch Video Solution

79. Define/State common ion effect.

- Watch Video Solution

80. Explain common ion effect. OR Explain common ion effect for a solution containing $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$.

- Watch Video Solution

81. How is the ionization of NH 4 OH suppressed by addition of $\mathrm{NH}_{4} \mathrm{CI}$ to the solution of $\mathrm{NH}_{4} \mathrm{OH}$?

- Watch Video Solution

82. How is hardness of water removed?

- Watch Video Solution

83. The dissociation of H 2 S is suppressed in the presence of HCl . Name the phenomenon.

- Watch Video Solution

84. The dissociation of HCN is suppressed by the addition of HCl . Explain.

- Watch Video Solution

85. Solubility of a sparingly salt gets affected in presence of a soluble salt having one common ion. Explain.

- Watch Video Solution

86. A weak monobasic acid is 0.05% dlssociated in 0.02 M solution.

Calculate dissociation constant of acid.
87. Dissociation constant of acetic acid is 1.8×10^{-5}. Calculate percent dissociation of acetic acid in 0.01 M solution.

- Watch Video Solution

88. A weak monobasic acid is 12% dissociated in 0.05 M solution. What is percent dissociation in 0.15 M solution.

- Watch Video Solution

89. Dissociation constant of acetic acid is 1.8×10^{-5}. Calculate percent dissociation of acetic acid in 0.01 M solution.

- Watch Video Solution

90. Acetic acid is 5% ionised in its decimolar solution. Calculate the dissociation constant of acid.
91. A weak acid is 1% ionized in its 0.075 M solution. Calculate the percent dissociation in 0.1 M solution.

- Watch Video Solution

92. The ionization constant of base is 5.4×10^{-4}. Calculate its degree of ionization in its 0.02 M solution.

- Watch Video Solution

93. The dissociation constant of a weak monobasic acid is 3.5×10^{-8}.

Calculate its degree of dissociation in 0.05 M solution.

- Watch Video Solution

94. Calculate pH and pOH of 0.01 M HCl solution.

- Watch Video Solution

95. pH of a solution is 3.12. Calculate the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ion.

- Watch Video Solution

96. A weak monobasic acid is 0.04% dissociated in 0.025 M solution. What is pH of the solution?

- Watch Video Solution

97. The pH of a solution is 6.06 . Calculate the H^{+}ion concentration.

- Watch Video Solution

98. Calculate the pH of 0.01 M sulphuric acid.

- Watch Video Solution

99. Calculate the pH of decimolar solution sulphuric add.

- Watch Video Solution

100. In NaOH solution, $[\mathrm{OH}]$ is 2.87×10^{-4}. Calculate the pH of the solution.

- Watch Video Solution

101. pH of a weak monobasic acid is 3.2 in its 0.02 M solution. Calculate its dissociation constant.
102. The pH of rain water collected in a certain region of Maharashtra on particular day was 5.1. Calculate the $\mathrm{H}+$ ion concentration of the rain water and its percent dissodation.

- Watch Video Solution

103. The pH of 0.02 M ammonium hydroxide solution is 10.78 . Calculate the hydroxyl ion concentration, degree of dissociation and dissociation constant.

- Watch Video Solution

104. Calculate the pH of a solution obtained by mixing equal volumes of solutions with $\mathrm{pH}=3$ and $\mathrm{pH}=5$.
105. The value of K_{w} is 9.55×10^{-14} at a certain temperature. Calculate the pH of water at this temperature.

Watch Video Solution

106. Calculate the pH of buffer solution containing 0.05 mol NaF per litre and 0.015 mol HF per litre. $\left[K_{a}=7.2 \times 10^{-4} f\right.$ or $\left.H F\right]$.

