©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CHETANA PUBLICATION

SOLUTIONS

Example

1. Define the term solution and classify it depending upon the number of components.

- Watch Video Solution

2. Define the term solution and its componenets: How many types of solution ar formed? Explain.
3. Define: (i) Solute (ii) Solvent.

- Watch Video Solution

4. Write the size of particles of colloids and those of true solution.

- Watch Video Solution

5. Define the term true solution.

(Watch Video Solution

6. Define the term concentration.
7. Explain a solid solution.

- Watch Video Solution

8. What are the different unit used to express the concentrations of solutions.

D Watch Video Solution

9. What is Le-Chateliers principle?

- Watch Video Solution

10. Answer the following question :

State the different types of solutions. Give one example.
11. Identify the different types of solution.

- Watch Video Solution

12. Identify solvent and solution from the given solution. Pumic stone,

Brass, lodine in air, Oxygen in water, Chloroform in Nitrogen.

- Watch Video Solution

13. Explain different types of solutions depending on amount of solute present in a solution.

D Watch Video Solution

14. What is solubility? What is the genergal unit used for expressing
15. Explain the solubility of a solid in a liquid.

D Watch Video Solution

16. Explain the different factors affecting solubility.

- Watch Video Solution

17. Explain the effect of Temperatuer and pressure on solubility.

- Watch Video Solution

18. What is the effect of temperatuer on solubility of soild in water?

Give examples.

(b) Watch Video Solution

19. What are the differenc types of forces between molecules.

- Watch Video Solution

20. Why does Naphthalene dissolves in benzene but not in water.

- Watch Video Solution

21. Anhydrous sodium sulphate dissolves in water with the evolution of heat. What is effect of temperature on its solubility?

- Watch Video Solution

22. Explain the solubility of gas in a liquid.
23. State and explain Henry's Law.

Watch Video Solution

24. Define Henry's law constant and state its unit.

D Watch Video Solution

25. What are the exceptions to Henry's law, State the reason.

D Watch Video Solution

26. State are Explain Raoult's law for volatile components.
27. How can the composition of vapour phase be determined.

D Watch Video Solution

28. How does Raoult's law behave in ideal solution?

- Watch Video Solution

29. Explain the term ideal solution with the respect to Raoult's law.

- Watch Video Solution

30. What is the meant by non ideal solution?

- Watch Video Solution

31. Explain the term non ideal solution with the respect to Raoult's law.

- Watch Video Solution

32. Define the term colligative property. Give examples.

- Watch Video Solution

33. Vapour pressure of a solution is

- Watch Video Solution

34. What is lowering of vapour pressure of a solution.

D Watch Video Solution

35. How will you lower the vapour pressure of a solution?

- Watch Video Solution

36. Why the vapour pressure of solution containing non-valatile solute is lower than that of pure solvent?

- Watch Video Solution

37. What is vapour pressure of a liquid?

- Watch Video Solution

38. State Raoult's law for the solution containing a non-volatile solute.
39. Lowering of vapour pressure of solution

- Watch Video Solution

40. State Raoult's law for the solution containing a non-volatile solute.

- Watch Video Solution

41. What is relative lowering of vapour pressure?

- Watch Video Solution

42. Derive the relationship between lowering of vapour pressure and molar mass of solute.
43. Which of the following solution will have higher freezign point depression and why? (a) 0.1 NaCl (b) $0.05 \mathrm{mAI}_{2}$

- Watch Video Solution

44. How vapour pressure lowering is related to a rise in boiling point of solution?

- Watch Video Solution

45. What is Boiling point of liquid?

D Watch Video Solution

46. What is elevation of boiling point?

- Watch Video Solution

47. Explain elevation of boiling point in terms of vapour pressure lowerign with help of a graph or diagram.

D Watch Video Solution

48. What is the effect on the boiling point of water if 1 mole of methyl alcohol is added to $1 d m^{3}$ of water? Why?

D Watch Video Solution

49. What is the relation between boiling point elevation and concentration of solution.

- Watch Video Solution

50. Write the equation relating boiling point elevation of the concentration of solution.

- Watch Video Solution

51. Give Reason: Concentration is expressed in molality and not molarity?

- Watch Video Solution

52. Define ebullioscopic constant or molal elevation constanct or boiling point elevation constant. State the units of Kb .

- Watch Video Solution

53. Derive a relation between elevation of boiling point and molar mass of the solute.
54. Defien freezing point of liquid.

