©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CHETANA PUBLICATION

AC CIRCUITS

Example

1. Which are the two types of supplies of electricity?

2. Define DC supply of electricity

D Watch Video Solution

3. Define AC supply of electricity .

- Watch Video Solution

4. Name a device which converts $A C$ to $D C$.
5. Name some devices which use DC supply of electricity.

D Watch Video Solution

6. Name domestic appliances which run on AC
supply of electricity.

D Watch Video Solution
7. State the expression for emf of an AC source.

D Watch Video Solution
8. State the expression for current of $A C$ source.
(Watch Video Solution
9. What is peak value of $A C$.

- Watch Video Solution

10. What is average or mean value of AC .
(D) Watch Video Solution
11. What is the average value of full cycle of AC? Why.

- Watch Video Solution

12. What is the relation between peak value and average value of $A C$.

D Watch Video Solution

13. What does an ammeter or voltmeter measure? Average value or peak value.

- Watch Video Solution

14. Why can moving coil instruments not be used to measure alternating currents voltages

D Watch Video Solution

15. Which is more dangerous, AC or DC ?

D Watch Video Solution

16. An alternating current measuring
instrument have linear or non-linear

scale.Why?

D Watch Video Solution

17. What is the vo $<a \geq /$ equency cycle of

AC supply India.

D Watch Video Solution

18. What is peak value and r.m.s. value of alternating current?

D Watch Video Solution
19. What is peak value and r.m.s. value of alternating e.m.f.in the electric circuit?

D Watch Video Solution

20. Derive expression for heat produced by the

AC source in time t.
21. An alternating voltage is given by $e=6$ sin

314t.Find:- the peak value

D Watch Video Solution
22. An alternating voltage is given by $\mathrm{e}=6$ sin

314t.Find:- frequency

- Watch Video Solution

23. An alternating voltage is given by $e=6$ sin

314t.Find:- time period and

D Watch Video Solution
24. An alternating voltage is given by $e=6 \sin$

314 t .Find:-instantaneous value at time $\mathrm{t}=2 \mathrm{~ms}$

- Watch Video Solution

25. An alternating voltage given by $\mathrm{e}=140$ sin
$3142 t$ is connected across a pure resistor of
50Ω.Find:- the frequency of the source

D Watch Video Solution

26. An alternating voltage given by $e=140$ sin

3142 t is connected across a pure resistor of
50Ω.Find:- the rms current through the resistor.
27. An alternating e.m.f. is given by $100 \sin 100$ $\pi \mathrm{t}$ o a pure resistance of50 . calculate:- peak value of e.m.f

D Watch Video Solution

28. An alternating e.m.f. is given by 100 sin $100 \pi \mathrm{t}$ to a pure resistance of 50Ω. calculate:frequency
29. An alternating e.m.f. is given by 100 sin $100 \pi t$ to a pure resistance of50 Ω. calculate:r.m.s current through the circuit.

D Watch Video Solution

30. The r.m.s. value of current is $(2) \sqrt{2}$ A.Calcutate its peak value of current.

D Watch Video Solution

31. An e.m.f. of peak value 100 V and frequency

60 r.p.s is supplied to the bulb.Write down the equation of supplied voltage.

D Watch Video Solution

32. The A.C. current passing through 60Ω resistor causes a power loss of 6000 W . Find the r.m.s current and its maximum value .

What are maximum value and r.m.s value of
D.C? What is the value of D.C.current that produces same power loss as the A.C. current?

D Watch Video Solution

33. If the effective current in a 50 cycle $A C$ circuit is 5 A , what is the peak value of current?

What is the current $1 / 600$ sec.after it was

Zero?

D Watch Video Solution

34. A light bulb is rated 100 W for 220 V ACsupply of 50 Hz .Calculate:-resistance of the bulb.

D Watch Video Solution

35. A light bulb is rated 100 W for 220 V ACsupply of 50 Hz .Calculate:-the rms current through the bulb.
36. What is a phasor ?What is phasor diagram?

D Watch Video Solution

37. How is the phasor of alternating emf or current represented ?

D Watch Video Solution

38. Explain the theory of an A.C.circuit with resistor. Draw the phasor diagram for it.
39. An alternating e.m.f. is applied to a circuit containing resistance. Discuss the behaviour of current in the circuit. Also discuss the phase diagram for it.

D Watch Video Solution

40. Explain the theory of A.C. circuit with pure inductor .Draw the phasor digram for voltage and current in the circuit.
41. Define inductive reactance and state its Sl unit.

D Watch Video Solution
42. How does inductive reactance vary with frequency f and inductance L ?

D Watch Video Solution
43. Show graphically the variation of X_{L} with frequency f .

- Watch Video Solution

44. What is SI unit and dimension of X_{L}.

- Watch Video Solution

45. Why does a pure inductor pass $D C$ and block AC of high frequency

Watch Video Solution

46. An inductor of inductance 200 mH is connected to an AC source of peak emf 210 V and frequency 50 Hz .Calculate the peak current. What is the instantaneous voltage of the source when the current is at its peak value?

- Watch Video Solution

47. An AC circuit consists of only an inductor of inductance 2 H . If the current is represented by a sine wave of amplitude 0.25 A and frequency 60 Hz ,calculate the effective potential difference across the inductor

- Watch Video Solution

48. Alternating emf of $\mathrm{e}=220 \sin 100 \pi t$ is applied to a circuit containing an inductance of $\left(\frac{1}{\pi}\right)$ henry. Write an equation for
instantaneous current through the circuit.

What will be the reading of the $A C$ galvenometer connected in the circuit?

D Watch Video Solution

49. Find the reactantance of a coil of
inductance 100 mH at a frequency 50 Hz and 1000 Hz.

D Watch Video Solution
50. An inductor of 500 mH is connected across
a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ suppy. Calculate its reactance.

D Watch Video Solution

51. Explain the theory of an A.C. circuit in a purely capacitive circuit. Draw the Phasor diagram for voltage and current in it

- Watch Video Solution

52. Define capacitive reactane X_{C}.

D Watch Video Solution

53. How does capacitive reactance vary with
frequency and capacitance?

- Watch Video Solution

54. A device Y is connected across an $A C$ source of emf $\mathrm{e}=e_{o} \sin \omega t$.the current through
y is given as $\mathrm{i}=i_{o} \sin \left(\omega t+\left(\frac{\pi}{2}\right)\right)$:-Identify the device Y and write the expression for its reactance.

