

CHEMISTRY

BOOKS - CHETANA PUBLICATION

Ionic Equilibria

1. What is chemical equilibrium?

Watch Video Solution

2. What are electrolytes?

3. What is ionic equilibrium?

Watch Video Solution

4. Define electrolytes.

Watch Video Solution

5. What are non-electroytes?

Watch Video Solution

6. What are strong and weak electrolytes? Give two examples each.

11. Name the adds present in (a) Vinegar (b) Lemons (c) tamarind paste

and name the base present in household deaning products.

15. Explain with an example Bronsted-Lowry concept of acid and base. OR

What is meant by conjugate add-base pair?

Watch Video Solution
16. Write examples of conjugate add-base pairs.
Watch Video Solution
17. Define acid and base according to Lewis theory with examples.
Vatch Video Solution
18. Why cations are Lewis acids?
Watch Video Solution

19. Write examples of Lewis acids and Lewis bases (any one of each).

Watch Video Solution	

20. Ammonia serves as a Lewis base whereas $A1CI_3$ is a Lewis acid. Explain.

Watch Video Solution

21. All Bronsted bases are also Lewis bases but all Bronsted acid are not

Lewis acid. Explain.

Watch Video Solution

22. Explain amphoteric nature of water.

26. Define Weak acids and Weak bases.

Watch Video Solution

27. Define and explain dissociation constant of a weak acid.

31. Explain autoionization of water.

36. Define pH and pOH. Derive relationship between pH and pOH.

Watch Video Solution
37. Derive the relation pH + pOH = 14.
Watch Video Solution
38. Using a pH scale, explain acidity, basicity and neutrality of an aqueous solution.
Watch Video Solution
39. How pH of pure water vary with temperature? Explain.
Vatch Video Solution

40. Define hydrolysis. What are the types of salts? Write one example

each.

Watch Video Solution
41. Why salt of strong acid and strong base does not undergo hydrolysis
or is neutral to litmus?
Watch Video Solution
42. Why is KCl solution neutral to litmus?
Watch Video Solution
43. Explain the hydrolysis of salt of strong acid and weak base.
Watch Video Solution

47. Why is it necessary to add H_2SO_4 while preparing the solution of

 $CuSO_4$?

48. Aqueous solution of sodium carbonate is alkaline whereas aqueous solution of ammonium chloride is acidic.

Watch Video Solution	

Why?

Watch Video Solution

50. A solution of NH_4F is slightly acidic. Why?

Watch Video Solution

51. The solution of NH_4CN is basic in nature. Explain.

52. Explain the acidic nature of an aqueous solution of ferric nitrate.

53. Define Buffer Solution.

Watch Video Solution

Watch Video Solution

54. Home made jams and gellies without any added chemical preservative additives spoil in a few days whereas commercial jams and jellies have a long shelf life. Explain. What role does added sodium benzoate play?

Watch Video Solution

55. What are the various types of Buffer solution? Give one example of each.

56. How are basic buffer solutions prepared?
Watch Video Solution
57. How are buffer solutions prepared?
Vatch Video Solution
58. Write the Henderson Hasselbalch equation for pH of buffers.
Watch Video Solution
59. Define Buffer Solution.
Watch Video Solution

Watch Video Solution
61. Write a note on buffer action of basic buffer.
Watch Video Solution
62. Write properties of buffer solution
Watch Video Solution
63. Write properties of buffer solution
Watch Video Solution

64. What happens to the pH if a few drops of an acid are added to $CH_3COOH + CH_3COONa$ solution?

65. A buffer solution of acetic acid and sodium acetate is diluted 10 times.

What is the effect on its pH?

Watch Video Solution

66. What is the importance of buffers in biochemical system?

Watch Video Solution

67. What are the applications of buffer solutions?

71. Define solubility product. Derive an expression for solubility product of

AgCl.

72. Write the solubility equilibrium and solubility product expression for a

general salt BA.

Watch Video Solution

73. A sparingly soluble salt having general formula $B_x A_y$ and molar solubility 'S' is in equilibrium with its saturated solution. Derive the relationship between solubility and solubility product for the salt.