D Watch Video Solution

55. What causes depression in freezing point?

D Watch Video Solution

56. What causes depression in freezing point?

- Watch Video Solution

57. Why freezing point of solvent is lowered by dissolving a nonvolatile solute into it?

(b) Watch Video Solution

58. Explain depression in freezing point on addtion of a solute with help of a graph.

- Watch Video Solution

59. Define molal depression constant or Cryoscopic constant and give its unit.

D Watch Video Solution

60. How will you find the molar mass of solutes using freezing point depression.

D Watch Video Solution

61. While considering boiling point elevation and freezing point depression of a solution concentration is expressed in molality and not in molarity. Why?

- Watch Video Solution

62. Define semipermeable membrane.

- Watch Video Solution

63. Explain Osmosis

D Watch Video Solution

64. A solvent and its solution containing a non-volatile solute are separated by semipermeable membrane. Does the flow of solvent occur in both directions: Comment giving reason.
65. Define Osomsis.

- Watch Video Solution

66. Explain the osmosis phenomenon in day to day life.

(D) Watch Video Solution

67. Define Osmotic pressure

- Watch Video Solution

68. Define the following terms: Isotonic solutions
69. Define the following terms: Hypertonic solutions

- Watch Video Solution

70. Define the followign terms: Hypotonic solutions.

- Watch Video Solution

71. How is molar mass of a solute determined by osmotic pressure measurement?

- Watch Video Solution

72. Give Reason: Concentration is expressed in molality and not molarity?
73. How is molar mass of a solute determined by osmotic pressure measurement?

- Watch Video Solution

74. Define the term Reverse osmosis.

- Watch Video Solution

75. Explain the process of Reverse Osmosis with an example.

D Watch Video Solution

76. What are non-electroytes?
77. How does the colligative properties of electrolyte solutions differ from those for non-electrolyte solution.

- Watch Video Solution

78. Define van't Haff factor OR what is van't Hoff factor.

(D) Watch Video Solution

79. Write van't Hoff factor in terms of different colligative properties.

D Watch Video Solution

80. Define van't Haff factor OR what is van't Hoff factor.
81. What will be the colligative properties of the following electrolytes compared to that of non-electroytes $\mathrm{KNO}_{3}, \mathrm{NaCl}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{CaCl}_{-}{ }^{2}$.

- Watch Video Solution

82. Which of the four colligative properties is most often used for molecular mass determination? Why?

D Watch Video Solution

83. Write the modified expressions of colligative properties of nonelectrolytes made applicable for electrolyte solutions.
84. Derive the equation, $\alpha=\frac{i-1}{n-1}$.

- Watch Video Solution

85. How is van't-Hoff- factor related to degree of ionisation?

- Watch Video Solution

86. Derive the relationship between degree of dissociation and dissociation constant in weak electrolytes. (any one)

- Watch Video Solution

87. The solubilling of N_{2} gas in water at $25^{\circ} \mathrm{C}$ and 1 bar is $6.85 \times 10^{-4} \mathrm{~mol} L^{-1}$. Calculate henry's law constant Molarity of N_{2}
gas dissolved in water under atmospheric conditions when partial pressure of N_{2} in atmosphere is 0.75 bar.

D Watch Video Solution

88. The Henry's law constant of methly bromide $\left(\mathrm{CH}_{3} \mathrm{Br}\right)$ is $0.159 \mathrm{~mol} L^{-1}$ bar. ${ }^{1}$ at $25^{\circ} \mathrm{C}$. What is the solubility of methly bromide in water at $25^{\circ} \mathrm{C}$ and at pressure of 130 mmHg ?

- Watch Video Solution

89. Fish generally needs O_{2} concentration in water atleast $3.8 \mathrm{~m} \frac{g}{L}$ for survival. What partial pressur of O_{2} above the water is needed for the survival of fish? Give te solubility of O_{2} in water at 0° and 1 atm partial pressure is $2.2 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$

D Watch Video Solution

90. Henry's law constant for the solubility of Methane in banzene is $4.27 \times 10^{-5}(\mathrm{~mm} \mathrm{Hg}) \mathrm{mol} \mathrm{dm}{ }^{-3}$ at constant temperature. Calculate the solubility of methane at 760 mm Hg pressure at the same temperature.