D Watch Video Solution

55. A device Y is connected across an $A C$ source of emf $\mathrm{e}=e_{o} \sin \omega t$.the current through
y is given as $\mathrm{i}=i_{o} \sin \left(\omega t+\left(\frac{\pi}{2}\right)\right)$:-Draw graphs showinh variation of emf and current with time over one cycle of $A C$ for Y.
56. A device Y is connected across an $A C$ source of emf $\mathrm{e}=e_{o} \sin \omega t$.the current through y is given as $\mathrm{i}=i_{o} \sin \left(\omega t+\left(\frac{\pi}{2}\right)\right)$:-How doesthe reactance of the device Y vary with the frequency of the AC? Show graphically.

D Watch Video Solution

57. A device Y is connected across an AC source
of emf $\mathrm{e}=e_{o} \sin \omega t$.the current through y is
given as $\mathrm{i}=i_{o} \sin \left(\omega t+\left(\frac{\pi}{2}\right)\right)$:-Draw the phasor diagram for the device Y .

D Watch Video Solution

58. Draw the graph of capacitive reactance against frequency of a.c. source. Hence discuss
its conclusion.

- Watch Video Solution

59. State SI unit and dimensions of X_{c}.
60. A capacitor of $2 \mu F$ is connected to an AC source of emf $\mathrm{e}=250 \sin 100 \pi t$. Write an equation for instantaneous current through the circuit and give reading of AC ammeter connected in the circuit.

- Watch Video Solution

61. A capacitor draws 20 A current at $240 \mathrm{~V}, 50$

Hz . Findthe capacitive reactance and the capacitance of the capacitor.

D Watch Video Solution

62. A $100 \mu F$ capacitor is charged with a 50 V source supply. Then source supply is removed
and the capacitor is connected across an inductance of reactance 10Ω, as a result of which 5A current flows through the
inductance. Calculate thevalue of the inductance.

D Watch Video Solution

63. A $15.0 \mu F$ capacitor is connected to a 220 V

50 Hz source. Find the capacitive reactance and the current (rms and peak) in the circuit. If the frequency is doubled, what will happen to the capacitive reactance and the current?

D Watch Video Solution

64. Obtain an expression for impedance of resistor, pure inductor and capacitor connected in series across alternating e.m.f. State formula for phase difference.

- Watch Video Solution

65. Define impedance. State its SI unit.

- Watch Video Solution

66. State SI unit and dimensions of impedance.

D Watch Video Solution

67. What do you mean by reactance and impedance?

D Watch Video Solution

68. Define admittance, State its SI unit.
69. What happens in LCR circuit when ${ }^{\prime} X_{-} L=X _C$
,X_L>X_C,X_L

D Watch Video Solution

70. Draw and explain impedance triangle.
(D) Watch Video Solution
71. A 100 mH incftictor, a $25 \mu F$ capacitor and a
15Ω resistor is connected in series to a 120 V ,

50 Hz . AC source. Calculate:-impedance of the circuit at resonance

- Watch Video Solution

72. A 100 mH incftictor, a 25 pF capacitor and a

15 Q resistor is connected in series to a 120 V ,
50 Hz . AC source. Calculate:-current at resonance
73. A 100 mH incftictor, a 25 pF capacitor and a

15 Q resistor is connected in series to a 120 V ,
$50 \mathrm{~Hz} . \mathrm{AC}$ source. Calculate:-Resonant frequency

D Watch Video Solution

74. A coil of 0.01 H inductance and $I \Omega$ resistance is connected to $200 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ supply. Find the impedance of the circuit and
time lag between maximum alternating voltage and current.

D Watch Video Solution

75. In LCR circuit, inductance $L=\frac{2}{\pi} H$, capacitance $C=\frac{10}{\pi} \quad F \quad$ and resistance 10

Omega are connected in series to A.C. source of frequency $=50 \mathrm{~Hz}$. Find:-inductive reactance
76. In LCR circuit, inductance $L=\frac{2}{\pi} H$, capacitance $C=\frac{10}{\pi} \quad F \quad$ and resistance 10 Omega are connected in series to A.C. source of frequency $=50 \mathrm{~Hz}$. Find:-capacitive reactance

D Watch Video Solution

77. In LCR circuit, inductance $L=\frac{2}{\pi} H$,
capacitance $C=\frac{10}{\pi} \quad \mathrm{~F}$ and resistance 10

Omega are connected in series to A.C. source
of frequency $=50 \mathrm{~Hz}$. Find:-impedance of the circuit.

D Watch Video Solution

78. When 100 V D.C. is applied across a coil, a current of 1A flows through it. When 100 V A.C. of frequency 50 Hz is applied to the same coil only 0.5 A current flows through it. Calculate resistance, and self inductance of the coil

D Watch Video Solution

79. A capacitor of $20 \mu F$ is connected in series
with a 25Ω resistance to peak e.m.f. $240 \mathrm{~V}, 50$
Hz A.C. Calculate:-the capacitive reactance of the coil

- Watch Video Solution

80. A capacitor of $20 \mu F$ is connected in series
with a 25Ω resistance to peak e.m.f. $240 \mathrm{~V}, 50$
Hz A.C. Calculate:-impedance of the circuit
81. A 100Ω resistor is connected to a $220 \mathrm{~V}, 50$ Hz supply:-What is the rms value of current in the circuit?

