©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CHETANA PUBLICATION

Structure of atoms and nuclei

Example

1. Name the first scientists to propose about atom in 5th century BC ?

- Watch Video Solution

2. How the word "Atom" was defined in the 5th century BC?
3. Which Indian saint and philosopher, explain atom in early century BC?

- Watch Video Solution

4. State assumption of Dalton's atomic theory.

- Watch Video Solution

5. State drawback of Dalton's atomic theory.

- Watch Video Solution

6. Why Thomson's atomic model was called as plum pudding model.

- Watch Video Solution

7. John Dalton's model of atom was
8. . Draw the labelled diagram of atomic model.

- Watch Video Solution

9. Answer the following questions:

Write the name and the structure of monomer of polyacrylonitrile.

- Watch Video Solution

10. What are alpha particles?

- Watch Video Solution

11. Mention the name of scientist involved with alpha scattering experiment.
12. Name the source used in alpha scattering experiment.

- Watch Video Solution

13. Explain the Rutherford's model of an atom.

- Watch Video Solution

14. State the difficulties faced by Rutherford atomic model?

- Watch Video Solution

15. What are the drawbacks of Rutherford atomic model?
16. What happens, when a metallic object is heated?

- Watch Video Solution

17. What are four visible line spectra observed in hydrogen gas?

- Watch Video Solution

18. Explain hydrogen spectrum with different series.

- Watch Video Solution

19. What is a photon?

- Watch Video Solution

20. Derive a dimension of 'h' Planck's constant.
21. Obtain an expression for the radius of Bohr orbit for H -atom.

- Watch Video Solution

22. Show that linear velocity of electron in Bohr's orbit is inversely proportional to principal quantum number.

- Watch Video Solution

23. Determine the maximum angular speed of an electron moving in a stable orbit around the nucleus of hydrogen atom.

- Watch Video Solution

24. Find the ratio of the diameters of 2nd Bohr orbit to 4th Bohr orbit.
25. Find the velocity of the electron in the first orbit in hydrogen atom. Hence, find velocities when electron is in 3rd and 5th orbit.

- Watch Video Solution

26. Find the linear momentum of the electron in the 2nd Bohr orbit. And hence find the angular momentum of the electron in hydrogen atom.

- Watch Video Solution

27. Calculate the frequency of revolution of the electron in the first Bohr orbit of H -atom, if the radius of the 1st Bohr orbit is $0.50 \mathrm{~A}^{\circ}$ and the velocity of electron in the first orbit $=2.24 \times 10^{6} \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

28. Find the angular speed of the electron in the first orbit of hydrogen atom.

- Watch Video Solution

29. The angular speed of the electron in the nth Bohr orbit of the hydrogen atom is proportional to

- Watch Video Solution

30. The time period of revolution of electron in its ground state orbit in a hydrogen atom is $1.6 \times 10-16 \mathrm{~s}$. The frequency of revolution of the electron in its first excited state (in s-1) is:

- Watch Video Solution

31. Draw a neat and labelled energy level diagram for hydrogen atom
32. Obtain expression for longest and shortest wavelength of spectral lines in ultraviolent region for hydrgen atom.

- Watch Video Solution

33. State the name of the visible series in hydrogen series .Also obtain expression for longest and shortest wavelength o spectral lines.

- Watch Video Solution

34. Derive the expression for the energy of an electron in the atom.

- Watch Video Solution

35. Show that energy of the electron is inversely proportional to the square of principal quantum number.
36. Starting from the formula for energy of an electron in the nth orbit of hydrogen atom, derive the formula for the wavelength of spectral lines.

- Watch Video Solution

37. Explain the different series of spectral lines in hydrogen atom.

- Watch Video Solution

38. Draw a neat and labelled energy level diagram for hydrogen atom

- Watch Video Solution

39. Determine the energies of the first excited states of the electron in hydrogen atom. What are excitation energies of the electron in these orbits?
40. Calculate the wavelength of the first line of Paschen series of hydrogen atom.

- Watch Video Solution

41. Show that the frequency of the first line in Lyman series is equal to the difference between the limiting frequencies of Lyman and Balmer series.