- Watch Video Solution

107. Calculate the pH of buffer solution composed of 0.1 M weak base BOH and 0.2 M of its salt BA. [$K_{b}=1.8 \times 10^{-5} f$ or the weakbase]

- Watch Video Solution

108. Calculate the pH of a solution formed by mixing $0.2 \mathrm{MNH}_{4} \mathrm{CI}$ and 0.1M $\mathrm{NH}_{4} \mathrm{OH}$. The $p K_{b}$ of $\mathrm{NH}_{4} \mathrm{OH}$ is 4.75 .
109. The solubility product of AgBr is 5.2×10^{-13}. Calculate its solubility in mol $d m^{-3}$ and $\mathrm{g} \mathrm{dm}{ }^{-3}$ (Molar mass of $\mathrm{AgBr}=187.8 \mathrm{gmol}^{-1}$)

(Watch Video Solution

110. Solubility product of AgCl is 1.8×10^{-10}. Calculate its molar solubility and solubility in g / L. Molar mass of AgCl is $143.5 \mathrm{~g} \mathrm{~mol}^{-1}$.

- Watch Video Solution

111. Solubilityproduct of $\mathrm{BaSO} \mathrm{S}_{4}$ is 2.6×10^{-9}. Estimate its solubility.

(Watch Video Solution

112. The solubility product of $\mathrm{Fe}(\mathrm{OH})_{3}$ at 298 K is 1.1×10^{-36}. Find its solubility in kgdm^{-3} at the same temperature. (Given: At Wts. $\mathrm{Fe}=56, \mathrm{O}$ $=16, \mathrm{H}=1$).

- Watch Video Solution

113. The solubility product of barium sulphate is 1.21×10^{-11} at $25^{\circ} \mathrm{C}$.

Calculate its solubility in kgdm^{-3} at the same temperature.

- Watch Video Solution

114. The solubility product of Calcium Sulphate is 1×10^{-26}. Calculate its solubility.

- Watch Video Solution

115. Solubility product of BaCO_{3} is 2.6×10^{-9}. Estimate its solubility.
116. A monobasic acid is 3% ionized in its 0.03 M aqueous solution.

Calculate the dissociation constant of the acid

- Watch Video Solution

117. Calculate the degree of dissociation and concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ion in 0.01 M solution of formic acid $K_{a}=2.1 \times 10^{-4}$ at 298 K .

- Watch Video Solution

118. A weak base BOH is 2.22 percent dissociated in its 0.1 M solution.

Calculate the dissociation constant of the base.

- Watch Video Solution

119. Formicadd is 12% dissodated in 0.05 Msolution. Evaluate the percent dissodated in 0.15 M solution.

D Watch Video Solution

120. Calculate pH of $1.5 \times 10^{-3} \mathrm{NaOH}$ solution.

- Watch Video Solution

121. Calculate the pH of $2.5 \times 10^{-4} \mathrm{M} \mathrm{HCl}$ solution.

- Watch Video Solution

122. Find the pH of solution containing $1.12 \times 10^{-2} \mathrm{~kg}$ of potassium hydroxide in $2 d m^{3}$ (mol. Wt. of $\mathrm{KOH}=56$)

- Watch Video Solution

123. The pH of $\mathrm{NH}_{4} \mathrm{OH}$ solution is 10.72 in 0.015 M solution. Calculate its dissoriation constant.

- Watch Video Solution

124. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. What is its pH and nature of the soft drink.

- Watch Video Solution

125. The concentration of hydronium ions in a cup of black coffee is $1.3 \times 10^{-5} \mathrm{M}$. Find the pH of the coffee. Is this coffee acidic or alkaline?

- Watch Video Solution

126. The pH of blood serum is 7.4. What is the hydrogen ion concentration of blood serum?
127. Calculate the pH of solution containing hydroxide ion concentration of $10^{-2} \mathrm{~mol} \mathrm{dm}{ }^{-3}$.

- Watch Video Solution

128. A weak monoacidic base is 3% ionised at 298 K in its 0.05 M solution.

Calculate the dissociation constant and pH of the solution.

- Watch Video Solution

129. Calculate the pH of buffer solution containing 0.05 mol NaF per litre and 0.015 mol HF per litre. $\left[K_{a}=7.2 \times 10^{-4} f\right.$ or $\left.H F\right]$.