D Watch Video Solution

82. An alternating e.m.f. of peak value 110 V andfrequency 50 Hz is connected across LCR
series circuit with $\mathrm{R}=100 \Omega$, $\mathrm{L}=10 \mathrm{mH}, \mathrm{C}=$
$25 \mu F$. Calculate the inductive reactance, capacitive reactance and impedance.
83. A capacitor of $25 \mu F$, inductor of 0.1 H and resistor of resistance 25Ω are connected in series with an A.C. source of e.m.f., e $=310 \sin$ (314 t) volt. What is the :-reactance

D Watch Video Solution

84. A capacitor of $25 \mu F$, inductor of 0.1 H and resistor of resistance 25Ω are connected in series with an A.C. source of e.m.f., e $=310$ sin
(314 t) volt. What is the:- impedance and current of the circuit

D Watch Video Solution

85. A capacitor of $25 \mu F$, inductor of 0.1 H and resistor of resistance 25Ω are connected in series with an A.C. source of e.m.f., e $=310 \sin$
(314 t) volt. What is the:-phase angle between current and applied e.m.f.
86. A capacitor of $25 \mu F$, inductor of 0.1 H and resistor of resistance 25Ω are connected in series with an A.C. source of e.m.f., e $=310$ sin
(314 t) volt. What is the :-reactance

D Watch Video Solution

87. An A.C. supply of frequency 50 Hz is
supplied to a series combination of $25 \mu F$ condenser, 0.1 H inductor and 24Ω resistor.

Calculate inductive and capacitive reactance.

Also find impedance of the circuit.
88. A capacitor of $100 \mu F$, a coil of resistance
50Ω and an inductance 0.5 H are connected in
series with a $110 \mathrm{~V}-50 \mathrm{HZ}$ source. Calculate the mis value of current in the circuit.

- Watch Video Solution

89. A $10 \mu F$ capacitor is charged to a 25 volt of potential.The battery is disconnected and a
pure 100 mH coil is connected across the capacitor so that LC oscillations are set up.

Calculate the maximum current in the coil.

D Watch Video Solution

90. An electric lamp is connected in series with
a capacitor and an AC source is glowing with a certain brightness. How does the brightness
of the lamp change on increasing the capacitance?
91. The total impedance of a circuit decreases when a capacitor is added in series with L and R. Explain why?

D Watch Video Solution

92. For very high frequency $A C$ supply, a capacitor behaves like a pure conductor. Why?
93. A $25 \mu F$ capacitor, a 0.10 H inductor and a
25Ω resistor are connected in series with a AC
source whose emf is given by $\mathrm{e}=310 \sin 314 \mathrm{t}$
(volt). What is the frequency, reactance, impedance, current and phase angle of the circuit?

D Watch Video Solution
94. Derive an expression for the average power associated with resistance in AC circuit.

95. A 100Ω resistor is connected to a $220 \mathrm{~V}, 50$

 Hz supply:-What is the rms value of current in the circuit?
- Watch Video Solution

96. A 100Ω resistor is connected to a $220 \mathrm{~V}, 50$

Hz supply:- What is the net power consumed over a full cycle?
97. Show that average power over a complete cycle of AC through an ideal inductor is zero.

D Watch Video Solution

98. Show that the average power supplied to an ideal capacitor by the source over a complete cycle is zero.
99. Find the capacity of a capacitor which when put in series with a 10Ω resistor makes the power factor equal to 0.5. Assume an 80 V -100 Hz AC supply.

D Watch Video Solution

100. Obtain an expression for power consumed in a LCR series circuit. Hence obtain an expression for power factor of the circuit.

- Watch Video Solution

101. Define power factor

- Watch Video Solution

102. What is wattless current?

D Watch Video Solution

103. In a series LR circuit $X_{L}=\mathrm{R}$ and power
factor of the circuit is P_{1}. When capacitor with
capacitance C such that $X_{-} L=X_{-} C$ is p ut in
series the power factor becomes P_2. Calculate
P_{1} / P_{2}.

D Watch Video Solution

104. A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a series LCR circuit in which $\mathrm{R}=3 \Omega, \mathrm{~L}=25.48 \mathrm{mH}$ and $\mathrm{C}=$
$796 \mu f$. Find:-The impedance of the circuit

D Watch Video Solution

105. A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a series LCR circuit in which $\mathrm{R}=3 \Omega, \mathrm{~L}=25.48 \mathrm{mH}$ and $\mathrm{C}=$ $796 \mu f$. Find:-The phase difference between the voltage across source and the currents

D Watch Video Solution

106. A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a series LCR
circuit in which $\mathrm{R}=3 \Omega, \mathrm{~L}=25.48 \mathrm{mH}$ and $\mathrm{C}=$
$796 \mu f$. Find:-The power factor

D Watch Video Solution

107. A sinusoidal voltage of peak value 283 V and frequency 50 Hz is applied to a series LCR circuit in which $\mathrm{R}=3 \Omega, \mathrm{~L}=25.48 \mathrm{mH}$ and $\mathrm{C}=$ $796 \mu f$. Find:-The power dissipated in the surface.

- Watch Video Solution

108. An alternating voltage of $240 \mathrm{~V}, 50 \mathrm{~Hz}$ is applied to 20 H inductance coil and resistance
300Ω. Calculate, inductive reactance power factor and power absorbed.

D Watch Video Solution

109. How oscillations are produced usingan inductor and a capacitor?
110. Why are LC oscillations usually damped?

- Watch Video Solution

111. Calculate the value of capacity in picofarad, which will make 101.4 micro henry inductance to oscillate with frequency of one megahertz.

- Watch Video Solution

112. What is natural frequency of oscillation of
a system?

- Watch Video Solution

113. What is electric resonance?

- Watch Video Solution

114. What is resonant circuit?

D Watch Video Solution
115. Which are the different types of electric resonance circuits?

D Watch Video Solution
116. Explain series resonance in LCR circuit.

- Watch Video Solution

117. Define series resonant frequency.
118. State the applications of series resonant circuit.

D Watch Video Solution
119. State the condition for series resonance.

Obtain an expression for resonant frequency.

D Watch Video Solution
120. Draw series resonance curve and discuss
its importance.

D Watch Video Solution
121. State the characteristics of series resonance circuit.

D Watch Video Solution

122. What are acceptor circuits?

- Watch Video Solution

123. What is parallel resonance circuit? Obtain condition for parallel resonance.

- Watch Video Solution

124. Define resonance frequency in parallel
resonance. Obtain an expression for resonance frequency in parallel LC circuit. Also
discuss the variation of current with

frequency.

D Watch Video Solution
125. What are rejector circuits?

D Watch Video Solution

126. State the characteristics of parallel resonance circuit

D Watch Video Solution
127. An A.C. voltage is applied to parallel combination of inductance 2 mH and a capacitor $3.2 \mu F$. Calculate the resonant frequency.