- Watch Video Solution

91. For a gas the Henry's law constant is 1.25×10^{-3} moldm $^{-3}$ bar
.$^{-1}$ at $50^{\circ} \mathrm{C}$. Calculate the solubility of the given gas at 5 bar and $50^{\circ} C$,

D Watch Video Solution

92. The vapour pressure of pure liquids A and B are 450 mm Hg and 700 mm Hg , resprectively at 350 K . Find the composition of liquid and vapour if total vapour pressure is $600 \mathrm{~mm} . \mathrm{Hg}$.
93. A mixture of benzene and toluene contains 30% by mass of toluene. At $30^{\circ} \mathrm{C}$, vapour pressure of pure toluene is 36.7 mm Hg and that of pure benzene is 118.2 mm Hg . Assuming that the two liquids form ideal silutions, calculate that total pressure and partial pressur eof each constituent above the solution at $30^{\circ} \mathrm{C}$.

D Watch Video Solution

94. A solutions is prepared by dissolving 394 g of a nonvolatile solute in 622 g of water. The vapour pressure of solution is found to be 30.74 mm Hg at $30^{\circ} \mathrm{C}$. If vapour pressure of water at $30^{\circ} \mathrm{C}$ is 31.8 mm Hg , what is the molar mass of solute?
95. The vapour pressure of pure benzene (molar mass $78 \mathrm{~g} / \mathrm{mol}$) at a certain temperature is 640 mm Hg , A nonvolatile solute of mass 2.315 g is added to 49 g of benzene. The vapour pressure of the solution is 600 mm Hg . What is the molar mass of solute?

- Watch Video Solution

96. The vapour pressure of water at $20^{\circ} \mathrm{C}$ is 17 mm Hg . What is the vapour pressure of solution containing 2.8 g urea in 50 g of water?

- Watch Video Solution

97. The vapour pressure of 2.1% solution of a non-electrolyte in water at $100^{\circ} \mathrm{C}$ is 755 mm Hg . Calculate the molar mass of the solute. $\left(58.69 \mathrm{gmol}^{-1}\right.$
98. In an experiment, 18.04 g of mannitol were dissolved in 100 g of water. The vapour pressure of water was lowered by 0.309 mm Hg from 17.535 mm Hg . Calculate the molar mass of mannitol.

- Watch Video Solution

99. The normal boiling point of ethyl acetate is $77.06^{\circ} \mathrm{C}$. A solution of 50 g of a nonvolatile solute in 150 g of ethyl acetate boils at $84.27^{\circ} C$. Evaluate the molar mass of solute if K_{b} for ethyl acetate is $2.77^{\circ} \mathrm{CKgMol}^{-1}$

D Watch Video Solution

100. 3.795 g of sulphur is dissolved in 100 g of carbon disulfide. This solution boils at 319.81 K . What is the molecular formula of sulphure in solution? The boiling point of the solvent is 319.45 K .
(Given that Kb for $\mathrm{CS} 2=2.42 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}(-1)$ and atomic mass of $\mathrm{S}=32$)

(D) Watch Video Solution

101. A solution of citric acid $C_{6} H_{6} O_{7}$ in 50 g of acetic and has boiling point elevation of 1.76 K . if K_{b} for acetic acid is $3.07 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, What is the molality of solution?

- Watch Video Solution

102. The boiling point of benzene is 353.23 K . When 1.809 of a nonvolatile solute was dissolved in 90 g of benzene, the boiling point is raised to 354.11 K . Calculate the molarmass of the solute. K_{b} for benzene is $2.53 \mathrm{Kkgmol}^{-1}$.

D Watch Video Solution

103. A solution containing 0.62 g of an unknown solute in $50 \mathrm{~g} \mathbb{C} I_{4}$ gavea boiling point elevation of 0.65 K . If the molal elevation constant
of $\mathbb{C} I_{4}$ is $5.02 \mathrm{Kkgmol}^{-1}$ Calculate molecular weight of solute:

- Watch Video Solution

104. 1.02 g of urea when dissolved in 98.5 g of certain solvent decreases its freezing point by 0.211 K .1 .609 g of unknown compound when dissolved in 86 g of the same solvent depresses the freezing point by 0.34 K . Calculate the molar mass of the unknown compound. (molar mass of urea $=60 \mathrm{~g} / \mathrm{mol}$)

D Watch Video Solution

105. A 5% aqueous solution (by mass) of cane sugar (molar mass 342 $\mathrm{g} / \mathrm{mol}$) has freezing point of 271 K . Calculate the freezing point of 5% aqueous glucdse solution if freezing point of water is 273.15 K .
106. 1.00 g of a non-electrolyte solute dissolved in 50 g of benzene lowered the freezing point of benzene of 0.40 K . The freezing point depression constant of benzene is $5.12 \mathrm{Kkgmol}^{-1}$. Find the molar mass of the solute.