- Watch Video Solution

42. Determine the series limit of Balmer ,Paschen and Pfund series ,given the series limit for Lyman series is $912 A^{\circ}$.

- Watch Video Solution

43. The energy of an electron in an excited state of hydrogen atom is -1.51 eV . Calculate the angular momentum of the electron in this state. $h=6.63 \times 10^{-34} \mathrm{Js}$

- Watch Video Solution

44. What are the drawbacks of Bohr'sModel?

- Watch Video Solution

45. What are the limitation of Bohr's model?

- Watch Video Solution

46. Explain how De Broglie explanation gave theoretical basis for the second postulate made by Bohr?
47. What is nucleus? Discuss the composition and size of the nucleus.

- Watch Video Solution

48. Define Atomic Number, Atomic Mass.

- Watch Video Solution

49. Define Isotopes, Isobars and Isotones.

- Watch Video Solution

50. Define unified atomic mass unit. Express it in MeV / c^{2}.
51. Give the values of Electron, proton and neutron in terms of united atomic mass unit(U).

- Watch Video Solution

52. Explain Einstein's mass-energy relation with suitable examples.

- Watch Video Solution

53. Write the formula for radius $R \%$ of a nucleus X.

- Watch Video Solution

54. Prove that density of all the nuclei is same.

- Watch Video Solution

55. The radius of the nucleus is of the order of ...

- Watch Video Solution

56. What is nuclear forces?

Watch Video Solution
57. State the properties of nuclear forces.

- Watch Video Solution

58. Define mass defect.

- Watch Video Solution

59. Define: Nuclear binding energy.
60. Define :Binding energy per nucleon. Express binding energy per nucleon in terms of mass defect.

- Watch Video Solution

61. Calculate the binding energy of the mass of Lithium atoms being 7.016u respectively.

- Watch Video Solution

62. Calculate the binding energy of an alpha particle Whose given mass is 4.00151u.
63. Obtain the binding energy in MeV of a nitrogen nucleus $\left(7_{14} N\right)\left(\right.$ Given : massof $\left(7_{14} N\right)=14.00307$ a.m.u. $)$

D Watch Video Solution

64. What is meant by radioactivity?

- Watch Video Solution

65. Define radioactive decay. State the types of decay and write down the formulae for energies.

- Watch Video Solution

66. Write down the formulae Q value.

- Watch Video Solution

67. Calculate the energy released in the following reactions, the masses given are:, ${ }_{88}^{223} \mathrm{Ra} \rightarrow{ }_{82}^{209} \mathrm{~Pb}+{ }_{6}^{14} \mathrm{C}$

- Watch Video Solution

68. Complete the following equation describing nuclear decays: ${ }_{88}^{226} R_{a}$ emits alpha particles.

- Watch Video Solution

69. Complete the following equation ${ }_{8}^{\prime, 19} \mathrm{O}$ undergoes beta decay.

- Watch Video Solution

70. Complete the following equation: ${ }_{90}{ }_{90}^{228} T h$ undergoes alpha decay.

- Watch Video Solution

71. Complete the following equation: ${ }_{7}^{\prime, 12} N$ undergoes beta decay.

- Watch Video Solution

72. Calculate the energy released in the following reactions, the masses given are:, ${ }_{88}^{223} \mathrm{Ra} \rightarrow{ }_{82}^{209} \mathrm{~Pb}+{ }_{6}^{14} \mathrm{C}$

- Watch Video Solution

73. Calculate the energy released in the following reactions, the masses given are: ${ }_{92}^{{ }^{236}} U \rightarrow{ }_{56}^{140} \mathrm{Ba}+{ }_{36}^{94} \mathrm{Kr}+2 n$

- Watch Video Solution

74. State the law of radioactive decay. Hence derive the expression $N=N_{0}\left(e^{-\lambda} t\right)$.If where symbols have their usual meanings.
75. What do you mean by "Activity" in radioactivity state its different units?