- Watch Video Solution

128. A series LCR circuit has capacitor of $0.2 \mu F$
and inductor of 8 mH . Find its resonant
frequeiucy.

Watch Video Solution

129. In series LCR circuit, the inductor of inductance . 100 mH , a resistor of 10Ω, and a
variable. capacitor are connected across 20 V , 50 Hz supply. At what capacitance will resonance occur? Find the corresponding current.

- Watch Video Solution

130. An A.C. voltage of r.m.s. value 1 V is applied
to a parallel combination of inductor $\mathrm{L}=10$ mH , and capacitor $4 \mu F$. Calculate the resonant frequency and current through each branch and resonance.

- Watch Video Solution

131. A coil of resistance 5μ and self inductance
0.2 H is connected in series with a variable capacitor across $30 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. At what
value of capacitor resonance will occur? Find the corresponding current.

D Watch Video Solution

132. In a resonant circuit, inductance of the
coil is 3 mH and resonant frequency is 1000
kHz . What is the value of capacitor in the circuit?
133. An A.C. circuit consists of a resistor of 5Ω
and inductor of 10 mH connected in series
with 50 V , 50 Hz supply. What capacitance should be connected in series with the circuit to obtain maximum current? What will be the maximum current?

D Watch Video Solution

134. In LCR series combination $R=10 \Omega, L=1$ $\mathrm{mH}, \mathrm{C}=2 \mu F$. Determine :- resonant frequency,
135. In LCR series combination $R=10 \Omega, \mathrm{~L}=1$
$\mathrm{mH}, \mathrm{C}=2 \mu F$. Determine :- the current in the circuit when an alternating voltage of 10 mV operating at the resonant frequency is applied to the series combination.

- Watch Video Solution

136. An A.C. circuit consists of inductor of inductance 125 mH connected in parallel with
a capacitor of capacity $50 \mu F$. Determine the resonant frequency.

D Watch Video Solution

137. The LCR series circuit has an inductance

50 mH and a capacitor $0.1 \times 10^{-6} F$ and a resistance 200Ω. Find the impedance at resonance and resonant frequency
138. What is half power frequency in series LCR circuit.

D Watch Video Solution
139. Define Q factor of series resonant circuit and state formula
(D) Watch Video Solution
140. Draw the sharpness resonance curve of series LCR circuit to explain the Q-factor.

D Watch Video Solution

141. State the units and dimensions of Q factor

D Watch Video Solution

142. What happens if Q factor of LCR circuit is
large.

- Watch Video Solution

143. What is a choke coil?

- Watch Video Solution

144. Where is a choke coil used ?

- Watch Video Solution

145. Write a short note on choke coil.

- Watch Video Solution

146. Distinugish between Resistance and Reactance.

- Watch Video Solution

147. Differences between series and parallel resonance.
148. A LCR series circuit has the impedance of

240 ohm. If $R=120 \Omega$, find the power factor of the circuit.

- Watch Video Solution

2. In LCR series circuit a voltmeter is connected
in turn acrosstheendsof R,LandC, and the voltages are found to be $192 \mathrm{~V}, 200 \mathrm{~V}$ and 56 V
respectively. Find the phase angle and hence the power factor of the circuit

D Watch Video Solution

3. What inductive reactance will $a \frac{1}{\pi} \mathrm{H}$ inductor have at the 50 Hz frequency?

D Watch Video Solution

4. What is the period of a 50 Hz voltage wave?

D Watch Video Solution

5. An inductor draws 5 A of current at $230 \mathrm{~V}, 50$ Hz . Find the value of inductive reactance and the inductance.

D Watch Video Solution

6. A capacitor draws 10 Aof current at $230 \mathrm{~V}, 50$

Hz . Find the capacitive reactance and the capacitance of the capacitor.

D Watch Video Solution
7. A circuit connected to a 200 V supply takes a current of 4.8 A. If the angle of lag is 25°, find the power absorbed.

D Watch Video Solution

8. A voltage e $=50 \sqrt{2} \sin 314.0 \mathrm{t}$ volt is applied across a 10 ohm resistor. Find:- peak value of emf

9. A voltage $\mathrm{e}=50 \sqrt{2} \sin 314.0 \mathrm{t}$ volt is applied

 across a 10 ohm resistor. Find:-frequency
D Watch Video Solution

10. A voltage $\mathrm{e}=50 \sqrt{2} \sin 314.0 \mathrm{t}$ volt is applied across a 10 ohm resistor. Find:-rms current (i.e. an ac ammeter reading) through the circuit.

D Watch Video Solution

11. A 2 H inductor of negligible resistance is connected to a $50 \mathrm{~V}, 50 \mathrm{~Hz}$ power line:- What is the inductive reactance?

D Watch Video Solution

12. A 2 H inductor of negligible resistance is
connected to a $50 \mathrm{~V}, 50 \mathrm{~Hz}$ power line:- What isthe current in the coil?

D Watch Video Solution

13. A peak value of alternating voltage is
494.97 V. Find reading on voltmeter used to measure it?

- Watch Video Solution

14. In a purely inductive ac circuit $L=25 \mathrm{mH}$ and peak voltage of ac supply is 150 V . Find inductive reactance and maximum current if the frequency is 50 Hz .
15. An inductor has a reactance of 125.6Ω at 200 Hz . What is the inductance?

D Watch Video Solution

16. An alternating e.m.f. given by $e=50 \sin 314 t$ is applied to a pure resistance of 100 ohm.

Find:-peak value of e.m.f.

D Watch Video Solution

17. An alternating e.m.f. given by $e=50 \sin 314 t$
is applied to a pure resistance of 100 ohm.

Find:-frequency

D Watch Video Solution

18. An alternating e.m.f. given by $e=50 \sin 314 t$
is applied to a pure resistance of 100 ohm.

Find:-r.m.s. current through the circuit
19. An alternating e.m.f. given by $e=50 \sin 314 t$ is applied to a pure resistance of 100 ohm.

Find:- power dissipated in the circuit.

D Watch Video Solution

20. A 60 watt lamp is connected to an alternating e.m.f. of peak value 230 volt. Find
the peak value of current flowing through the lamp.
21. When an a.c. current passes through a 14Ω resistor, the power loss is 224 W . Find the r.m.s.
values of current and voltage. Also find the maximum values of current and voltage. Find the steady value of current which when passed through this resistor will produce the same power loss as the a.c. current.