D Watch Video Solution

107. 1.250 g of naphthalene was dissolved in 60 cm 3 of benzene and freezing point of the solution was found to be 277.515 K while that of benzene 278.495 K. Density of benzene is $0.880 \mathrm{gcm}^{-3} K f=5.1 \mathrm{Kmol}^{-1} \mathrm{~kg}$. Calculate the molecular weight of naphthalene.

- Watch Video Solution

108. A solution containing 34.2 g of cane sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ dissolved in 500 cm 3 of water froze at $-0.374^{\circ} \mathrm{C}$. Calculate the
freezing point depression constant of water.

D Watch Video Solution

109. What is the molar mass of a solute if a solution prepared by dissolving 0.822 g of it in 300 mdm 3 of water has an osmotic pressure of 149 mm Hg at 298 K ?

- Watch Video Solution

110. If 1.71 g of sugar (molarmass $=342$) are dissolved in 500 cm 3 of a solution at 300 K , what will be its osmotic pressure? $(R=0.082 \mathrm{~L}$ bar $\left.K^{-1} \mathrm{~mol}^{-1}\right)$.

- Watch Video Solution

111. At300 K,thesolutionof ureahasitsmolarity 0.1.Calculate the osmotic pressure of urea solution. Given that $R=0.082$ Lbar $K-1 \mathrm{~mol}^{-1}$.

- Watch Video Solution

112. The osmotic pressure of CaCl 2 and urea solutions of the same concentration at the same temperature are respectively 0.605 atmand 0.245 aim. Calculate van't Hoff factor for CaCl_{2}.

- Watch Video Solution

113. 0.2 m aqueous solution of KCl freezes at $-0.680^{\circ} \mathrm{C}$. Calcuate van't Hoff factor and osmotic pressure of solution at $0^{\circ} C$. $K_{f}=1.86 \mathrm{Kkgmol}^{-1}$.
114. 0.01 m aqueous formic acid solution freezes at $-0.021^{\circ} C$. Calculate its degree of dissodation. $K_{f}=1.86 \mathrm{Kkgmol}^{-1}$.

- Watch Video Solution

115. 3.4 g of CaCl_{2} is dissolved in 2.5 L of water at 300 K . What is the osmotic pressure of the solution? van't Hoff factor for CaCl_{2} is 2.47 .
$(\mathrm{Ca}=40, \mathrm{Cl}=35.5)$

- Watch Video Solution

116. A 0.1 m solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ in water has freezing point of $-4.3^{\circ} \mathrm{C}$. What is the value of van't Hoff factor if Kf for water is $1.86 \mathrm{Kkgmol}^{-1}$.

- Watch Video Solution

117. Assuming complete dissociation, calculate the molality of an aqueous solution of KBr whose freezing point is $-2.95^{\circ} \mathrm{C}$. K , for water is $1.86 \mathrm{Kkgmol}^{-1}$.

(D) Watch Video Solution

118. An aqueous solution of a certain organic compound hasa density of $1.063 \mathrm{~g} L^{-1}$ an osmotic pressure of 12.16 atm at $25^{\circ} \mathrm{C}$ and a freezing point of $-1.03^{\circ} \mathrm{C}$. What is the molar mass of the compound? $\left(\right.$ Givenkg $=1.86 \mathrm{kgmol}^{-1}$.

- Watch Video Solution

119. At $25^{\circ} \mathrm{C}$ a 0.1 molar solution of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.35% dissodated in an aqueous solution. Calculate'freezing point and osmotic pressure of the solution assuming molality and molarity to be identical.
$K_{f}=1.86$,

(D) Watch Video Solution

120. The solubility of nitrogen gas at1bar pressure at $25^{\circ} \mathrm{C}$ is 6.8×10^{-4} moldnr ${ }^{-3}$. Calculate the solubility of N_{2} gasfrom atmosphere at $25^{\circ} \mathrm{C}$ if atmospheric pressure is 1 bar and partial pressure of N_{2} gas at this temperature and pressure is 0.78 bar.

D Watch Video Solution

121. The vapour pressurefor purebenzene at a certain'temperature is 0.850 bar. A non-volatile, nonelectrolyte solid weighing 0.5 g when added to 39.0 g of benzene (molar mass $78 \mathrm{~g} \mathrm{~mol}-1$) Vapour pressure of solution, then, is 0.845 bar. What is the molar mass of the solid substance.
122. Calculate the mass in grams of an impurity ofmolar mass $100 \mathrm{gmol}^{-1}$ which would be required to raise the boiling point of 50 g of chloroform by 0.30 K (Kb for chloroform $3.63 \mathrm{Kkgmol}^{-1}$).