- Watch Video Solution

130. The solubility of BaSO_{4} at 298 K is $0.003 \mathrm{~g} \mathrm{dm}^{-3}$. Calculate the solubility product of the salt assuming complete dissociation. $\left[\right.$ Mol. Wt. ofBaSO $\left.{ }_{4}=233\right]$

- Watch Video Solution

Exercies

1. The pH of $10^{-5} \mathrm{M}$ of HCl is.
A. 8
B. 7
C. less than 7
D. greater than 7

Answer:

2. The solubility product of a sparingly soluble salt $A X$ is 5.2×10^{-13}. Its solubility in $\mathrm{mol} d m^{-3}$ is
A. 7.2×10^{-7}
B. 1.35×10^{-4}
C. 7.2×10^{-8}
D. 13.5×10^{-8}

Answer:

- Watch Video Solution

3. Blood in human body is highly buffered at pH of
A. 7.4
B. 7
C. 6.9
D. 8.1

Answer:

- Watch Video Solution

4. The conjugate base of $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ is
A. $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2-} \mathrm{NH}_{3}$
B. $\left[Z n\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{2-}$
C. $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{OH}\right]^{+}$
D. $\left[Z n\left(H_{2} O\right)\right]^{3+}$

Answer:

Watch Video Solution
5. For $\mathrm{pH}>7$ the hydronium ion concentrationWould be
A. $10^{-7} M$
B. $<10^{-7} M$
C. $>10^{-7} M$
D. $\geq 10^{-7} \mathrm{M}$

Answer:

- Watch Video Solution

6. According to Ostwald's dilution law, the degree of dissociation of weak acid given by
A. $\sqrt{\frac{K_{a}}{c}}$
B. $\sqrt{\frac{c}{K_{a}}}$
C. $\sqrt{\frac{K_{a}}{V}}$
D. $\sqrt{K_{a} C}$

Answer:

7. The relation between pH and pOH is
A. $\mathrm{pH} / \mathrm{pOH}=14$
B. $14-\mathrm{pH}=\mathrm{pOH}$
C. $p H \times p O H=14$
D. $\frac{14}{p} O H=p H$

Answer:

Watch Video Solution
8. pH of a solution is 4. $\left[H^{+}\right]$is
A. $10^{-2} M$
B. $\frac{1}{10^{4}} M$
C. $10^{-6} \mathrm{M}$
D. $10^{4} M$

Answer:

D Watch Video Solution

9. The $\left[\mathrm{OH}^{-}\right]$of a solution is $1.0 \times 10^{-10} \mathrm{M}$. The solution is
A. acidic
B. basic
C. neutral
D. none of the above

Answer:

10. The pH of $3 \times 10^{-4} \mathrm{M} \mathrm{KOH}$ is
B. 10.48
C. 11.6
D. 7.5

Answer:

- Watch Video Solution

11. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is a salt of
A. strong acid and strong base
B. strong acid and weak base
C. weak acid and strong base
D. weak acid and weak base

Answer:

12. The solution of a salt is basic. The salt must be
A. KNO_{3}
B. NaCN
C. $\mathrm{CH}_{3} \mathrm{COONH}_{3}$
D. $\mathrm{NH}_{4} \mathrm{NO}_{3}$

Answer:

- Watch Video Solution

13. In $\mathrm{CH}_{3} \mathrm{COO} \frac{\mathrm{H}}{\mathrm{C}} \mathrm{H}_{3} \mathrm{COONa}$ buffer, the reserve acidity is due to
A. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
B. Na^{+}
C. H^{+}
D. $\mathrm{CH}_{3} \mathrm{COOH}$

Answer:

D Watch Video Solution

14. The solubility of Pbl_{2}, is related to its solubility product by the equation
A. $K_{s p}=S^{2}$
B. $K_{s p}=4 S^{3}$
C. $K_{s p}=27 S^{4}$
D. $K_{s p}=4 S^{2}$

Answer:

- Watch Video Solution

15. The solubility product of CaF_{2} is
A. $\left[\mathrm{Ca}^{2+}\right][2 F]$
B. $\left[\mathrm{Ca}^{2+}\right][2 F]^{2}$
C. $\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}$
D. $\left[C a^{2+}\right]\left[F^{-}\right]$

Answer:

- Watch Video Solution

16. If $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is added to the solution of $\mathrm{H}_{2} \mathrm{CO}_{3}$, the pH of $\mathrm{H}_{2} \mathrm{CO}_{3}$ solution
A. decreases
B. increases
C. remains constant
D. cannot be predicted

Answer:

17. Which of the following is least likely to behave as Lewis base?
A. OH^{-}
B. $\mathrm{H}_{2} \mathrm{O}$
C. NH_{3}
D. $B F_{3}$

Answer:

Watch Video Solution

18. A monobasic weak acid solution has a molarity of 0.005 and pH of 5 .

What is its percentage ionisation in this solution?
A. 2.0.
B. 0.2
C. 0.5
D. 0.25

Answer:

- Watch Video Solution

19. 0.023 g of sodium metal reacted with $100 \mathrm{~cm}^{3}$ of water. The pH of the resulting solution is
A. 10
B. 8
C. 9
D. 12

Answer:

20. The concentration of hydronium ions in a cup of black coffee is
$1.3 \times 10^{-5} \mathrm{M}$. Find the pH of the coffee. Is this coffee acidic or alkaline?
A. 4.89
B. 3.89
C. 2.2
D. None of these

Answer:

- Watch Video Solution

21. The pH of $10^{-3} \mathrm{M}$ solution of NaOH is
A. 3
B. 11
C. 3
D. 12

Answer:

D Watch Video Solution

22. The solubility product of $M g(O H)_{2}$ is $4 \times 10^{-12}\left(\mathrm{molL}^{-1}\right)^{3}$. Solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ is
A. $4 \times 10^{-4} \mathrm{molL} L^{-1}$
B. $1 \times 10^{-12} \mathrm{~mol} L^{-1}$
C. $1 \times 10^{-4} \mathrm{~mol} L^{-1}$
D. $2 \times 10^{-6} \mathrm{~mol}^{-1}$

Answer:

- Watch Video Solution

23. When HCl gas is passed through a saturated solution of common salt, pure NaCl is predpitated because
A. the impurities dissolve in HCl
B. HCl is highly soluble in water
C. ionic product $[\mathrm{Na}+][\mathrm{CF}]$ exceeds the solubility product of NaCl
D. the solubility product of NaCl is lowered by Cl " ions from aqueous

HCl

Answer:

- Watch Video Solution

24. Blood in human body is highly buffered at pH of
A. 7.4
B. 7
C. 6.9
D. 8.1

Answer:

25. The species which will behave both as conjugate acid and basic is
A. $\mathrm{NH}_{4} \mathrm{OH}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. CO^{-}
D. HSO_{4}^{-}

Answer:

- Watch Video Solution

26. Define molar solubility.

- Watch Video Solution

27. What is the relationship between molar solubility and solubility product for the salt $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$?

- Watch Video Solution

28. Define pH and pOH . Derive relationship between pH and pOH .

- Watch Video Solution

29. Calculate pH and pOH of 0.01 M HCl solution.

- Watch Video Solution

30. What is a Lewis acid? Illustrate with an example.

- Watch Video Solution

31. Define ionic product of water. What is its value at 298 K and 273 K ?

- Watch Video Solution

32. What are the applications of buffer solutions?

- Watch Video Solution

33. Explain the mechanism of buffer action of an acidic buffer.

- Watch Video Solution

34. Explain with an example, salt of strong acid and strong base does not undergo hydrolysis.

- Watch Video Solution

35. The pH of 0.02 M ammonium hydroxide solution is 10.78 . Calculate the hydroxyl ion concentration, degree of dissociation and dissociation constant.

- Watch Video Solution

36. Explain the relation between ionic product and solubility product to predict whether a precipitate will form when two solutions are mixed?