- Watch Video Solution

22. Calculate the reactance of a 2 H inductance

in an a.c. circuit of frequency 50 Hz .

- Watch Video Solution

23. Calculate the reactance of a $1 \mu F$
capacitance in an a.c. circuit of frequency 50 Hz.

- Watch Video Solution

24. A coil has an inductance of 0.5 H . Calculate:-
its inductive reactance when connected to 240
V (peak), 50 Hz A.C.

- Watch Video Solution

25. A coil has an inductance of 0.5 H . Calculate:-
its impedance if the resistance of the circuit is
50 תand

- Watch Video Solution

26. A coil has an inductance of 0.5 H and a resistance of 100 ohm are connected in series
to $240 \mathrm{v}, 50 \mathrm{~Hz}$ supply. Calculate:- the maximum
current in the circuit.

- Watch Video Solution

27. An a.c. e.m.f. of peak value 240 V and
frequency 50 Hz is connected to a circuit with
$\mathrm{R}=12 \Omega, \mathrm{~L}=2.5 \mathrm{H}$ and a capacitor all in series.

Find the capacitance for the current in the
circuit to be maximum. Find the maximum current.

D Watch Video Solution

28. Find the current in a circuit consisting of a coil and a capacitor in series with an A.C. source of 110 V (r.m.s.), 60 Hz . The inductance of the coil is 0.80 H and its resistance is 50Ω.

The capacitance of the capacitor is $8 \mu F$.

D Watch Video Solution

29. In a series LCR circuit, $\mathrm{R}=20 \Omega, \mathrm{C}=10 \mu F$ and $L=25 \mathrm{mH}$.The frequency of applied a.c. e.m.f. of 240 volt (peak) is 50 Hz . Calculate :impedance of the circuit

- Watch Video Solution

30. In a series LCR circuit, $\mathrm{R}=20 \Omega, \mathrm{C}=10 \mu F$
and $L=25 \mathrm{mH}$.The frequency of applied a.c.
e.m.f. of 240 volt (peak) is 50 Hz . Calculate :-
maximum current
31. In a series LCR circuit, $\mathrm{R}=20 \Omega, \mathrm{C}=10 \mu F$ and $L=25 \mathrm{mH}$.The frequency of applied a.c. e.m.f. of 240 volt (peak) is 50 Hz . Calculate :phase angle between the current and the voltage

- Watch Video Solution

32. In a series LCR circuit, $\mathrm{R}=20 \Omega, \mathrm{C}=10 \mu F$ and $\mathrm{L}=25 \mathrm{mH}$.The frequency of applied a.c.
e.m.f. of 240 volt (peak) is 50 Hz . Calculate :-

maximum current

D Watch Video Solution

33. In a series LCR circuit, $\mathrm{R}=20 \Omega, \mathrm{C}=10 \mu F$ and $L=25 \mathrm{mH}$.The frequency of applied a.c. e.m.f. of 240 volt (peak) is 50 Hz . Calculate :average power delivered to the circuit.
34. In a series resonant circuit, the inductance
coil is of 0.2 H and the resistance coil is of 50Ω.

What is the value of capacitance in the circuit for resonance to occur at a frequency of 1500 kHz ? The source has an e.m.f. of 100 V r.m.s.?

D Watch Video Solution

35 . Find the reactance of a 0.8 Hinductance call on an A.C. line of frequency 50 Hz .
36. Find the impedance of a LR circuit with $R=$ 50Ω in series with an inductive reactance of 30Ω.

D Watch Video Solution

37. An A.C. circuit of maximum e.m.f. 100 volt and of frequency 50 Hz contains an inductance of 0.2 mH . What is the inductive reactance of the circuit? What is the maximum current in the circuit?

- Watch Video Solution

38. An A.C.source of r.m.s. value85V and frequency 50 Hz is connected in series with an inductance of 2 H and a resistance of 10Ω. Find the maximum current in the circuit.

- Watch Video Solution

39. A resistance of 160Ω is used in series with
an inductance L and an a.c. of $230 \mathrm{~V}, 50 \mathrm{~Hz}$. If
the current in the circuit is 0.25 A , find L .

- Watch Video Solution

40. An A.C. e.m.f. of peak $220 \mathrm{~V}, 50 \mathrm{~Hz}$ is
connected to an inductance of 253 mH and a
resistance of 9Ω series calculate the
impedance of the circuit and the r.m.s. current in the circuit.
41. A circuit has a resistance and a reactance each equal to 100Ω. Find its power factor. If the circuit draws a current of 1.5 A for an applied voltage of 200 V , what is the average power consumed in the circuit?

- Watch Video Solution

42. An A.C. circuit of peak e.m.f. 200 V and of frequency 50 Hz contains an inductive of 0.1 H
and resistance 10Ω in series. Find the power
factor and the power consumed in the circuit

D Watch Video Solution

43. Find the capacitive reactance of a $100 \mu F$ capacitor used on a A.C.source of 50 Hz .

- Watch Video Solution

44. A capacitance of $0.4 \mu F$ is connected to an
alternating e.m.f. of frequency 100 Hz . What is
the capacitive reactance?

- Watch Video Solution

45. A capacitor of $50 \mu F$ is connected across a
$100 \mathrm{~V}, 50 \mathrm{~Hz}$ a.c. supply. Find the reactance and
the r.m.s. current.

(Watch Video Solution

46. An a.c. series circuit has a source of maximum e.m.f. 220 V at a frequency of 50 Hz
connected to a capacitor of 8 pF , an inductor of
0.8 H and a non-inductive resistor of 50Ω.

What is the maximum current in the circuit?

D Watch Video Solution

47. The resonant frequency of a parallel LC
circuit is 1000 kHz . If $\mathrm{L}=3 \mathrm{mH}$, find the capacitance used.

D Watch Video Solution

48. Find the capacitance to be connected in parallel with a 100 mH inductance to achieve a resonance frequency of 50 Hz .