- Watch Video Solution

123. 1.00 g of a non-electrolyte solute dissolved in 50 g of benzene lowered the freezing point of benzene of 0.40 K . The freezing point depression constant of benzene is $5.12 \mathrm{Kkgmol}^{-1}$. Find the molar mass of the solute.

D Watch Video Solution

124.200 cm 3 of an aqueous solution of a protein contain 1.26 g of the prote in.The osmotic pressure of such a solution at 300 K is found to be 2.57×10^{-3} bar. Calculate the molarimass of-the protein.
125. 2 g of benzoic add $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ dissolved in 25 g of benzene shows a depression in freezing point equal to 1.62 K . Molal depression constant for benzene is $4.98 \mathrm{Kkgmol}^{-1}$. What is the percentage assodation of the acid if it forms dimer in solution.

- Watch Video Solution

126. The solubility of dissolved oxygen to $27^{\circ} \mathrm{Cis} 2.6 \times 10^{-3} \mathrm{mo} \frac{l}{d} m^{3}$ at2aim. $F \in$ ditsso lub ilityat8.4atm and 27^{\wedge} @C'.

- Watch Video Solution

127. Calculate the freezing point of solution prepared by dissolving 4.5 g of glucose $\left(\right.$ molarmass $\left.=180 \mathrm{gmol}^{-1}\right)$ in 250 g of bromoform.

Given, freezing point of bromoform $=7.8^{\circ} \mathrm{C}$ and K_{f} for bromoform
$=14.4 \mathrm{Kkgmol}^{-1}$.

- Watch Video Solution

128. The solubility of Nitrogen at $30^{\circ} \mathrm{C}$ is $2.5 \times 10^{-3} \mathrm{gdm}^{-3}$ at 760 mm pressure. What will be its solubility in $\mathrm{mol} d \mathrm{~m}^{-3}$ at $20,000 \mathrm{~mm}$ and same temperature?

- Watch Video Solution

129. Vapour pressure of chloroform $\left(\mathrm{CHCI}_{3}\right)$ and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{CI}_{2}\right)$ at 298 K are 200 mm Hg and 415 mm Hg respectively, (i) Calculate the vapour pressure of the solution prepared by mixing 25.5 g of CHCI_{3} and 40 g of $\mathrm{CH}_{2} \mathrm{CI}_{2}$ at 298 K and (ii) mole fractions of each component in vapour phase.
130. What is the mass of sucrose in its 1 L solution $\left(\right.$ molarmass $\left.=342 \mathrm{gmol}^{-1}\right)$ which is isotonic with $\begin{gathered} \\ 6.6 \mathrm{xx} \mathrm{10} \\ 10^{\wedge}(-3) \mathrm{kg}\end{gathered}$ L1of urea (NH, CONH,)? ($\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14,0=16$)

(Watch Video Solution

131. An organicsubstance $\left(M=169 \mathrm{gmol}^{-1}\right)$ isdissolved in 2000 cm 3 of water. Its osmotic pressure at $12^{\circ} C$ was found to be 0.54 aim. If R $=0.0821 \mathrm{Latm} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$, calculate the mass of the solute.

- Watch Video Solution

132. Find the osmotic pressure of 5 per cent solution of glucose $\left(C_{6} H_{12} O_{6}\right)$ at $27^{\circ} C$. ($\mathrm{R}=0.082$ litre atmosphere per degree per mole).
133. The vapour pressure of a solution contain 2 moles of a solute in 2 moles of water (vapour pressure of pure water $=24 \mathrm{~mm} \mathrm{Hg}$) is
A. 24 mm Hg
B. 32 mm Hg
C. 48 mm Hg
D. 12 mm Hg

Answer:

- Watch Video Solution

2. The colligative property of a solutionis
A. vapour pressure
B. boiling point
C. osmotic pressure
D. freezing point

Answer:

D Watch Video Solution

3. While considering boiling point elevation and freezing point depression of a solution concentration is expressed in molality and not in molarity. Why?
A. molarity
B. molality
C. mole fraction
D. mass precent

Answer:

D Watch Video Solution

4. Ebullioscopic constant is the boiling point elevation when the concentration of solution is
A. 1 m
B. 1 M
C. 1 mass \%
D. 1 mole fraction of solute

Answer:

- Watch Video Solution

5. Cryoscopic constant depend on
A. mature of solvent
B. nature of solute
C. nature of solution
D. number of solvent molecules

Answer:

D Watch Video Solution

6. Identify the correct statement
A. vapour pressure of solution is higher than that of pure solvent
B. boiling point of solvent is lower than that of solution
C. osmotic pressure of solution is lower than that of solvent
D. osmosis is a colligative property

Answer:

7. A living cell contains a solution which is isotonic with0.3Msugar solution. What osmotic pressure develops when the cell is placed in 0.1 M KCl solution at body temperature.
A. 5.08 atm
B. 2.54 atm
C. 4.92 atm
D. 2.46 atm

Answer:

- Watch Video Solution

8. The osmotic pressure of blood is 7.65 atm at 310 K . An aqueous solution of glucose isotonic with blood has the percentage (by
volume)
A. 5.41
B. 3.54
C. 4.54
D. 53.4

Answer:

- Watch Video Solution

9. Vapour pressure of a solution is \qquad .
A. directly propertional to the mole fraction of the solute
B. inversely propertional to the mole fraction of the solute
C. Inversely proportional to the moel fraction of the solvent
D. directly propertional to the mole fraction of the solvent

- Watch Video Solution

10. Pressure cooker reduces cooking time for food because
A. boiling point of water involved in cooking is increased.
B. heat is more evenly distributed in the cooking space.
C. the higher pressure inside the cooker smashes the food material.
D. cooking involves chemical changes helped by a rise in temperature.

Answer:

Watch Video Solution

11. Henry's law constant for a gas $\mathrm{CH}_{3} \mathrm{Br}$ is 0.15 g moldm ${ }^{-3} \mathrm{~atm}^{-1} \mathrm{at} 25^{\circ} \mathrm{C}$. What is the solubility of $\mathrm{CH}_{3} \mathrm{Br}$ in water at $25^{\circ} \mathrm{C}$ and a partial pressure of 0.164 atm ?
A. $0.0159 \mathrm{~mol}^{-1}$
B. $0.164 \mathrm{~mol}^{-1}$
C. 0.026 M
D. 0.042 M

Answer:

- Watch Video Solution

12. Which of the following statement is NOT correct for 0.1 M urea solution and 0.05 M sucrose solution?
A. osmotic pressure exhibited by urea solution is higher than that exhibited by sucrose solution.
B. urea solution is hypertonic to sucrose solution.
C. They are isotonic solutions
D. sucrose solution is hypotonic to urea solution.

Answer:

- Watch Video Solution

13. Which of the following is independent of temperature?
A. Normality
B. molarity
C. molality
D. formality

D Watch Video Solution

14. When NaCl added to a water.
A. freezing point is raised
B. boiling point is depressed
C. freezing point does not change
D. boiling point is raised

Answer:

- Watch Video Solution

15. Which of following 0.1 M equeous solution will exert highest osmotic pressure.
A. NaCl
B. $B a C I_{2}$
C. $m g S O_{4}$
D. $A I_{2}\left(S O_{4}\right)_{3}$

Answer:

D Watch Video Solution

16. According to the Raoult's law, 'the relative lowering of vapour pressure is equal to the
A. mole fraction of solvent
B. mole fraction of solute
C. independent of mole fraction of solute
D. molality of solution

Answer:

D Watch Video Solution

17. Partial pressure of solvent in solution of non-volatile solute is given by equation,
A. $p=x_{2} p^{\circ}$
B. $p=x p^{\circ}$
C. $p=x_{2} P^{\circ}$
D. $p=x_{1} p^{\circ}$

Answer:

18. When partial pressure of solvent in solution of non-volatile solute is plotted against its mole fraction, nature of graph is
A. a straight line passing through origin.
B. a straight line parallel to mole fraction of solvent.
C. a straight line parallel to vapour pressure of solvent
D. a stright line intersecting vapour pressure axis

Answer:

- Watch Video Solution

19. Lowering of vapour pressure of solution
A. is a property of solute
B. is a property of solute as well as solution.
C. is a property of solution.
D. is a colligative property.

Answer:

- Watch Video Solution

20. Molal elevation constant is elevation in boiling poind produced by
A. 1 g of solute in 100 g of solvent.
B. 100 g of solute in 1000 g of solvent.
C. 1 mole of solute in one litre of solvent.
D. 1 mole of solute in one kg of solvent.

Answer:

- Watch Video Solution

21. Why the vapour pressure of solution containing non-valatile solute is lower than that of pure solvent?
A. equal to the vapour pressure of pore solvent.
B. higher than vapour pressure of pure solvent
C. lower than vapour pressure of pure solvent.
D. constant.