> Watch Video Solution

74. Define molar solubility.

75. What is the relationship between molar solubility and solubility product for the salt Ag_2CrO_4 ?

76. What is the relationship between molar solubility and solubility product for salts given below: $Ca_3(PO_4)_2$.

Watch Video Solution

77. What is the relationship between molar solubility and solubility product for salts given below: $Cr(OH)_3$.

Watch Video Solution

78. Explain the relation between ionic product and solubility product to predict whether a precipitate will form when two solutions are mixed?

79. Define/State common ion effect.

Watch Video Solution

81. How is the ionization of NH4OH suppressed by addition of NH_4CI to

the solution of NH_4OH ?

Watch Video Solution

82. How is hardness of water removed?

83. The dissociation of H2S is suppressed in the presence of HCl. Name

the phenomenon.

87. Dissociation constant of acetic acid is 1.8×10^{-5} . Calculate percent dissociation of acetic acid in 0.01 M solution.

90. Acetic acid is 5% ionised in its decimolar solution. Calculate the dissociation constant of acid.

94. Calculate pH and pOH of 0.01 M HCl solution.

Watch Video Solution **95.** pH of a solution is 3.12. Calculate the concentration of H_3O^+ ion. Watch Video Solution 96. A weak monobasic acid is 0.04% dissociated in 0.025 M solution. What is pH of the solution? Watch Video Solution **97.** The pH of a solution is 6.06. Calculate the H^+ ion concentration. Watch Video Solution

98. Calculate the pH of 0.01 M sulphuric acid.

Watch Video Solution
99. Calculate the pH of decimolar solution sulphuric add.
Vatch Video Solution
100. In NaOH solution, $[OH]is$ 2.87 x 10^{-4} . Calculate the pH of the
solution. Watch Video Solution

101. pH of a weak monobasic acid is 3.2 in its 0.02 M solution. Calculate its

dissociation constant.

102. The pH of rain water collected in a certain region of Maharashtra on particular day was 5.1. Calculate the H+ ion concentration of the rain water and its percent dissodation.

Watch Video Solution

103. The pH of 0.02M ammonium hydroxide solution is 10.78. Calculate the hydroxyl ion concentration, degree of dissociation and dissociation constant.

Watch Video Solution

104. Calculate the pH of a solution obtained by mixing equal volumes of

solutions with pH = 3 and pH=5.

105. The value of K_w is $9.55 imes 10^{-14}$ at a certain temperature. Calculate

the pH of water at this temperature.

106. Calculate the pH of buffer solution containing 0.05mol NaF per litre

and 0.015 mol HF per litre. $[K_a = 7.2 imes 10^{-4} f ~{
m or}~ HF]$.

Watch Video Solution

107. Calculate the pH of buffer solution composed of 0.1M weak base BOH

and 0.2M of its salt BA. $ig [K_b = 1.8 imes 10^{-5} f \,\, {
m or} \,\, {
m the} \, weak$ base]

Watch Video Solution

108. Calculate the pH of a solution formed by mixing $0.2MNH_4CI$ and

0.1M NH_4OH . The pK_b of NH_4OH is 4.75.

109. The solubility product of AgBr is $5.2 imes 10^{-13}$. Calculate its solubility

in mol dm^{-3} and g dm^{-3} (Molar mass of $AgBr = 187.8gmol^{-1}$)

Watch Video Solution

110. Solubility product of AgCl is 1.8×10^{-10} . Calculate its molar solubility and solubility in g/L. Molar mass of AgCl is143.5 g mol^{-1} .

Watch Video Solution

111. Solubilityproduct of $BaSO_4$ is $2.6 imes 10^{-9}$.Estimate its solubility.

112. The solubility product of $Fe(OH)_3$ at 298K is 1.1×10^{-36} . Find its solubility in $kgdm^{-3}$ at the same temperature. (Given: At Wts. Fe = 56, O = 16, H = 1).

113. The solubility product of barium sulphate is 1.21×10^{-11} at $25^{\circ}C$.

Calculate its solubility in $kgdm^{-3}$ at the same temperature.

Watch Video Solution

114. The solubility product of Calcium Sulphate is $1 imes 10^{-26}$. Calculate its

solubility.