- Watch Video Solution

49. An A.C. voltage of r.m.s. value IV is applied to a parallel combination of inductor $\mathrm{L}=10 \mathrm{mH}$
and capacitor $\mathrm{C}=4 \mu F$. Calculate the resonant frequency and current through each branch at resonance.
50. A capacitor is used with an A.C. source of

110 V and frequency 50 Hz . If the maximum current in the circuit is 4.89 A , calculate the capacitance

- Watch Video Solution

51. An a.c. consists of a resistor of 10 W , inductor of 0.1 H and capacitor of 50 mF in
series across a $50 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine power factor of the circuit.

D Watch Video Solution

52. An A.C. circuit consists of inductor of inductance 125 mH connected in parallel with
a capacitor of capacity $50 \mu F$. Determine the resonant frequency.

D Watch Video Solution

53. In an ac circuit, V and I are given by $\mathrm{V}=$ $100 \sin (100 t) \quad$ volts,l $\quad=100 \sin \left(100 t+\frac{\pi}{3}\right)$ mA .The power dissipated in circuit is
A. $10^{4} w a$
B. 10 watt
C. 2.5 watt
D. 5 watt

Answer:

- Watch Video Solution

54. The frequency of ac mainsin India is
A. $30 c / s$ or $H z$
B. $50 c / s$ or $H z$
C. $60 c / s$ or $H z$
D. $120 c / s$ or $H z$

Answer:
(Watch Video Solution
55. The peak value of 220 volts of ac mainsis
A. 155.6 volts
B. 220.0 volts
C. 311.0 volts
D. 440 volts

Answer:
56. If a current I given by $I_{o} \sin \left(\omega-\frac{\pi}{2}\right)$
flowsin an ac circuit across which an potential of $\mathrm{e}=e_{0} \sin \omega t$ has been applied, then the power consumption P in the circuit will be.
A. P $=\frac{e_{o} i_{0}}{\sqrt{2}}$
B. $\mathrm{P}=\sqrt{2} e_{o} i_{o}$
C. $\mathrm{P}=\frac{e_{o} i_{0}}{2}$
D. $P=0$

Answer:

57. In an ac circuit, the current is given by $\mathrm{I}=$ $5 \sin \left(100 t-\frac{\pi}{2}\right)$ and the ac potential is
$\mathrm{V}=200 \sin (100)$ volt.Thenthepower consumption
A. 20 watts
B. 40 watts
C. 1000 watts
D. 0 watts

Answer:

- Watch Video Solution

58. The frequency of an alternating voltage is 50 cycles//sec and its amplitude is 120 V . Then the r.m.s. value of voltage is
A. 101.3 V
B. 84.8 V
C. 70.7 V
D. 56.5 V

Answer:

D Watch Video Solution

59. The ratio of peak value and r.m.s. value of an alternating current is
A. 1
B. $\frac{1}{2}$
C. $\sqrt{2}$
D. $\frac{1}{\sqrt{2}}$

Answer:

D Watch Video Solution

60. The power factor of $L C R$ circuit at resonance is
A. 0.707
B. 1
C. zero
D. 0.5

- Watch Video Solution

61. Power delivered by the source of the circuit becomes maximum, when
A. $\omega L-\omega C$
B. $\omega L=\frac{1}{\omega} C$
C. $\omega L=-\left(\frac{1}{\omega C}\right)^{2}$
D. $\omega L=\sqrt{\omega} C$

Answer:

D Watch Video Solution

62. In a circuit containing an inductance of
zero resistance, the e.m.f. of the applied ac voltage leads the current by
A. 90°
B. 45°
C. 30°
D. 0°

Answer:

D Watch Video Solution

63. An alternating e.m.f. is applied to purely
capacitive circuit. The phase relation between
e.m.f. and current flowing in the circuit is
A. e.m.f. is ahead of current by $\frac{\pi}{2}$
B. current is ahead of e.m.f. $b y \frac{\pi}{2}$
C. current is ahead of e.m.f. by π
D. current is ahead of e.m.f. by π

Answer:

D Watch Video Solution

64. An alternating current of frequency ' f isflowing in a circuit containing a resistance R and a choke L in series. The impedance of this circuit is
A. $R+2 \pi f L$
B. $\sqrt{R^{2}+4 \pi^{2} f^{2} L^{2}}$
C. $\sqrt{R^{2}+L^{2}}$

$$
\text { D. } \sqrt{R^{2}+2 \pi f L}
$$

Answer:

D Watch Video Solution

65. The average power dissipation in a pure capacitance in ac circuit is
A. $\frac{1}{2} C V^{2}$
B. $C V^{2}$
C. $\frac{1}{4} C V^{2}$

D. Zero

Answer:

D Watch Video Solution

66. An alternating voltage $\mathrm{e}=200 \sqrt{2} \sin (100 \mathrm{t})$
is connected to a 1microfarad capacitor
through an ac ammeter. The reading of the ammetershall be
A. 10 mA

B. 20 mA

C. 40 mA
D. 80 mA

Answer:

D Watch Video Solution

67. L, C and R denote inductance, capacitance and resistance respectively. Pick out the combination which does not have the dimensions of frequency
A. $\frac{1}{R} C$
B. $\frac{R}{L}$
C. $\frac{1}{\sqrt{L C}}$
D. C / L

Answer:

- Watch Video Solution

68. What will be the phase difference between virtual voltage and virtual current, when the current in the circuit is wattless
A. 90°
B. 45°
C. 180°
D. 60°

Answer:

D Watch Video Solution

69. Power factor is maximum in an LCR circuit when
A. $X_{L}=X_{C}$
B. $\mathrm{R}=0$
C. $X_{L}=0$
D. $X_{C}=0$

Answer:

D Watch Video Solution
70. The capacity of a pure capacitor is1Farad.

In DC circuits, its effective resistance will be
A. zero
B. infinite
C. 1 ohm
D. $\frac{1}{2} \mathrm{ohm}$

Answer:

D Watch Video Solution

71. A $220 \mathrm{~V}, 50 \mathrm{~Hz}$ as source is connected to an inductance of 0.2 H and a resistance of 20 ohm
in series. What is the current in the circuit.
A. 10 A
B. 5 A
C. 33.3 A
D. 3.33 A

Answer:

- Watch Video Solution

72. For high frequency, a capacitor offers
A. More reactance
B. Less reactance
C. Zero reactance
D. Infinite reactance

Answer:

- Watch Video Solution

73. In LCR circuit the pd between the terminals
of the inductance is 60 V , between the terminals of the capacitor is 30 V and that
between the terminals of resistance is 40 V .