Watch Video Solution

76. Define Half-life of radioactive material. Derive an expression for half-life period

- Watch Video Solution

77. The half-life of a nuclear species ' ${ }^{N} X$ is 3.2 days calculate its:decay constant

- Watch Video Solution

78. The half-life of a nuclear species ${ }^{\prime N} X$ is 3.2 days calculate its:Average life
79. The activity of a radioactive sample decreased from $350 s^{-1}$ to $175 s^{-1}$ in one hour. Determine the half-life of the species

- Watch Video Solution

80. Sample of carbon obtained from any living organism has a decay rate of 15.3 decays per gram per minute. A sample of carbon obtained from very old charcoal shows a disintegration rate of12.3 disintegrations per gram per minute. Determine the age of the old sample given the decay constant of carbon to be 3.839×10^{-12} per sec ond

- Watch Video Solution

81. The half-life of is ${ }_{38}^{90} \mathrm{Sr}$ Is 28 years. Determine the disintegration rate of its 5 mg sample.
82. What is the amount of ${ }^{\prime}{ }_{27} \mathrm{Cu}$ necessary to provide a radioactive source of strength 10.0 mCi , its half-life being 5.3 years?

- Watch Video Solution

83. Disintegration rate of a sample is 10^{10} per hour at 20 hrs from the start. It reduces to6.3 $\times 10^{9}$ per hour after 30 hours. Calculate its half life andthe initial number ofradioactive atoms in the sample.

- Watch Video Solution

84. The isotopes ${ }^{57} \mathrm{Co}$ decays by electrons capture to ${ }^{57} \mathrm{Fe}$ with a half life pf 272d. The ${ }^{57} \mathrm{Fe}$ nucleus is produced in an excited state, and it almost instantaneously emits gamma rays: Find the mean lifetime and decay constant for ${ }^{\prime}{ }_{C} O^{58}$
85. The isotopes $C_{C} 0^{57}$ decays by electrons capture to ${ }^{57} \mathrm{Fe}$ with a half - life 272d. The ${ }^{57} \mathrm{Fe}$ nucleus is produced in an excited state, and it almost instantaneously emits gamma rays. If the activity of a radiation source ${ }^{57} \mathrm{Cois} 2.0 \mu \mathrm{Ci}$ now, how many C^{57} nuclei does the sorce contains?

- Watch Video Solution

86. The isotopes ${ }^{57} \mathrm{Co}$ decays by electrons capture to ${ }^{57} \mathrm{Fe}$ with a half life pf 272d. The ${ }^{57} \mathrm{Fe}$ nucleus is produced in an excited state, and it almost instantaneously emits gamma rays: Find the mean lifetime and decay constant for ${ }^{\prime \prime}{ }_{C} o^{58}$

- Watch Video Solution

87. Before the year 1900 the activity per unit mass of atmospheric carbon due to the presence pf ' ' C^{14} averaged about 0.2555 bqper gram of carbon: What fraction of carbon atoms were ${ }^{, 14} C$?
88. Before the year 1900 the activity per unit mass of atmospheric carbon due to the presence pf ${ }^{\prime}$ ' C^{14} averaged about 0.2555 bqper gram of carbon: What fraction of carbon atoms were ${ }^{, 14} C$?

- Watch Video Solution

89. In the following table, seven elements P, Q, R, S, T, U and V (here letters are not the usual symbol of the elements)of the modern periodic table with their atomic numbers are given

3	4	5	6	7	8	9	10
P					T		V
11	12	13	14	15	16	17	18
Q	R		S			U	

these is an inert gas? Name it.

D Watch Video Solution

90. What is nuclear energy? Explain two process of obtaining nuclear energy.

- Watch Video Solution

91. Explain Nuclear fission process with examples.

- Watch Video Solution

92. Write a note on nuclear reactor.

- Watch Video Solution

93. Answer the following questions in detail:

How is nuclear fission reaction carried out in nuclear power plants?

- Watch Video Solution

94. Explain Nuclear fusion process with examples.

- Watch Video Solution

95. What are the harmful effect of nuclear reaction.

- Watch Video Solution

96. Calculate the energy released in the fusion reaction taking place inside the Sun, $4 p \rightarrow \alpha+2 e^{+}+$neutrinos, neglecting the energy given to the neutrinos. Mass of of alpha particle being 4.001506 u .