Answer:

(D) Watch Video Solution

22. Explain Osmosis
A. solvent molecules pass from high concentration of solute to low concentration.
B. solvent molecules pass from a solution of low concentration of solute to a solution of high concentration of solute.
C. solutemoleculespassfromlowconcentration to high
concentration.
D. solute molecules pass from high concentration to low concentration.

Answer:

- Watch Video Solution

23. The two solutions with same osmotic pressure are called
A. isotonic
B. isomeric
C. hypotonic
D. hypertonic

Answer:

D Watch Video Solution

24. The two solutions with same osmotic pressure are called
A. isotonic
B. isomeric
C. hypotonic
D. hypersonic

Answer:

D Watch Video Solution

25. molarity of solution depend on
A. temperature
B. nature of solute dissolved
C. mass of solvent
D. pressure

Answer:

D Watch Video Solution

26. Which of the following aqueous solution will have minimum elevation in boiling point?
A. 0.1 m KCl
B. 0.05 m NaCl
C. $1 \mathrm{mAlPO}_{4}$
D. 0.1 m MgSO

Answer:

D Watch Video Solution

27. Which of the following will have maximum depression in freezing point?
A. $0.5 m \mathrm{Li}_{2} \mathrm{SO}_{4}$
B. 1 m KCl
C. $0.5 m A I_{2}\left(\mathrm{SO}_{4}\right)_{3}$
D. $0.5 \mathrm{mBaCI} I_{2}$

Answer:

28. Relative lowering of vapour pressure depend only on
A. mole fraction of solute
B. Nature of solvent
C. Nature of solute
D. Nature of solute and solvent

Answer:

- Watch Video Solution

29. If mass is expressed in gram then Kb is given by
A. $\frac{M_{2} \Delta T_{b} \times W_{1}}{1000 x W_{2}}$
B. $\frac{W_{2}}{\Delta T_{b} \times W_{1} \times_{M-1}} \mathrm{x} \times 1000$
C. $\frac{M_{2} \Delta T_{b} \times W_{2}}{1000 \times W_{1}}$
D. $\frac{W_{2}}{\Delta T_{b} \times W_{1} \times_{M-2}} \times \times 1000$
30. A homegeneous mixture of two more pure substance is called
A. compound
B. solute
C. Solvent
D. Solution

Answer:

- Watch Video Solution

31. The properties of a solution depends upon the nature of
A. solute
B. Solvent
C. solute and solvent
D. Solution

Answer:

- Watch Video Solution

32. CO_{2} dissolved in water is \qquad
A. liquid solution
B. liquid in gas solution
C. liquid in liquid solution
D. gaseous solution
33. sodium amalgam and silver amalgam are the following types of solution:
A. solid in liquid
B. liquid in solid
C. solid in solid
D. solid in Mercury

Answer:

- Watch Video Solution

34. Solubility is expressed in
A. moldm ${ }^{-3}$
B. $m o l d m^{3}$
C. mol kg
D. $\mathrm{mol} / \mathrm{kg}$

Answer:

- Watch Video Solution

35. Which gas is less soluble in water?
A. O_{2}
B. NH_{3}
C. HCl
D. CO_{2}

Answer:

36. Solubility of gas in liquid
A. increases with increase in temperature .
B. decreases with increase in temperature.
C. remains constant.
D. increases with decrease in temperature.

Answer:

D Watch Video Solution
37. For pure liquid, the vapour pressure will be directly proportional to
A. boiling point
B. freezing point
C. mole fraction
D. temperature

Answer:

- Watch Video Solution

38. Homogeneous system among the following is
A. starch solution
B. sand in water
C. urea in water
D. benzene in water

Answer:

39. A homogeneous solution constitute..... number of phases
A. A. one
B. B. two
C. C. three
D. D. four

Answer:

- Watch Video Solution

40. Occlusion of Hydrogen on Palladium is an example of.
solution.
A. gas in solid
B. solid in gas
C. gas in liquid
D. liquid in ga

Answer:

- Watch Video Solution

41. The concentration unit which does not change with the temperature is
A. both molality and mole fraction
B. molality only
C. mole fraction only
D. molarity only

Answer:

42. The units of molarity are
A. $\equiv a \leq n t l i t^{-3}$
B. mollit $^{-1}$
C. $m o \leq s k g^{-1}$
D. $\equiv a \leq n t k g^{-1}$

Answer:

- Watch Video Solution

43. The temperature at which the vapour pressure of the liquid becomes equal to the atmospheric pressure is known as Its \qquad .
A. melting point
B. boiling oint
C. 273 K

D Watch Video Solution

44. The vapour pressure is least for
A. pure water
B. 0.1 M aueous urea
C. 0.2 M aqueous urea
D. 0.3 M aqueous urea

Answer:

- Watch Video Solution

45. What is osmotic pressure?
A. 1 M NaCl
B. $1 M M g C I_{2}$
C. $1 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
D. $1 \mathrm{MNa} a_{2} \mathrm{SO}_{4}$

Answer:

- Watch Video Solution

46. When mango n placed in dilute aqueous solution of hydrochloric acid it,
A. Shrinks
B. swells
C. bursts
D. nothing happen

Answer:

D Watch Video Solution

47. The boiling point of 0.1 molal $K_{4}\left[F e(C N)_{6}\right]$ solution will be (given K_{b} for water $\left.=0.52 \mathrm{k} \mathrm{kg} \mathrm{mol}^{\wedge}(-1)\right)^{`}$
A. $100.52^{\circ} C$
B. $100.104^{\circ} C$
C. $100.26^{\circ} \mathrm{C}$
D. $102.6^{\circ} \mathrm{C}$

Answer:

48. The freezing point of equimolal aqueous solution will be higher for
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}^{+} \mathrm{CI}^{-}$
B. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$
C. $\mathrm{La}\left(\mathrm{NO}_{3}\right)_{2}$
D. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Answer:

- Watch Video Solution

49. The depression in freezing point 1 m urea, 1 m glucose and 1 m NaCl are in the ratio of
A. A. 1:2:3
B. B. 1:2:2
C. C.3:2:2
D. D. 1:1:2

Answer:

- Watch Video Solution

50. A homogeneous solution constitute..... number of phases
A. one
B. two
C. three
D. four

Answer:

51. Relative lowering of vapour pressure depend only on
A. mole fraction of solute
B. Nature of solvent
C. Nature of solvent
D. Nature of solute and solvent

Answer:

- Watch Video Solution

52. When NaCl added to a water.
A. freezing point is raised
B. boiling point is depressed
C. freezing point does not change
D. boiling point is raised

Answer:
53. van't Hoff factor of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)$ is
A. one
B. two
C. three
D. four

Answer:

- Watch Video Solution

54. Define the term Reverse osmosis.
55. 0.15 molal solution of a substance boils at 373.23 K . Calculate molal elevation constant of water, (Given boiling point of water=373.15K)

D Watch Video Solution

56. At $298 \mathrm{~K}, 1000 \mathrm{~cm}^{3}$ of a solution containing 4.34 g of solute shows osmotic pressure of 2.55 atm ., What is the molar mass of the solute.

D Watch Video Solution

57. The vapour pressure of a solution containing $13 \times 10^{-3} \mathrm{~kg}$ of solute in 0.1 kg of water at 298 K is 27.371 mm Hg . Calculate the molar mass of the solute. given that the vapour pressure of water at 298 k is 28.065 mm hg
58. What is the concentration of dissolved oxygen at $25^{\circ} \mathrm{C}$ at 1 bar if partial pressure of oxygen is 0.22 bar? The Henry's law constant for oxygen is $1.3 \times 10^{-3} \mathrm{~mol} \mathrm{dm} 3$ bar1.

- Watch Video Solution

59. The observed depression in the freezing print of water for a particular solution is 0.087 K . Calculate the molality of the solution if molal depression constant for water is $1.86 \mathrm{Kkg}^{2} \mathrm{~mol}^{-1}$.

- Watch Video Solution

60. Assuming complete dissociation, calculate the molality of an aqueous solution of KBr whose freezing point is $-2.95^{\circ} \mathrm{C}$. K , for water is $1.86 \mathrm{Kkgmol}^{-1}$.
61. Battery acid is 4.22 M aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution, and has density of $1.21 \mathrm{gcm}^{-3}$. What is the molality of $H_{2}{S O_{4}}^{2} \mathrm{H}=1, \mathrm{~S}=32, \mathrm{O}=16$.

- Watch Video Solution

62. Boiling point of water at 750 mm of Hg is $99.63^{\circ} \mathrm{C}$. How much sucrose must be added to 500 g of water so that it boils at $100^{\circ} \mathrm{C}$

- Watch Video Solution

63. What is solubility. Explain the different factors affecting solubility.

- Watch Video Solution