The supply voltage will be equal to
A. 50 V
B. 70 V
C. 130 V
D. 10 V

Answer:
(Watch Video Solution
74. In a LCR circuit capacitance is changed
from C to $2 C$. For the resonant frequency to
remain unchanged, the inductance should be changed from L to
A. 4 L
B. 2 L
C. $L / 2$
D. $L / 4$

Answer:
75. An oscillator circuit consists of an inductance of 0.5 mH and a capacitor of $20 \mu F$.

The resonant frequency of the circuit is nearly
A. 15.92 Hz
B. 159.2 Hz
C. 1592 Hz
D. 15910 Hz

Answer:
76. Which of the following components of an

LCR circuit with ac supply, dissipates energy
A. L
B. R
C. C
D. All of these

Answer:

77. The phase difference between the ac and emf is $\frac{\pi}{2}$. Which of the following cannot be the constituent of the circuit
A. LC
B. L alone
C. R alone
D. R,L

Answer:

D Watch Video Solution
78. In an A.C. circuit the current
A. Always leads the voltage
B. Always lags behind the voltage
C. It is alwaysin phase with the voltage
D. May lead or lag behind or be in phase with the voltage

Answer:
79. Acoil of inductive reactance 31Ω has a resistance of 8Ω. It is placed in series with a condenser of capadtative reactance 25Ω. The combination is connected to an a.c.source of

110 volt. The power factor of the circuit is
A. 0.8
B. 0.33
C. 0.56
D. 0.64

Answer:

D Watch Video Solution

80. A light bulb is rated 100 W for a 220 V
supply. The resistance of the bulb and the peak voltage of the source respectively are
A. 242Ω and 311 V
B. 484Ω and 311 V
C. 484Ω and 440 V
D. 242Ω and 440 V

Answer:

D Watch Video Solution

81. A 50 volt a.c. is applied across an RC (series)
network. The rms voltage across the resistance
is 40 volt, then the potential across the capadtance would be
A. 10 V
B. 20 V
C. 30 V

D. 40 V

Answer:

D Watch Video Solution

82. Apure inductor of 25 mHis conneded to a source of 220 V . Given the frequency of the
source as 50 Hz , the rms current in the circuit is
A. 7 A
B. 14 A
C. 28 A
D. 42 A

Answer:

D Watch Video Solution

83. If the rms current in a 50 Hz AC rircuit is 5 A
the value of the current $\frac{1}{300}$ seconds after its
value becomes zero is
A. $5(\sqrt{2}) A$
B. $\frac{5(\sqrt{3})}{2}$
C. $\frac{5}{6} A$
D. 5/(sqrt2)A

Answer:

D Watch Video Solution

84. A resistor of 500Ω and an indudance of 0.5
H are in series with an AC source which is
given by $V=100 \sqrt{2} \sin (1000 \mathrm{t})$. The power

fador of the combination is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{1}{s} q t r 3 \\
& \text { C. } 0.5 \\
& \text { D. } 0.6
\end{aligned}
$$

Answer:
(Watch Video Solution
85. Thedisplacement currentisgivenby the expression

$$
\text { A. } \mu_{o}\left(1+\varepsilon_{o} \frac{d \phi_{E}}{d t}\right)
$$

B. $\varepsilon_{o} \frac{d \phi_{E}}{d t}$
C. $\mu_{o} \varepsilon_{o} \frac{d \phi_{E}}{d t}$
D. $\mu_{o} \varepsilon_{o}$

Answer:

D Watch Video Solution

86. An alternating e.m.f. is given by $e=100 \sin$

314 t , the time within which the e.m.f. will half of its maximum value is
A. 0.16 sec .
B. 0.016 sec .
C. 0.0016 sec .
D. 1.6 sec .

Answer:

87. A sinusoidal voltage $e=200 \sin (100 t)$ is

applied acrossaresistanceof 100Ω then current

 measured by D.C. ammeter isA. 2 A
B. 2.828 A
C. 0.2 A
D. 0

Answer:

- Watch Video Solution

88. Relation between $e_{r} m s$ and e_{o} is

$$
\begin{aligned}
& \text { A. } \frac{e_{r m s}}{e_{o}}=\frac{1}{\sqrt{2}} \\
& \text { B. } e_{r m s}=e_{o} \sqrt{2} \\
& \text { C. } e_{r m s}=2 e_{o} \\
& \text { D. } e_{o}=e_{r m s} \sqrt{2}
\end{aligned}
$$

Answer:

89. $A 6 \Omega$ resistanceand 8Ω inductance are connected in series then power factor of the circuit is
A. 0.06
B. 0.6
C. 0.8
D. $\frac{1}{8}$

Answer:

- Watch Video Solution

90. A current that does not perform any work is
A. peak current
B. r.m.s. current
C. ideal current

D. eddy currents

Answer:

D Watch Video Solution

91. In LCR series drcuit apparent power is

$$
\begin{aligned}
& \text { A. } e_{r . m . s .} \cdot i_{r . m . s .} \\
& \text { B. } \frac{e_{r . m . s .}}{i_{r . m . s .}} \\
& \text { C. } \frac{i_{r . m . s .}}{e_{r . m . s .}} \\
& \text { D. }\left(e_{r . m . s .}\right)^{2}\left(i_{r . m . s .}\right)
\end{aligned}
$$

Answer:

92. Seled true statement for purely inductive circuit
A. current and voltage are in phase
B. current lags behind the e.m.f. by phase
of $\frac{\pi}{2} r a d$
C. e.m.f. lags behind the current by phase

$$
\text { of } \frac{\pi}{2} r a d
$$

D. current lags behind the e.m.f. by phase of $\pi r a d$

Answer:

D Watch Video Solution

93. Resonance frequency for parallel LC circuit
is given by
A. $\left(L \frac{C}{2 \pi}\right.$
B. ${ }^{`} /(2$ pisqrt(LC)
C. $\frac{2 \pi}{L C}$
D. $\frac{\sqrt{L C}}{2 \pi}$