- Watch Video Solution

97. How much mass of ${ }^{235} U$ is required to undergo fission each day to provide $\mathbf{3 0 0 0}$ MW of thermal power? Average energy per fission is 202.79 Mev?
98. Distinguish between Nuclear fission and Nuclear fusion.

- Watch Video Solution

99. Distinguish between Nuclear reactor and Nuclear bomb?

- Watch Video Solution

Exercise

1. The radius of 3 rd Bohr's orbit in hydrogen atom is $4.782 \times 10^{-10} \mathrm{~m}$

Calculate the radius of the 5th Bohr orbit.

- Watch Video Solution

2. Find the ratio of the diameters of 1st Bohr orbit to 3rd Bohr orbit.

- Watch Video Solution

3. Calculate the linear velocity and angular momentum of an electron in the 1st Bohr orbit of hydrogen atom. Given radius of second Bohr orbit= $2.12 \stackrel{\circ}{A}, \varepsilon_{0}=8.85 \times 10^{-12} \frac{C^{2}}{N m^{-2}} 10^{-34} J-s, e=1.6 \times 10^{-19} C$.

(Watch Video Solution

4. Angular speed of the electron in the 1st Bohr orbit is $4.08 \times 10^{16} \mathrm{rad} / \mathrm{sec}$. Find the angular speed of the electron in the 3rd orbit.

- Watch Video Solution

5. Find the period of revolution of electron in the second orbit in the hydrogen atom and hence find period of revolution of the electron in the third orbit of hydrogen atom.
$\varepsilon_{0}=8.85 \times 10^{-12} C^{2} / N m^{2}, h=6.63 \times{ }^{-34} J-s, m=9 . \times 10^{-31} \mathrm{~kg}, e=$

- Watch Video Solution

6. The angular momentum of the electron in the second Bohr orbit is $2.112 \times 10^{-34} \mathrm{kgm}^{2} / \mathrm{s}$. Find the angular momentum of the electron in the third Bohr orbit.

- Watch Video Solution

7. Find the energy of the electron in eV in the third Bohr orbit of the hydrogen atom. (Rydberg'scons $\tan t \mathrm{R}=1.097 \mathrm{xx10}{ }^{\wedge} 7 \mathrm{~m}^{\wedge}-1$

Planck'scons $\tan t(h)=6.63 \times \times 10^{\wedge}-34$ J.S, velocityoflight $\in \operatorname{air}(c)=$ $\left.3 x x 10^{\wedge} 8 \mathrm{~m} / / \mathrm{s}\right)^{`}$
8. Energy of an electron in the first Bohr orbit is -13.6 eV . Hence calculate the energy of the electron in second orbit.

- Watch Video Solution

9. What is rolling kinetic energy ?

- Watch Video Solution

10. Calculate the difference in energies of two levels between which a transition of wavelength $4000^{\circ} A$ takes place.

- Watch Video Solution

11. An electron in the ground state jumps to 4th state by absorption of energy -13.6 eV . Determine a wavelength and frequency of the photon, $\left(e=1.6 \times 10^{-19} C, h=6.63 \times 10^{-34} J-s, c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
12. Calculate the wavelength of a microwave of frequency 8 GHz

- Watch Video Solution

13. The H_{a} line of the Balmer series of hydrogen spectrumhasa wavelength $6560 \times 10^{-10} \mathrm{~m}$. Calculate the wavelength of H_{b} line of the Balmar series.

- Watch Video Solution

14. Calculate the energy radiated by the electron in the hydrogen atom during its transition from the fourth Bohr orbit to the first Bohr orbit. Hence determine frequency, wavelength and wave number of corresponding spectral line. Given:
$E_{1}=-13.6 \mathrm{eV}, h=6.6 \times 10^{-34} \mathrm{~J}-\mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \ldots$
15. Find the series limit of Paschen series $R=1.097 \times 10^{7} \mathrm{~m}^{-1}$.