115. Solubility product of $BaCO_3$ is 2.6×10^{-9} . Estimate its solubility.

116. A monobasic acid is 3% ionized in its 0.03 M aqueous solution.

Calculate the dissociation constant of the acid

Watch Video Solution

117. Calculate the degree of dissociation and concentration of H_3O^+ ion

in 0.01 M solution of formic acid $K_a=2.1 imes10^{-4}$ at 298K.

Watch Video Solution

118. A weak base BOH is 2.22 percent dissociated in its 0.1 M solution.

Calculate the dissociation constant of the base.

119. Formicadd is12% dissodated in 0.05 Msolution. Evaluate the percent

dissodated in 0.15 M solution.

hydroxide in $2dm^3$ (mol. Wt. of KOH = 56)

123. The pH of NH_4OH solution is 10.72 in 0.015 M solution. Calculate its

dissoriation constant.

D Watch Video Solution

124. The concentration of hydrogen ion in a sample of soft drink is $3.8 imes 10^{-3}$ M. What is its pH and nature of the soft drink.

Watch Video Solution

125. The concentration of hydronium ions in a cup of black coffee is $1.3 imes10^{-5}$ M. Find the pH of the coffee. Is this coffee acidic or alkaline?

126. The pH of blood serum is 7.4. What is the hydrogen ion concentration

of blood serum?

127. Calculate the pH of solution containing hydroxide ion concentration

```
of 10^{-2} mol dm^{-3}.
```

Watch Video Solution

128. A weak monoacidic base is 3% ionised at 298 K in its 0.05 M solution.

Calculate the dissociation constant and pH of the solution.

Watch Video Solution

129. Calculate the pH of buffer solution containing 0.05mol NaF per litre

and 0.015 mol HF per litre. $\left[K_a=7.2 imes 10^{-4} f \,\, {
m or} \,\, HF
ight].$

130. The solubility of $BaSO_4$ at 298K is 0.003 g dm^{-3} . Calculate the solubility product of the salt assuming complete dissociation. [*Mol. Wt. of* $BaSO_4 = 233$]

Watch Video Solution

Exercies

1. The pH of 10^{-5} M of HCl is.

A. 8

B. 7

C. less than 7

D. greater than 7

Answer:

2. The solubility product of a sparingly soluble salt AX is $5.2 imes 10^{-13}$. Its solubility in mol dm^{-3} is

A. $7.2 imes10^{-7}$

B. $1.35 imes 10^{-4}$

C. $7.2 imes 10^{-8}$

D. $13.5 imes10^{-8}$

Answer:

Watch Video Solution

3. Blood in human body is highly buffered at pH of

A. 7.4

B. 7

C. 6.9

D. 8.1

Answer:

Answer:

Watch Video Solution

5. For pH > 7 the hydronium ion concentrationWould be

A.
$$10^{-7}M$$

B. $< 10^{-7} M$

 $\mathsf{C.}~>10^{-7}M$

D. \geq $10^{-7}M$

Answer:

Watch Video Solution

6. According to Ostwald's dilution law, the degree of dissociation of weak

acid given by

A.
$$\sqrt{\frac{K_a}{c}}$$

B. $\sqrt{\frac{c}{K_a}}$
C. $\sqrt{\frac{K_a}{V}}$
D. $\sqrt{K_aC}$

Answer:

7. The relation between pH and pOH is

A. pH/pOH=14

В. 14-рН=рОН

$$C. pH \times pOH = 14$$

D.
$$rac{14}{p}OH=pH$$

Answer:

Watch Video Solution

8. pH of a solution is 4.
$$[H^+]$$
 is

A. $10^{-2}M$

$$\mathsf{B}.\,\frac{1}{10^4}M$$

 $C. 10^{-6} M$

 $\mathsf{D}.\,10^4M$

Answer:

9. The $\left[OH^{\,-}
ight]$ of a solution is $1.0 imes10^{-10}$ M. The solution is

A. acidic

B. basic

C. neutral

D. none of the above

Answer:

Watch Video Solution

10. The pH of $3 imes 10^{-4}$ M KOH is

A. 3.52

B. 10.48

C. 11.6

D. 7.5

Answer:

Watch Video Solution

11. Na_2CO_3 is a salt of

A. strong acid and strong base

B. strong acid and weak base

C. weak acid and strong base

D. weak acid and weak base

Answer:

12. The solution of a salt is basic. The salt must be

A. KNO_3

B. NaCN

 $C. CH_3 COONH_3$

D. NH_4NO_3

Answer:

Watch Video Solution

13. In $CH_3COOrac{H}{C}H_3COONa$ buffer, the reserve acidity is due to

A. CH_3COO^-

B. Na^+

 $\mathsf{C}.\,H^{\,+}$

D. CH_3COOH

Answer:

14. The solubility of Pbl_2 , is related to its solubility product by the equation

A.
$$K_{sp}=S^2$$

B. $K_{sp}=4S^3$
C. $K_{sp}=27S^4$
D. $K_{sp}=4S^2$

Answer:

Watch Video Solution

15. The solubility product of CaF_2 is

- A. $\left[Ca^{2\,+}
 ight][2F]$
- $\mathsf{B}.\left[Ca^{2\,+}\right]\left[2F\right]^2$
- C. $\left[Ca^{2\,+}
 ight]\left[F^{\,-}
 ight]^2$
- D. $\left[Ca^{2\,+}
 ight]\left[F^{\,-}
 ight]$

Answer:

Watch Video Solution

16. If Na_2CO_3 is added to the solution of H_2CO_3 , the pH of H_2CO_3 solution

A. decreases

B. increases

C. remains constant

D. cannot be predicted

Answer:

17. Which of the following is least likely to behave as Lewis base?

A. $OH^{\,-}$

 $\mathsf{B}.\,H_2O$

 $\mathsf{C}.NH_3$

D. BF_3

Answer:

Watch Video Solution

18. A monobasic weak acid solution has a molarity of 0.005 and pH of 5.

What is its percentage ionisation in this solution?

A. 2.0.

B. 0.2

C. 0.5

D. 0.25

Answer:

Watch Video Solution

19. 0.023g of sodium metal reacted with $100cm^3$ of water. The pH of the

resulting solution is

A. 10

B. 8

C. 9

D. 12

Answer:

20. The concentration of hydronium ions in a cup of black coffee is $1.3 imes10^{-5}$ M. Find the pH of the coffee. Is this coffee acidic or alkaline?

A. 4.89

B. 3.89

C. 2.2

D. None of these

Answer:

Watch Video Solution

21. The pH of 10^{-3} M solution of NaOH is

A. 3

B. 11

C. 3

D. 12

Answer:

22. The solubility product of $Mg(OH)_2$ is $4 \times 10^{-12} (molL^{-1})^3$. Solubility of $Mg(OH)_2$ is

A.
$$4 imes 10^{-4} mol L^{-1}$$

B.
$$1 imes 10^{-12} mol L^{-1}$$

C.
$$1 imes 10^{-4} mol L^{-1}$$

D.
$$2 imes 10^{-6} mol L^{-1}$$

Answer:

23. When HCI gas is passed through a saturated solution of common salt,

pure NaCl is predpitated because

A. the impurities dissolve in HCI

B. HCI is highly soluble in water

C. ionic product [Na+][CF] exceeds the solubility product of NaCl

D. the solubility product of NaCl is lowered by Cl" ions from aqueous

HCI

Answer:

Watch Video Solution

24. Blood in human body is highly buffered at pH of

A. 7.4

B. 7

C. 6.9

D. 8.1

Answer:

25. The species which will behave both as conjugate acid and basic is

- A. NH_4OH
- B. H_2SO_4
- $C.CO^{-}$
- D. HSO_4^-

Answer:

Watch Video Solution

26. Define molar solubility.

31. Define ionic product of water. What is its value at 298 K and 273	Κ?
---	----

Watch Video Solution
32. What are the applications of buffer solutions?
Watch Video Solution
33. Explain the mechanism of buffer action of an acidic buffer.
Watch Video Solution
34. Explain with an example, salt of strong acid and strong base does not undergo hydrolysis.
Watch Video Solution

35. The pH of 0.02M ammonium hydroxide solution is 10.78. Calculate the hydroxyl ion concentration, degree of dissociation and dissociation constant.

36. Explain the relation between ionic product and solubility product to

predict whether a precipitate will form when two solutions are mixed?