Answer:

D Watch Video Solution

94. In LCR series drcuit, at resonance the applied e.m.f. and current

A. out of phase
B. differ by π radians
C. in phase
D. differ by $\frac{\pi}{2} r a d$

Answer:

D Watch Video Solution

95. In series LCR circuit, at resonance
impedance
A. maximum
B. minimum
C. zero
D. infinite

Answer:

- Watch Video Solution

96. In series $L C R$ circuit $\mathrm{R}=4 \Omega, \mathrm{~L}=0.2 \mathrm{H}$ and $\mathrm{C}=$

0.1 F, at resonance impedance is
A. 4Ω
B. 15.99Ω
C. 0.2Ω
D. 19

Answer:

D Watch Video Solution

97. The impedance of LCR circuit increases with
frequency when
A. $L>C$
B. $C>L$
C. $X_{L}>X_{C}$
D. $X_{C}>X_{L}$

Answer:

D Watch Video Solution

98. Which of the following depends upon frequency?
A. inductance
B. capacitance
C. resistance
D. C and B

Answer:

- Watch Video Solution

99. In an R.C. circuit resistance $=4$ Omega and
$\mathrm{XC}=3 \Omega$, then power factor is
A. 0.8
B. 8
C. 0
D. 1

Answer:

D Watch Video Solution

100. In a circuit L,Cand R are connected in series with an alternating voltage of frequency
f the current leads the voltage by 45^@. The value of C is

$$
\begin{aligned}
& \text { A. } \frac{1}{\pi f(2 f L-R)} \\
& \text { B. } \frac{1}{2 \pi f(2 \pi f L-R)} \\
& \text { C. } \frac{1}{\pi f(2 \pi f L-R)}
\end{aligned}
$$

D. $\frac{1}{2 \pi f(2 \pi f L+R)}$

Answer:

D Watch Video Solution

101. In an AC circuit, e and i are given by $\mathrm{e}=150$
$\sin 150 \mathrm{tV}$ and $\mathrm{i}=150 \sin \left(150 t+\frac{\pi}{3}\right) \mathrm{A}$. The 1
power dissipated in the circuit is

A. 106 W

B. 150 W

C. 5625 W

D. zero

Answer:

D Watch Video Solution

102. In a series LCR circuit the phase difference
between the v oltage and the current is 45°.

Then the power factor will be
A. 0.607
B. 0.707

C. 0.808

D. 1

Answer:

- Watch Video Solution

103. Select and write the most appropriate answer. The instantaneous current in an A.C. circuit is given by $\mathrm{I}=2 \sin (\omega t+\theta)$ ampere. The r.m.s. value of the current is
A. 2 ampere
B. 2sqrt2 ampere
C. sqrt2 ampere
D. $1 /$ sqrt2 ampere

Answer:

D Watch Video Solution

104. An L- C - R series circuit is joined to a source of alternating e.m.f. If $\mathrm{R}=9 \Omega, X_{L}=28 \Omega$
, $X_{-} c=16 \mathrm{~W}$, then the impedance of the circuit will be
A. 10Ω
B. 15Ω
C. 20Ω
D. 30Ω

Answer:

D Watch Video Solution
105. In an A.C. circuit $I=10 \cos$ (100t) ampere
and $V=20 \sin (100 t)$. The power loss in the circuit will be
A. 20 watt
B. 200watt
C. 0 watt
D. 50 watt

Answer:

D Watch Video Solution
106. An alternating e.m.f. is applied to a series

L-C - R circuit. It the frequency of the applied
e.m.f. is more than the resonant frequency of
the circuit then the circuit will act as
A. a resistive circuit
B. an inductive circuit
C. a capacitive circuit
D. an oscillatory circuit

Answer:

107. Answer the following in short. What isthe power factor for a purely resistive circuit?

D Watch Video Solution

108. State the condition for series resonance.

Obtain an expression for resonant frequency.

- Watch Video Solution

109. What is the phase difference between current and e.m.f. in a purely capacitive circuit?

D Watch Video Solution

110. A alternating e.m.f. $\mathrm{e}=200 \sin (100 \pi t)$ is connected across a resistor of resistance 10Ω.

Calculate the r.m.s. current flowing through the circuit.
111. Define: inductive reactance capacitive.

D Watch Video Solution

112. Define peak and r.m.s. value of alternating signal.

- Watch Video Solution

113. Distinugish between Resistance and

Reactance.
114. A radio can tune over a frequency range 400 kHz to 600 kHz of the medium wave band.

If the L - C tuner circuit has an effective inductance of 0.2 mH , what must be the range of its variable capacitance of the capacitor?

D Watch Video Solution

115. Distinguish between acceptor circuit and rejector circuit.
116. An A.C. circuit consists of a resistor of 5Ω and inductor of 10 mH connected in series with $50 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. What capacitance should be connected in series with the circuit to obtain maximum current? What will be the maximum current?
117. Attempt the following . What is a series

LCR resonant circuit?State the condition
forseriesresonance and obtain an expression
for the resonant frequency of the circuit.

- Watch Video Solution

118. A capacitor of $25 \mu F$, inductor of 0.1 H and resistor of resistance 25Ω are connected in series with an A.C. source of e.m.f., $e=310$ sin
(314 t) volt. What is the :-reactance
119. A $25 \mu F$ capacitor, 0.1 H inductor and 25 W resistor are connected in series with an ac source of emf $e=310 \sin 314 t$ volt. What is :impedance

D Watch Video Solution

120. A $25 \mu \mathrm{~F}$ capacitor, 0.1 H inductor and 25 W resistor are connected in series with an ac
source of emf e = $310 \sin 314 \mathrm{t}$ volt. What is:current in the circuit

D Watch Video Solution

121. A capacitor of $25 \mu F$, inductor of 0.1 H and resistor of resistance 25Ω are connected in series with an A.C. source of e.m.f., e $=310 \sin$
(314 t) volt. What is the:-phase angle between current and applied e.m.f.

D Watch Video Solution

122. A $25 \mu F$ capacitor, 0.1 H inductor and 25 W resistor are connected in series with an ac source of emf $e=310 \sin 314 \mathrm{t}$ volt. What is:current in the circuit