- Watch Video Solution

16. Find the ratio of the longest wavelength to the shortest wavelength in Balmer series.

- Watch Video Solution

17. If the shortest wavelength in Paschen series is $8203 A^{\circ}$, find the longest wavelength in Balmer series.

- Watch Video Solution

18. John Dalton's model of atom was
A. positively charged sphere with electrons embedded in it.
B. positively charged nucleus at the centre and electrons revolving around it.
C. positively charged nucleus at the centre and electrons revolving around it in fixed orbit.
D. none of these.

Answer:

- Watch Video Solution

19. Bohr's theory applicable to
A. directly proportional to principal quantum number.
B. inversely proportional to the principal quantum number.
C. inversely proportional to square of principal quantum number.
D. directly proportional to the square of principal quantum number.

Answer:

D Watch Video Solution

20. If the radius of 1 st Bohr orbit in hydrogen atom is $0.5 A^{\circ}$ 'then radius of 3 rd Bohr orbit is
A. $0.25 A^{\circ}$
B. $0.40 A^{\circ}$
C. $4.5 A^{\circ}$
D. $0.45 A^{\circ}$

Answer:

- Watch Video Solution

21. Which of the following quantities are inversely proportional to the cube of principal quantum number?
A. frequency
B. periodic time
C. angular velocity
D. (A) and (c) both

Answer:

- Watch Video Solution

22. Bohr's second postulate equation is $m v r=n \frac{h}{2 \pi}$. In this relation n represents.
A. principal quantum number
B. frequency
C. number pf turns
D. frequency of radiation emitted by an atom
23. According to Bohr's theory, the angular momentum for an electron in 5th orbit is
A. directly proposal to n
B. inversely proportional to n
C. directly proporational to n^{2}
D. inversely proporational to n^{2}

Answer:

- Watch Video Solution

24. Let ' P ' and ' E ' denote the linear momentum and energy of emitted photon, respectively. If wavelength of incident radiation is increased

A. both P and E

B. P increases and E decreases
C. P increases and E decreases
D. both P and E decreases

Answer:

- Watch Video Solution

25. The radius of the nucleus is of the order of ...
A. $10^{-6} \mathrm{~cm}$
B. $10^{-10} m$
C. $10^{-17} \rightarrow 10^{-21} m$
D. $10^{-14} \rightarrow 10^{-15} \mathrm{~m}$

Answer:

26. The energy of an electron in $n^{t} h$ orbit is proporational to
A. n^{2}
B. n
C. $1 / n$
D. $\frac{1}{n^{2}}$

Answer:

- Watch Video Solution

27. Energy of the electron in $n=\infty$ is
A. $\mathrm{E}=-13.6 \mathrm{eV}$
B. $\mathrm{E}=-\infty \mathrm{e} V$
C. $\mathrm{E}=-0 \mathrm{eV}$
D. $E=+13.6 \mathrm{eV}$

Answer:

- Watch Video Solution

28. Relation between K.E. and P.E. for an electron revolving in $n^{t} h$ bohr orbit is
A. K.E. = P.E.
B. K.E. = -P.E.
C. K.E. =-2 P.E.
D. 2 K.E. = -P.E.

Answer:

D Watch Video Solution

29. When an electron in hydrogen atom is raised from the ground state to an excited state its
A. P.E. increases and K.E. decreases
B. P.E. decreases and K.E. increases
C. both the energies decreases
D. both the energies increases

Answer:

D Watch Video Solution

30. If the P.E. of an electron in hydrogen atom is $-27.2 e V$, then its T.E. is
A. $+27.2 e V$
B. -13.6 eV
C. +13.6 eV
D. $-27.2 e \mathrm{~V}$

Answer:

31. The energy of an electron in the 1st Bohr orbit of hydrogen atom is
A. zero
B. maximum
C. mininum
D. infinite

Answer:

- Watch Video Solution

32. The energy of an electron in the 2nd orbit is -3.4 eV . So the energy of an electron in the 4th orbit is
A. 0.84 eV
B. $-0.85 e V$
C. 8.5 eV
D. 5.8 eV

Answer:

- Watch Video Solution

33. The ionisation potential of H_{2} atom is
A. $-10.36 e V$
B. 13.6 eV
C. 8.24 V
D. 14 V

Answer:

- Watch Video Solution

34. The ratio of radii of the first three Bohr orbits is
A. $3: 2: 1$
B. 1:2:3
C. 9: 4: 1
D. 1: 4: 9

Answer:

- Watch Video Solution

35. The radius of first Bohr orbit is $0.53 A^{\circ}$. The value of n if the radius of $n^{t} h$ bohr orbit is $53 A^{\circ}$, is
A. 10
B. 30
C. 40
D. 20

Answer:

36. The relation between force acting on the electron and principle quantum number in hydrogen atom is
A. $F \propto n^{4}$
B. $F \propto \frac{1}{n^{2}}$
C. $F \propto \frac{1}{n^{4}}$
D. $F \propto n^{2}$

Answer:

- Watch Video Solution

37. The unit of Rydberg's constant is
A. per metre
B. per second
C. per metre square
D. per kg

Answer:

- Watch Video Solution

38. The shortest wavelength of Balmer series is given by
A. $\frac{9}{R}$
B. $\frac{4}{R}$
C. $\frac{36}{5} R$
D. $\frac{R}{4}$

Answer:

- Watch Video Solution

39. The longest wavelength in Paschen series is obtained when an electron jumps from
A. 4th to 2nd orbit
B. 4th to 3rd orbit
C. 3rd to 4 th orbit
D. $n_{\infty} \rightarrow 3 r d$

Answer:

- Watch Video Solution

40. The Lyman series involves
A. largest changes of energy
B. smallest changes of energy
C. largest changes of potential energy
D. smallest changes in potential energy

D Watch Video Solution

41. In an atom, two electrons move around the nucleus in circular orbits taking time f and $8 f$ to complete one revolution. The ratio of their radii is......
A. 1: 4
B. $8: 1$
C. $4: 1$
D. $1: 8$

Answer:

42. The energy in the ground state of hydrogen atom is -13.6 eV , then energy of 1st excited state is
A. -6.5 eV
B. '-3.4 eV
C. -1.51 eV
D. 0.27 eV

Answer:

- Watch Video Solution

43. The De Broglie wavelength associated with a particle of mass m and velocity v is given by
A. $\lambda=h(m V)$
B. $\lambda=m v / h$
C. $\lambda=h / m v$
D. $\lambda=\lambda / m v$

Answer:

- Watch Video Solution

44. In which of the following systems will the radius of the first orbit of the electron be smallest?
A. hydrogen
B. singly ionized helium
C. deuterium
D. tritium

Answer:

45. The radius of the 4th orbit of the electron will be smaller than its 8th orbit by a factor of
A. 2
B. 4
C. 8
D. 16

Answer:

- Watch Video Solution

46. In the spectrum of hydrogen atom which transition will yield longest wavelength?
A. $n=2$ to $n=1$
B. $n=5$ to $n=4$
C. $n=7$ to $n=6$
D. $\mathrm{n}=8$ to $\mathrm{n}=7$

Answer:

- Watch Video Solution

47. Which of the following properties of a nucleus does not depend on its mass number?
A. radius
B. mass
C. volume
D. density

Answer:

48. If the number of nuclei in a radioactive sample at a given time is N , what will be the number at the end of two half-lives?
A. $\frac{N}{2}$
B. $\frac{N}{4}$
C. $3 N / 4$
D. $\frac{n}{8}$

Answer:

- Watch Video Solution

49. The volume of the nucleus is proportional to
A. A
B. $A^{\frac{1}{2}}$
C. $A^{\frac{1}{3}}$
D. $A^{\frac{1}{4}}$

Answer:

- Watch Video Solution

50. What is the relation between the radius of the nucleus and the mass number?
A. isotopes
B. isobar
C. isotones
D. excited

Answer:

- Watch Video Solution

51. The nucleus having same mass number is called
A. isotones
B. isobar
C. isotopes
D. all of them

Answer:

D Watch Video Solution

52. The energy of an electron moving with the velocity of light is given by
A. 0.511 MeV
B. 5.11 MeV
C. 51.1 MeV
D. 511 MeV

Answer:

53. Radioactivity is a phenomenon associated with
A. emission of b particles
B. emission of a particles
C. decay of nucleus
D. decay of proton

Answer:

- Watch Video Solution

54. The emission of beta particles is from
A. the nucleus due to the nuclear conversion neutron \rightarrow proton
+electron
B. the inner shell of an atom
C. the valence shell of an atom
D. the nucleus due to the nuclear conversion proton \rightarrow neutron + electron

Answer:

- Watch Video Solution

55. The radiations which are not affected by electric or magnetic field is
A. a-particles
B. b-particles
C. g-rays
D. x-rays

Answer:

56. Which of the following radiation has maximum ionization power and minimum penetrating power
A. $\alpha-$ rays
B. β - rays
C. $\gamma-$ rays
D. cathode rays

Answer:

Watch Video Solution
57. In Davission and Germer experiment, crystal used to produce scattering of electrons is
A. sodium
B. nickel
C. calcium
D. potassium

Answer:

- Watch Video Solution

58. Geiger - Marsden's experiment confirmed the theoretical predictions of. \qquad
A. Rutherford
B. Bohr
C. Thomsan
D. Newton

Answer:

59. In the spectrum of hydrogen atom which transition will yield shortest wavelength?
A. $n=2$ to $n=1$
B. $n=5$ to $n=4$
C. $n=7$ to $n=6$
D. $n=8$ to $n=7$

Answer:

- Watch Video Solution

60. If the number of nuclei in a radioactive sample at a given time is N, what will be the number at the end of two half-lives?
A. $\frac{N}{2}$
B. $\frac{N}{T}$
C. 3 N
D. $n / 8$

Answer:

- Watch Video Solution

61. If the number of nuclei in a radioactive sample at a given time is N , what will be the number at the end of two half-lives?
A. 2
B. 4
C. 8
D. 16

Answer:

62. Energy of the electron in $n=\infty$ is
A. $E=-13.6 \mathrm{eV}$
B. $\mathrm{E}=\infty \mathrm{eV}$
C. $E=0 \mathrm{eV}$
D. $E=+13.6 \mathrm{eV}$

Answer:

- Watch Video Solution

63. Which of the two has greater ionizing power, alpha or beta particle?

Watch Video Solution

64. What is the relation between the radius of the nucleus and the mass number?
65. State the name of the visible series in hydrogen spectrum?

- Watch Video Solution

66. Find the shortest wavelength of the Paschen series, given that the longest wavelength of the Balmer series in the hydrogen spectrum is $6563 A^{\circ}$.

- Watch Video Solution

67. Find the energy of the electron in eV in the third Bohr orbit of the hydrogen atom. (Rydberg'scons $\tan t \mathrm{R}=1.097 \mathrm{xx10} \mathrm{\wedge} \mathrm{~m}^{\wedge}-1$ Planck'scons $\tan t(h)=6.63 \times x 10^{\wedge}-34$ J.S, velocityoflight $\in \operatorname{air}(c)=$ $\left.3 x x 10^{\wedge} 8 \mathrm{~m} / / \mathrm{s}\right)^{\wedge}$
68. The velocity of the electron in the 1st Bohr orbit has a radius $0.53 A^{\circ}$ is $2200 \mathrm{~km} / \mathrm{s}$. Calculate the frequency of revolution of the electron in the same orbit.

(Watch Video Solution

69. How many spectral series are possible in the hydrogen spectrum?

- Watch Video Solution

70. State the properties of β-particles?

- Watch Video Solution

71. What are isobars? State an example
72. State the law of radioactive decay. Hence derive the expression $N=N_{0}\left(e^{-\lambda} t\right)$ If where symbols have their usual meanings.

- Watch Video Solution

73. Find the shortest wavelength of the Paschen series, given that the longest wavelength of the Balmer series in the hydrogen spectrum is $6563 A^{\circ}$.

- Watch Video Solution

74. Derive an expression for the total energy of an electron in the nth orbit. Define B.E.

- Watch Video Solution

75. Derive an expression $N=N_{0} e^{-\lambda t}$ in Radioactivity
